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Kraichnan’s random sweeping hypothesis in homogeneous turbulent convection
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We report an experimental study of the temperature space-time cross-correlation function, CT (r,τ ), in the
central region of turbulent Rayleigh-Bénard convection. The measured CT (r,τ ) is found to have the scaling
form CT (rE,0), where rE = [r2 + (V τ )2]1/2 with V being the rms velocity at the center of the convection cell.
The experiment confirms the theory by He et al. [Phys. Rev. E 73, 055303(R) (2006)] and demonstrates its
applications to homogenous turbulent flows, where the mean flow velocity is zero and Kraichnan’s random
sweeping hypothesis holds approximately.
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In a recent Rapid Communication [1], we reported an exper-
imental study of the temperature space-time cross-correlation
function,

CT (r,τ ) = 〈δT (x + r,t + τ )δT (x,t)〉t /[(σT )1(σT )2], (1)

in turbulent Rayleigh-Bénard convection, where a fluid layer
of thickness H is heated from below and cooled from the top.
In the above, δT is the local temperature deviation from the
mean and (σT )i is its standard deviation at position i. When the
Rayleigh number [2] Ra � 108, the convective flow becomes
turbulent. The flow in the closed convection cell is known to
be inhomogeneous with a large-scale circulation (LSC) across
the cell height [3]. In the rotation plane of LSC, the flow
has a fly-wheel-like structure with a zero mean at the center
and a linearly increasing velocity along the radial direction in
the bulk region. After reaching its maximum value near the
sidewall, the mean vertical velocity starts to drop quickly and
becomes zero at the cell wall.

As a result, the flow field near the sidewall is similar to that
of a channel flow with a mean vertical velocity U0 and a rms
velocity σv � 0.6U0 [3]. In this case, temperature is a passive
scalar and follows the local flow [4,5]. Therefore the energy
cascade picture can also be used to describe the spectrum
of temperature variance [6], and CT (r,τ ) is expected to have
the same functional form as the velocity counterpart Cv(r,τ ).
It was found [1] that the obtained CT (r,τ ) has the scaling
form

CT (r,τ ) = CT (rE,0), (2)

with rE being of the elliptical form,

r2
E = (r − Uτ )2 + (V τ )2, (3)

where U is a characteristic convection velocity proportional to
the local mean velocity U0 and V is associated with a random
sweeping velocity proportional to the local rms velocity σv .
Equation (3) incorporates both Taylor’s frozen flow hypothesis
[7,8] when V is small and Kraichnan’s random sweeping
hypothesis [9] for a homogenous and isotropic turbulent flow
with a zero mean velocity. The experiment thus verified the
theory by He and Zhang [10], in which Eq. (3) was derived
for small values of r and τ and both U and V were calculated
from the second derivatives of Cv(r,τ ).

The scaling theory by He and Zhang [10] has important
practical implications for a large class of turbulent flows and

thus it is essential to test the theory in different flow systems.
The above experiment tested the theory in the sidewall region
of a convective flow, where there still exists a dominant mean
flow but the rms velocity is so large that Taylor’s hypothesis
[7] does not hold. In the experiment, r was varied only in
the longitudinal direction along the mean flow. In this Brief
Report, we present new measurements at the center of the
convection cell, where the mean flow is zero and velocity
fluctuations are approximately homogeneous [3]. Here we vary
r in the lateral direction across a large-scale shear imposed
by LSC. The experiment further confirms the theory by He
and Zhang and demonstrates its applications to homogenous
turbulent flows, where Kraichnan’s hypothesis [9] holds
approximately.

The experiment is conducted in an upright cylindrical cell
of inner diameter D = 19.0 cm and height H = 22.0 cm filled
with water. Details about the apparatus and the experimental
method have been described elsewhere [11], and here we
mention only some key points. The sidewall of the cell is
made of a transparent Plexiglas ring, which is sandwiched
between the top and bottom brass plates. Two silicon rubber
film heaters are used to provide uniform heating to the bottom
plate. The top plate temperature is maintained constant by a
temperature bath. The entire cell is placed inside a thermostat
box, whose temperature matches the mean temperature of the
bulk fluid, which is maintained at 40 ± 0.3 ◦C. The Prandtl
number is then fixed at Pr � 4.3. The value of Ra is varied in
the range of 9 × 108 � Ra � 2 × 1010, and here we focus on
the measurements at Ra = 2 × 1010.

