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Diffusion processes are relevant for a variety of phenomena in the natural sciences, including diffusion of cells
or biomolecules within cells, diffusion of molecules on a membrane or surface, and diffusion of a molecular
conformation within a complex energy landscape. Many experimental tools exist now to track such diffusive
motions in single cells or molecules, including high-resolution light microscopy, optical tweezers, fluorescence
quenching, and Förster resonance energy transfer (FRET). Experimental observations are most often indirect and
incomplete: (1) They do not directly reveal the potential or diffusion constants that govern the diffusion process,
(2) they have limited time and space resolution, and (3) the highest-resolution experiments do not track the motion
directly but rather probe it stochastically by recording single events, such as photons, whose properties depend on
the state of the system under investigation. Here, we propose a general Bayesian framework to model diffusion
processes with nonlinear drift based on incomplete observations as generated by various types of experiments. A
maximum penalized likelihood estimator is given as well as a Gibbs sampling method that allows to estimate the
trajectories that have caused the measurement, the nonlinear drift or potential function and the noise or diffusion
matrices, as well as uncertainty estimates of these properties. The approach is illustrated on numerical simulations
of FRET experiments where it is shown that trajectories, potentials, and diffusion constants can be efficiently
and reliably estimated even in cases with little statistics or nonequilibrium measurement conditions.
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I. INTRODUCTION

The microscopic dynamics of virtually all liquids and solids
at finite temperature are governed by interaction potentials and
Brownian motion [1]. As a result, many of these systems can
be excellently modeled by diffusion in a potential. Examples
include the diffusion of cells in liquids [2], the diffusion of
biomolecules within cells [3], and the diffusion of molecules
on a membrane or surface. The conformational dynamics of
macromolecules can often be described as a diffusion process
on an energy landscape in molecular state space [4]. Besides
these, there are a large number of macroscopic phenomena
that are also well described by diffusion processes or random
walks, even though there might be no obvious physical reason
for it, including financial and climate systems [5,6]. Here, we
treat the data-based estimation of stochastic dynamics of the
following type:

dx = f(x) dt + g(x,t) dt + �
1
2 dW, (1)

where x(t) ∈ Rd describes the state or position of the diffusing
particle at time t , f(x) ∈ Rd is a deterministic position-
dependent, but a priori unknown force which may, but not
necessarily has to, be due to the gradient of an interaction
potential. g(x,t) ∈ Rd is a known external driving force which
may arise from the way the particle is probed and � ∈ Rd×d

is a noise covariance matrix which determines the magnitude
of the stochastic force caused by the d-dimensional Brownian
motion (Wiener process) dW. The combined deterministic
force f + g is also often referred to as drift.

The last decade has seen dramatic improvements in the
ability to directly measure trajectories of single particles.
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The location of single cells and even single molecules can
now be tracked in high spatiotemporal resolution microscopy
techniques [7–13]. Time-dependent intramolecular distances
and contact formation can be probed using spectroscopic
techniques such as single-molecule Förster resonance energy
transfer (FRET) [14–17] or fluorescence quenching [17,18],
and with nanoscopic mechanical devices such as atomic
force microscopes or optical tweezers [19,20]. All these
techniques allow to measure observable functions of individual
realizations x(t) of Eq. (1)

Q(t) ∼ p[Q(t) | x(t)], (2)

and this observation is generally incomplete or uncertain in
some sense: There is some inherent time and space resolution,
often dictated by the physics of the measurement process.
There might exist significant measurement errors due to
background noise or other unintended activation of the sensors
used. Finally, in many cases Q(t) is only a low-dimensional
projection of x(t) and sometimes is even a stochastic signal.

