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Parametric evolution of unstable dimension variability in coupled piecewise-linear chaotic maps
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In the presence of unstable dimension variability numerical solutions of chaotic systems are valid only for short
periods of observation. For this reason, analytical results for systems that exhibit this phenomenon are needed.
Aiming to go one step further in obtaining such results, we study the parametric evolution of unstable dimension
variability in two coupled bungalow maps. Each of these maps presents intervals of linearity that define Markov
partitions, which are recovered for the coupled system in the case of synchronization. Using such partitions we
find exact results for the onset of unstable dimension variability and for contrast measure, which quantifies the
intensity of the phenomenon in terms of the stability of the periodic orbits embedded in the synchronization

subspace.
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Unstable dimension variability (UDV) is a form of nonhy-
perbolicity in which there is no continuous splitting between
stable and unstable subspaces along the chaotic invariant
set [1]. The variability takes place when the periodic orbits,
embedded in the chaotic set, have a different number of
unstable directions. This is a local phenomenon that can
influence the entire phase space, and create complexity in the
system [2—4]. The validity of trajectories generated by chaotic
systems exhibiting UDV is guaranteed for short periods [5],
which decreases as the intensity of the UDV increases [6,7].

The intensity of the UDV can be quantified by the
embedded unstable periodic orbits (UPOs) in a nonhyperbolic
attractor [3]. There are efficient computational methods for the
analysis of these orbits [8,9]. However, it is a time-consuming
task because the number of orbits increases with their period,
and in many problems it is necessary to consider very high
periods [10-12]. To avoid this problem, one constructs a
model so that the UDV occurs in a transversal direction to
a hyperbolic attractor. The dynamics in this attractor is well
known, and therefore, some analytical results can be obtained.
This type of construction allows us developing tools to shed
light on the UDV [13,14]. Examples of physical problems that
can be handled by these tools are the effect of shadowing
in the kicked double rotor [15,16], the beginning of the
spatial activity in the three-waves model [17,18], transport
properties of passive inertial particles incompressible flows
[19], and the chaos synchronization in coupled map lattices
[20-22]. In some cases, the study of periodic orbits embedded
in the synchronization subspace allows the global behavior
determination of coupled chaotic maps [23].

The lack of accurate results hinders the understanding of
the UDV. Thus, the key question that this article will address
is the analytical calculation for systems that present such
phenomenon. In the following pages, we shall consider a
simple spatially extended system composed by two identical
bungalow maps [24], which are piecewise linear and inter-
act by a diffusive coupling. Such a system exhibits chaos

*Corresponding author: desouzapinto@pgq.cnpg.br

1539-3755/2011/83(3)/037201(4)

037201-1

PACS number(s): 05.45.Xt, 05.45.Ra

synchronization and UDV in the transversal direction to the
synchronization subspace, for certain parameters intervals
[25]. Besides, this map presents strong chaos for the entire
parameter control interval [26]. These features allows us
to study the parametric evolution of the UDV for arbitrary
periods.

Now, we shall consider the above-mentioned map x —

Ja(x), given by

Ik if xel =[0a),
2a 1-3a . . 1

Ja(x) = 2 T 1 if xebh=la;z),
2(l—-x)+ 12 if xeh=[}1-a),
ZH1=x if xely=[l-all],

(1)

in which a € (0,1/2) is a parameter [see Fig. 1(a)]. This
map has the following property [24]: Va, the four intervals
of linearity of the map define four Markov partitions' of phase
space w = | J I, = [0, 1] (going forward, greek indexes range
from 1 to 4). This property, consequently, allows us to study the
symbolic dynamics and the interval dynamics of the system.
Therefore, we hypothesize that the Markov partitions allow an
exact result for the onset of the UDV in the synchronization
subspace of coupled bungalow maps.

To do this study, we must determine all possible itineraries.
Considering the linearity of the map in each interval I, and
the images of its ends

fa(0) = 0
f@ = l-a Ja)) C(1 UL U L)
£/ = 1 N Ja(l)) C 1y ’
fl—a) = 1-a Ja(I3) C 14
£) = 0 Jaly) C (L1 UL UDL)

we obtain the graph indicated in Fig. 1(b).

'In the case where a = 1/3, the map (1) is reduced to a tent map,
for which there are two partitions 0 < x < 1/2and 1/2 < x < 1.
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FIG. 1. (a) The bungalow map for three different values of a. The
indicated partitions are respective toa = 0.20. (b) Possible transitions
between partitions of the bungalow map.

Consider, now, the following matrix [26,27]:

m nm om0
0 0 0 m
0 0 0 |

ns ns na O

Ilo

T 2)

whose eigenvalues are givenby ¢, » = (i £ 6)/2andt34 = 0,
in which 6 = vn? + 4n4(n2 + 13).