Two small movable thermistors of 0.2 mm in diameter and
15 ms in time constant are used to measure temperature fluctua-
tions at two positions simultaneously. One of the thermistors is
fixed at the cell center and the other is placed aside at the same
height with a horizontal separation r, which is varied from 0.1
to 90 mm. For each value of r, we collect 10-h-long time series
data (>106 data points) to ensure that the statistical averaging
is adequate. All the temperature measurements are made in the
plane of LSC with a fixed sampling rate of 40 Hz. Because
of the central rotation symmetry of LSC, care is taken to
align the position of the thermistors at an accuracy better than
30 μm.

Figure 1(a) shows a three-dimensional (3D) plot of the
measured CT (r,τ ) as a function of r and τ . The measured
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FIG. 1. (Color online) (a) 3D plot of the measured CT (r,τ ) as
a function of r and τ . The correlation amplitude is color coded.
(b) 2D plot of isocorrelation contours of CT (r,τ ) with the correlation
amplitude varied from 0.95 to 0.2 at decrements of 0.05 (inner to
outer contours). All the temperature measurements are made in the
central core region at Ra = 2 × 1010.

CT (r,τ ) is a single peaked function with a maximal value of
CT (0,0) = 1 at the origin and decays to zero at large values of
r and τ . Figure 1(b) shows a 2D plot of isocorrelation contours
of CT (r,τ ). It is found that for small values of r (�10 mm,
inner region), the obtained isocorrelation contours appear as a
set of ellipses of the standard form having the same orientation
and aspect ratio. The long and short major axes of the ellipses
coincide with the r and τ axes, respectively. For larger values
of r (�10 mm, outer region), the isocorrelation contours start
to deviate from the standard form of ellipse. The deviations
are found to increase with increasing r. Clearly, the functional
form of CT (r,τ ) in the outer region is different from that in the
inner region.

We first discuss the scaling form of CT (r,τ ) in the inner
region. According to the elliptic model by He and Zhang [10],
the set of elliptic contours shown in Fig. 1(b) results from
the fact that CT (r,τ ) has the scaling form shown in Eqs. (2)
and (3). The values of U and V in Eq. (3) can be obtained
directly from the measured CT (r,τ ). Figure 2(a) shows the
measured CT (r,τ ) as a function of τ for different values of r.
It is seen that CT (r,τ ) has a symmetric shape with the peak
position remaining at τp = 0 for all values of r in the inner
region. This behavior is in great contrast with that near the
sidewall, where τp was found to increase with r [1]. This is
because it takes a longer time for temperature fluctuations to
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FIG. 2. (Color online) Measured CT (r,τ ) as a function of τ

for different values of r. Values of r (from top to bottom): (a)
0.1 mm (black), 1.7 mm (red), 6.0 mm (green), 10.0 mm (blue);
(b) 12.0 mm (black), 20.0 mm (red), 25.0 mm (green), 40.0 mm
(blue), and 60.0 mm (cyan).

move across a larger separation by the mean flow U. It has
been shown that τp is related to r by the equation [1]

τp = U

U 2 + V 2
r. (4)

From Eq. (4) and Fig. 2(a), we conclude that U = 0 in the
inner region. This conclusion is also supported by the fact the
long major axis of the elliptic contours coincide with the r
axis, as shown in Fig. 1(b). He and Zhang [10] have shown
that the angle of the long major axis with respect to the r axis
is zero when U = 0.