In statistics, a host of methods have been developed to
robustly and efficiently estimate processes of the type of Eqs.
(1) and (2), see Refs. [21–23] and references therein. These
methods have been much applied to econometric problems,
such as stock market prices. However, there is a lack of
methods that can efficiently estimate diffusion processes with
unknown f, especially when this force (and the associated
potential, if there is any) is arbitrarily nonlinear and high-
dimensional. This is a very important aspect of complex
diffusion processes in physics, chemistry, and biology. On
the other hand, a number of methods have been proposed
to estimate specific features or specific forms of diffusion
processes based on the experimental data in these application
fields. Just to give some examples, this includes an estimator
for correlation times based on one-dimensional diffusion [24],
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estimation of Ornstein-Uhlenbeck or bistable processes [25],
and estimation of diffusion process without potential [26].
When a separation of slow and fast time scales exists, a
combination of Ornstein-Uhlenbeck processes and hidden
Markov models can be used [27]. The estimation methods for
the unknown f with discrete-time observations were developed
as well [28–34]. Most of these estimation approaches are based
on the framework of maximum likelihood or Bayesian estima-
tion. Some studies have used generalized score functions [35]
and variational inference [36] for parameter estimation. In
Refs. [37,38] nonparametric estimators for f have been
proposed which are applicable in the case that its functional
form is unknown. In general, observations that are noisy or
incomplete are still very challenging for these approaches.

Here, we present a Bayesian framework that allows to
estimate the probability distributions of trajectories, x(t), the
deterministic force f(x) (and the potential that has generated
it, if there is one), and the noise matrix � (and the related
diffusion matrix D) of equations of type (1) from such partial
and uncertain observations. The key progress over previous
estimation methods is that the force f is modeled in terms of a
fuzzy combination of basis functions, which allows arbitrarily
nonlinear forces to be approximated with a reasonable number
of parameters even in high-dimensional spaces. We derive
both an estimation-maximization-based maximum penalized
likelihood estimator as well as a Gibbs sampling scheme
for generating models (f,�) and trajectories [x(t)] from
the posterior distribution. Mean values and uncertainties of
these properties can then be straightforwardly estimated. This
framework is widely applicable to model complex dynamical
processes based on experimental or other observation data
and is shown to be useful for the analysis of single-molecule
fluorescence experiments.

II. DIFFUSION MODEL

Let x(t) ∈ Rd describe the time-dependent position of
the system which is a solution to the stochastic differential
equation (1). In many physical systems, the deterministic force
f(x) is caused by a potential U (x). Moreover, in many of these
systems, the fluctuation-dissipation theorem holds, relating
the diffusion constant and temperature, such that Eq. (1) has
the following form:

dx = − 1

kT
D∇U (x) dt + g(x,t) dt +

√
2D

1
2 dW, (3)

with diffusion matrix D = 1
2�, Boltzmann constant k, and

temperature T . The force g(x,t) is some known external
forcing, which may be 0, when the system is observed without
perturbation, may be constant such as in the presence of an
electric field, or time dependent such as in single-molecule
pulling experiments. x(t) is a continuous time Markov process,
and in the absence of the driving force g(x,t), the system has
the invariant density given by the Boltzmann density [39]

π (x) ∝ exp

(
−U (x)

kT

)
. (4)

The form (3) induces some physical constraints on the pa-
rameters. In particular, if the components of x are independent,
the diffusion matrix is diagonal D = diag{D1, . . . ,Dm} and

f(x) = − 1
kT

diag{d1, . . . ,dm}∇U (x) is a conservative vector
field. A special case of this is the most common case, namely
that diffusion is isotropic, D = DI with D ∈ R and I being the
identity matrix. However, the present framework also allows
for applications which do not obey such constraints. Thus,
unless otherwise noted, we will model the system under study
based on the general form (1). f(x) [and U (x)] are unknown
and can be arbitrarily nonlinear. To estimate them, they may be
expressed by some parametric model. The present framework
allows for models which have the following form:

f(x) = �(x)λ, (5)

where λ ∈ Rm is a parameter vector and �(x) ∈ Rd×m is a
matrix of predefined basis functions that are combined with
the parameters to a general nonlinear f. Computationally
convenient models can be constructed from normalized fuzzy
membership functions μl(x), defined by