It is straightforward to apprehend that matrix (2), with all
ne = 1, represents the transfer matrix 7j, associated with the
graph in Fig. 1(b), of the map, where the element located in
the line v and column 7 of the nth power, [7]'],; represents the
number of different itineraries of size n starting in the partition
I, and ending in the partition /;. Therefore, the topological
entropy of map (1) is given by the largest eigenvalue (¢))
logarithm of the matrix 77 (hy = 1n2) [27]. Moreover, the
invariant density of the map is given by the eigenvector
components associated with #;: v; =1 /@[21 1217 [the
component v(la) indicates the natural measure of the ath
partition].

In matrix (2), the n, stands for any constant quantity in
each interval of linearity I, and it is multiplicative along a
trajectory. Thus, we can use the nth power of the matrix (2) to
study the dynamical properties of the map. For example, the
diagonal elements of 7" provide the 2" periodic sequences of
size n.

The trace of the matrix is directly related to its

eigenvalues by
trT" = Z 1.
o

Once we know the eigenvalues of T, we can determine the
trace of T", whatever the value of n

n l ¢ n n— 11—
tr7" = o ; (k)n’fe 14 (=1 A, 3)

In Eq. (3) each term in the summation is related to a possible
symbolic sequence. Thus, if n, = f'(x)|.es,, then Eq. (3) gives
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the stability coefficients spectrum of the nth periodic points of
the map (1). As an illustration, we have associated with the
intinerary Iy I 14111514 - - - 11114 a point of period 3. For this
case the coefficient of stability is the product 1,1,74.

From now on we shall examine the case of two coupled
maps. We shall use the following version for the coupling:

<xn+l> — G(xn) — <fa[xn + 5(yn - xn)]>’ (4)
Yn+1 Yn Jalyn +&(xn — yn)l

in which é and ¢ can assume different (asymmetric coupling) or
equal values (symmetric coupling). If any of them vanishes, we
obtain a master-slave coupling. At any instance, the dynamics,
for synchronization purposes, will depend on their sum
d=35§+e.

The map G keeps the unit square invariant when both 0 <
6 < 1and 0 < ¢ < 1 (we will deal only with these intervals).
This system has the property to generate dynamics that leave
the straight line x = y of the plane invariant and, consequently,
the segment S = {(x,y) € »* | 0 < x = y < 1}. The latter is
often called the synchronization subspace.

Since UDV is a local phenomenon, we shall consider the
transversal linear stability to the synchronization subspace. So
we linearize the system (4) and diagonalize it, in the basis of
the Jacobian matrix, in the directions uj = [1 117 and u, =
[6 — e]”. The quantities associated with the directions u and
u, are called longitudinal and transversal, respectively.

By definition, S is nonhyperbolic if there is at least one
periodic point embedded in that subspace whose unstable
dimension is different from any other point in S. By construc-
tion, all periodic points in the set are longitudinally unstable.
Therefore, the phenomenon occurs in this system only in the
transversal direction and it is necessary that periodic points
transversely stable and unstable coexist with each other in
S. To study, in a quantitative way, the unstable dimension
variability of the system, we must determine the unstable
dimension of all periodic points of the map. We must also
determine the frequency with which a typical trajectory visits
the neighborhood of these points. As in the synchronization
manifold the dynamics is hyperbolic and mixing, we know

that such frequency can be obtained by the invariant density
given by? [28]

1 1
p(x) = — lim _— 5
Ax IHOO);D [Ay(x, p)l

where D = [x,x + Ax), and the summation extends over all
points of period p in D whose eigenvalues associated with
the longitudinal direction® are given by A(x,p). Note that
expression (3) gives us all possible eigenvalues for all points
of period p = n. It is possible to calculate, from Eq. (3), the
number of periodic points which have the same eigenvalue.

2The natural measure, generated by any typical trajectory, of any
subset D € w is given by w(D) = [, p(x)dx.
3Now we consider the dynamics in the synchronization subspace.
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For this purpose, we rewrite 8" % as follows*
n—k

. 2 n—k 2 2w w w

—k — —

=t B GE) B ()
w=0

r=0
Replacing in Eq. (3), we obtain

n % n—2w
a7 =y (Z)[l + (=Y (%)
w=0

k=0
Wk
x Z nT w n—=2w_r. w—r_ _w (6)
w , m MmNy Ny -
r=0

Equation (6) gives all information required by Eq. (5).
Since the system is piecewise linear, the eigenvalues obtained
by 7]772’”17377;”7’772’ can be used to determine in which
partition D these periodic points are contained. Thus, taking
the n’s as the transversal eigenvalues, we determine the
unstable dimension of partition D. On the other hand, taking
the n’s as the longitudinal eigenvalues, and their coefficients,
we determine the measure (i.e., the contribution of this
partition to the behavior of typical trajectories in the vicinity
of the synchronization manifold). This analysis allows us to
quantify the unstable dimension variability.

First, we determine the set of parameters for which the
UDV occurs. To calculate the beginning of this phenomenon
we evaluate the coefficients of stability of each partition.
Therefore, the determination of the parameters a. and d, =
8 + &, which are critical for the beginning and the end of
unstable dimension variability, is done by calculating the

possible transversal eigenvalues 17’11_2’” nhny " ny, with

1_
m=—n4=< “><l—d>,
a

_ _ 2a | —d
772——773—(1_2a>( —d).