Substituting U = 0 into Eq. (3), one finds that Eq. (3) can
be rearranged into a standard form of the ellipse:

r2

a
+ τ 2

b
= 1, (5)

where a = rE and b = a/V . We have verified that the values
of a and b obtained from the isocorrelation contours shown
in Fig. 1(b) indeed obey a linear relation (not shown), and
from the slope we find V = 8.5 mm/s. Previous velocity
measurements in a similar convection cell [3] have shown that
at the cell center the mean horizontal velocity U0 = 0 and the
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horizontal rms velocity σv = 8 mm/s. These values are very
close to those obtained for U and V. Figures 1 and 2(a) thus
demonstrate that Kraichnan’s random sweeping hypothesis [9]
is valid in the inner region, where the convective flow is
approximately homogenous and isotropic with a zero mean
velocity.

Figure 2(b) shows the measured CT (r,τ ) as a function of
τ for different values of r in the outer region, in which the
peak value of CT (r,τ ) decays from 0.5 to the noise level. In
contrast to the situation in the inner region, the peak position
τp now starts to increase with r and the shape of the measured
CT (r,τ ) becomes more asymmetric with respect to τp for large
values of r. These changes suggest that the velocity (and hence
temperature) fluctuations become inhomogeneous over large
separations r. It has been shown [3] that in the aspect-ratio-1
cell LSC is not exactly of circular shape (which is true only in
the central core region). Rather, the rotation is around a tilted
ellipse with its long major axis aligned along the diagonal
of the upright cylinder. Such a tilted LSC will give rise to a
small horizontal mean velocity U (r) when the separation r
becomes large (in the outer region). The value of U (r) will
increase when the measuring position is moved further toward
the sidewall. We believe that this small horizontal velocity
is the cause for the peak position τp to become nonzero and
increase with r.

The asymmetry of the measured CT (r,τ ) in the outer region
can be attributed to the asymmetric shape of thermal plumes. It
has been shown [12] that warm (cold) plumes produce positive
(negative) clifflike spikes in the temperature time series data.
In the inner region, warm and cold plumes are fully mixed
and the clifflike asymmetry in temperature fluctuations are
averaged out in the measured CT (r,τ ). Thus CT (r,τ ) has
a symmetric shape with respect to τp. In the outer region,
however, there are more warm (or cold) plumes accumulated
in the sidewall region, making the temperature signal have
more positive (or negative) clifflike fluctuations. Such an
asymmetric distribution of temperature fluctuation will result
in an asymmetric temporal correlation function CT (r,τ ) in τ

(at a fixed value of r).
By taking the position dependence of temperature fluc-

tuations into consideration, we introduce two r-dependent
velocities, U (r) and V (r), in both Eqs. (3) and (4). Because
the r dependence is quite weak, we determine U (r) and V (r)
iteratively. First, we fix V (r) at the constant value V0 = 8.5
mm/s obtained in the inner region and find U (r) from the
measured τp vs r curve (not shown) using Eq. (4). The resulting
U (r) is shown in Fig. 3. It is found that the obtained U (r)
(circles) increases with r and can be fit to a linear function of
r:

U (r) = α(r − r0), (6)

with α = 0.1 s−1 and r0 = 10 mm (lower solid line). The
obtained value of α is close to the estimated rotational
frequency of LSC, γu � 0.17 s−1, at Ra = 2 × 1010 [3]. With
the obtained U (r), we then fine tune the value of V (r) so that
all the measured CT (r,τ ) vs τ curves at different values of r
superimpose when they are plotted as a function of rE given in
Eq. (3). In the scaling plot, the main effect of changing U (r) is
to shift the peak position τp whereas the effect of varying V (r)
is to adjust the width of the single peaked correlation function.
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FIG. 3. Obtained U (r) (circles) and V (r) (triangles) as a function
of r. The solid lines show the fitting Eq. (6) (lower solid line) and
Eq. (7) (upper solid line).

The resulting V (r) is also shown in Fig. 3 (triangles), which
can be well fit to a linear function of r as well (upper solid
line):

V (r) = V0 + α(r − r0). (7)

Except for a constant offset V0, the obtained values of α and
r0 for V (r) are the same as those for U (r).