μl(x) = exp[−α(x − xl)2]∑
k exp[−α(x − xk)2]

, (6)

where α is a size parameter and xl are predefined support
points in the relevant ranges of x. There are many ways of
combining these parameters to obtain models of the form (5).
A straightforward model is to express f(x) in terms of L locally
linear force models, which are superimposed via membership
functions μl(x) into a general nonlinear force [40]

f(x) =
L∑

l=1

μl(x)(alx + bl), (7)

Defining the vectors λ = (a1, . . . ,aL,b1, . . . ,bL)T and �(x) =
[xμ1(x), . . . ,xμL(x),μ1(x), . . . ,μL(x)] allows Eq. (7) to be
written as Eq. (5). The fuzzy model described in Eq. (7) has
been proved to be a very good representation for continuous
nonlinear functions due to its universal approximation capa-
bility [41]. Note that a f(x) of this form is not guaranteed to
be conservative, and thus a generating potential U (x) may not
exist. An alternative approach that formulates the model in
terms of a potential and then derives f(x) from its gradient is
given in the Appendix.

Thus, the parameters θ = (λ,�) completely describe the
equation of motion and need to be estimated from the observed
measurement signal.

Based on the above model we can now derive the probability
for a trajectory x(t) given a set of parameters θ and from that
the probability to observe the recorded photon trajectories.
This step will allow us to estimate the unknown parameters
and the hidden trajectories x(t) from the data.

First, the equation of motion (1) is discretized using the
Euler scheme with time steps τ , which may correspond to the
experimental time resolution. The discrete dynamics within
one trajectory are denoted by xn, n = 0, . . . ,N

xn+1 = xn + τ f(xn) + τg(xn) + √
τWn, (8)

where Wn ∼ N (0,�) is d-dimensional white noise with
covariance matrix �. In other words, the probability of
observing a certain xn+1 given the previous xn is given by the
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previous step plus the displacement due to the deterministic
force caused by the potential, and a random displacement
resulting from the noise �

P (xn+1 | xn) = 1

(2π )
d
2 |τ�| 1

2

exp

(
− 1

2τ
sT �−1s

)
, (9)

with

s = xn+1 − xn − τ f(x) − τg(x).

III. MODEL ESTIMATION FROM OBSERVATION

Using Bayesian inference, the joint probability of a set
of parameters θ and the effective distance trajectories x is
given by

p(θ,x | Q) ∝ p(θ ) p(x | θ ) p(Q | x), (10)

where p(θ ) is the prior distribution of parameters, p(x | θ ) is
the probability that a particular series of hidden trajectories
will be generated by parameter set θ , while p(Q | x) is
the probability of observing the measured signal from these
hidden trajectories. Since this probability distribution cannot
be evaluated analytically, an estimation procedure is proposed
to generate samples of (θ,x) distributed from p(θ,x | Q) using
Markov chain Monte Carlo (MCMC). This is done using
a Gibbs sampling scheme which, in brief, consists of the
following iteration:

(1) Generate a new sample of x while keeping the param-
eters θ constant. This is done by sampling each x(k)

n while
keeping the remaining x constant and cycling through all x(k)

n

in this way.
(2) Generate a new sample of θ for fixed trajectories x.

A. Estimating the trajectory for given parameters

Consider the distribution of one trajectory x for fixed
parameters θ obtained from Eq. (10)

p(x | θ,Q) ∝ p(Q | x) p(x | θ ).