Simply, we determine which possible combinations of
n{‘_zwngn;"_’n}f result the largest (sup |A|) and the lowest
(inf |A 1 |) eigenvalues, in magnitude, and evaluate the range

of the UDV existence as follows:
sup|Ai| =1 and inf|A | =1. @)

Since we are dealing with the magnitude of the eigenvalues,
we must consider only two terms. The extremes of the spec-
trum of eigenvalues are then given by 1| = |(1a;“)(1 —d)|
and |n3n4] = [352(1 — d)*|. From Eq. (7) and solving for d,
we have

lzl:l%a for 0<a<1/3,
d. = )

1+ /372¢ for 1/3<a<1/2.

“Note that the term [1 + (—1)"7*] in Eq. (3) filters only the terms
(n — k) which are even.

SThe itinerary 1, represents the fixed point x* = 1 — a of the map
(1). Exactly in this point the map is nondifferentiable and its invariant
density is discontinuous (except for a = 1/3). However, the density
on the right and left of the point x* are proportional to |n3| and |14/,
respectively. Thus, the itinerary I3/, represents a weighted average
of the dynamics, in both sides. In the remaining cases, each itinerary
of size n is associated with a point of period p = n.
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FIG. 2. The UDV intensity, quantified by the contrast measure
with p = 20, as a function of the parameters a (local dynamics)
and d (coupling strength). Solid lines given by Eq. (8), indicate the
transition to UDV. Dashed lines denote the transitions between the
stabilities of the fixed points of the 20th iteration of the map. This
figure is symmetric about d = 1.

The dependence of d. on a is indicated by the solid lines in
Fig. 2. Note that for a = 1/3 both lines intersect, indicating
that there is no UDV in the system for that value of a. This is
expected for two tent maps linearly coupled.

The trace T" shows us the eigenvalues spectrum for
an interval of time n, as well as the number of possible
eigenvalues. We also know that the diagonal elements of 7"
are related to the stability coefficients (eigenvalues) of the
n-periodic points.

Reference [3] introduces the quantity

w2(p) — u1(p)

wa(p) + pmi(p) |’

called contrast measure, which quantifies the intensity of UDV.
In Eq. (9), the quantities u;(p) read

p =

9

1
ni(p) = Xk: W@[l — A1 (k;p)l], (10)

1
pa(p) = ; m@[maam —11, 1D

in which ©(.) is the Heaviside function®; Ay(k;p) and
A (k;p) are the eigenvalue associated with the longitudi-
nal and transversal directions to the synchronization sub-
space, respectively. These eigenvalues are calculated on the
p-periodic point labeled by k. The summation extend over
all fixed points of the pth map iteration. Thus, for p large
enough, 11 2(p) gives the visitation probability of a region
with unstable dimension 1 or 2 in the pth map iteration.
Now, using what was described above, we can quantify the
UDV from the coefficients in Eq. (6) and Eq. (9). We must
observe that the fraction of the positive transversal Lyapunov
exponents [29] at p-finite time is exactly given by u,(p). This
fraction is a metric diagnostic for UDV. If we change ®(-) by

®We define here central directions (A | | = 1) as stable ones.
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In|A (k;p)| in Egs. (10) and (11), then w(p) + na2(p) gives
(A1(p)). So, each term, in summation, gives the contribution
for the transversal stability of S of the respective UPO.

Figure 2 shows, in gray scale, the intensity of UDV,
quantified by the contrast measure, in the space parameter.
Observing the figure, we notice a large region, limited by the
solid lines, in which the system is nonhyperbolic (C, # 1).
There is also a large region in which UDV is weak (C £ 1).
For these values of C,0 the set of periodic orbits responsible
for UDV has positive measure, but a very small one. Thus,
a numerical diagnostic of nonhyperbolity, as the fraction of
the positive finite-time Lyapunov exponent, typically cannot
identify such regions.

In conclusion, we have seen that the synchronized subspace
of two coupled bungalow maps presents four intervals of
linearity, which define four Markov partitions of the phase
space. Since UDV does not occur in the longitudinal direction
of this subspace, we are able to study analytically the symbolic
and interval dynamics in S. Pursuant to this study we found
the stability coefficients of periodic points of the dynamics in
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the subspace synchronization, which, in turn, allowed us to
write an exact expression for the contrast measure. Thus, we
establish analytical solutions showing the onset of UDV, as
well as the transitions between the stability of periodic points
in parameter space. We can use this result to identify regions
in parameter space as long as the solutions remain valid.

This work has only been able to touch on a simple
dynamical system. However, the preliminary study reported
here has highlighted the need to explore the possibilities of
finding analytical solutions to the UDV problem. As this issue
involves the validity of numerical solutions is important to have
exact solutions for models that are studied. Clearly, further
studies are needed to understand the UDV for systems with
higher dimensions and arbitrary elements. To carry on this
research we intend to study the UDV in a coupled map lattice
whose couplings changes over time.
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