To further test the scaling form of CT (r,τ ) in both the inner
and outer regions, we plot, in Fig. 4, the measured CT (r,τ )
at different vales of r as a function of the scaling variable rE .
The value of rE is obtained using Eq. (3) with U = 0 and
V = 8.5 mm/s for r in the inner region (r � 10 mm) and
with Eqs. (6) and (7) for r in the outer region (r � 10 mm). It
is seen that all the measured correlation functions collapse
into a single master curve, indicating that the measured
CT (r,τ )’s indeed have the predicted scaling form CT (rE,0).
For comparison, we also plot, in Fig. 4, the directly measured
equal-time correlation function CT (r,0) as a function of r (open
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FIG. 4. (Color online) Measured CT (r,τ ) as a function of the
scaling variable rE for different values of r: 0 mm (black), 5.1 mm
(red), 7.6 mm (green), 13.5 mm (blue), 20.0 mm (cyan), and 25.0 mm
(magenta). For comparison, directly measured CT (r,0) as a function
of r is also shown (circles).
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FIG. 5. (Color online) Temperature power spectrum ET (k) as a
function of kλT . The (blue) dashed line indicates the power law,
ET (k) ∼ (kλT )−1.35. The vertical (red) dashed lines indicate the three
subranges: dissipation range (DR), near-dissipation range (NDR), and
inertial range (IR).

circles). In the central core region (r � 30 mm), the required
condition of spatial homogeneity for the scaling theory to
hold is satisfied and thus the measured CT (r,0) and CT (rE,0)
superpose together. For r � 30 mm, however, this condition
is no longer satisfied and thus the measured CT (r,0) becomes
systematically smaller than CT (rE,0). The introduction of the
r dependence in U (r) and V (r) provides a correction to the
scaling form of CT (rE,0), but the measured CT (r,0) is still
affected by the spatial inhomogeneity of the flow.

An important conclusion from the above discussion is that
there is no inhomogeneity correction for r = 0, and thus
one has

CT (0,τ ) = CT (rE,0), (8)

with rE = V0τ . With Eq. (8), one can directly obtain CT (rE,0),
or its Fourier transform ET (k), from a single-point temperature

time series measurement at the cell center. Figure 5 shows
the temperature power spectrum ET (k) as a function of kλT ,
which is obtained using the high-resolution temporal data. In
the plot, we used the Taylor microscale λT as the normalization
length. Using the equation [10] CT (rE,0) � 1 − (rE/λT )2 for
small values of rE , we obtain λT � 3.7 mm directly from the
compensated plot of CT (rE,0) + (rE/λT )2 vs rE (not shown).
The corresponding Reynolds number is ReλT

� V0λT /ν �
200.

Similar to the situation near the sidewall [1], the measured
ET (k) reveals three distinct subranges of length scales: the
inertial range, IR (kλT � 0.4), the near dissipation range, NDR
(0.4 � kλT � 4), and the dissipation range, DR (kλT � 4).
These three ranges are marked by the vertical (red) dashed
lines in Fig. 5. While the single-point temperature power
spectrum ET (f ) has been measured previously at the cell
center [13,14], its connection to ET (k) has never been firmly
established in turbulent convection [15]. With the support
of the scaling results shown in Figs. 4 and 5 provides the
first direct confirmation of ET (k) with the horizontal axis
correctly labeled in units of λT . At Ra = 2 × 1010, we obtain
the longest IR range, in which ET (k) shows a power-law
scaling:

ET (k) ∼ (kλT )−γ (9)

with γ = 1.35 ± 0.05 [(blue) dashed line]. A similar scaling
result was obtained previously in the convection systems of
low-temperature helium gas [13] and water [16,17]. The ob-
tained value of γ is slightly smaller than the Corrsin-Oboukhov
value of γ = 5/3 for passive scalars in a turbulent flow at
sufficiently large Reynolds numbers [6]. Possible reasons for
this deviation have been discussed elsewhere [18,19].
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