We generate a sample of x by a Gibbs scheme that provides
a sample of each xn while keeping the other time steps fixed.
Due to the Markovianity of the equation of motion we have

p(xn | x0,...,n−1,n+1,...,N ,θ,Q)

∝ p(xn | xn−1,xn+1,θ,Q)

∝ p(Qn | xn) p(xn | xn−1,xn+1,θ )

∝ p(Qn | xn) p(xn,xn−1,xn+1,θ )

∝ p(Qn | xn) p(xn+1 | xn,θ ) p(xn | xn−1,θ ),

where p(xn+1 | xn,θ ) and p(xn | xn−1,θ ) can be evaluated
using Eq. (9), while the output probability p(Qn | xn) needs
to be calculated depending on the specific application [e.g.,
see Eq. (22) for FRET]. Thus p(xn | θ,Q,x(j )

0,...,n−1,x
(j−1)
n,...,N ) can

be sampled with a Metropolis-Hastings sampling step [42],
where a value for xn is proposed with a proposal probability
p(xn → x∗

n) and then accepted with the following acceptance
probability:

pacc(x∗
n)

= min

{
1,

p(x∗
n → xn) p(Qn |x∗

n) p(x∗
n |xn−1)p(xn+1 |x∗

n)

p(xn → x∗
n) p(Qn |xn) p(xn |xn−1)p(xn+1 |xn)

}
,

(11)

in principle, any proposal step p(xn → x∗
n) can be used. A

simple and efficient approach is to directly use the equation
of motion to propose a step via Eq. (9), which simplifies the
acceptance probability to

pacc(x∗
n) = min

{
1,

p(Qt | x∗
n)

p(Qt | xn)

p(x∗
n | xn−1)p(xn+1 | x∗

n)

p(xn | xn−1)p(xn+1 | xn)

}
,

(12)

which can be evaluated with Eq. (9). An alternative efficient
proposal step is described in the Appendix.

B. Parameter estimation for given trajectory

For estimating the parameters we now need to consider
the fact that one may have multiple trajectories x1, . . . ,xK ,
which are independent observations of the same system, or of
different systems with the same dynamics. From Eq. (10), the
distribution of parameters for fixed trajectories is given by

p(θ | x1, . . . ,xK ) ∝ p(θ )
K∏

k=1

p(xk | θ ),

the prior probability p(θ ) = p(λ,�) is significant when very
little observation data are available and must restrict the
parameters �, λ to meaningful values in this situation. When
a reasonable amount of observation is available, the posterior
probability distribution will be dominated by the likelihood.
For the present case, the prior distribution is given by{

� ∼ W−1(	0,m0)

λ ∼ N (0,�0)
, (13)

where W−1(	0,m0) denotes the inverse Wishart distribution
with inverse scale matrix 	0 and degrees of freedom m0 >

d − 1. From a physical point of view, this prior keeps the
parameters in their allowed ranges (especially � > 0 and
excluding extremely small and large values of θ ).

The likelihood is given by

p(xk|θ ) ∝ |�|− N
2 exp

(
− 1

2τ

N−1∑
n=0

v(xn+1,xn)T�−1v(xn+1,xn)

)
,

with

v(xn+1,xn) = xk
n+1 − xk

n − τg
(
xk

n

)− τ�
(
xk

n

)
λ.

Using some elementary transformations (see Appendix for
complete derivation), it turns out that p(θ |x1, . . . ,xK ) can be
sampled as{

� | x1, . . . ,xK,λ ∼ W−1(	0 + Cs ,m0 + NK)

λ | x1, . . . ,xK,� ∼ N
[
λ̃,
(
�−1

0 + As

)−1] , (14)

with the functionals

As
def= τ

K∑
k=1

N−1∑
n=0

�
(
xk

n

)T
�−1�

(
xk

n

)
, (15)
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Bs
def= 2

K∑
k=1

N−1∑
n=0

[
xk

n+1 − xk
n − τg(xn)

]T
�−1�

(
xk

n

)
, (16)

λ̃
def= −1

2

(
�−1

0 + As

)−1
Bs , (17)

Cs
def= 1

τ

K∑
k=1

N−1∑
n=0

[
xk

n+1 − xk
n − τg

(
xk

n

)+ τ�
(
xk

n

)
λ
]

× [
xk

n+1 − xk
n − τg

(
xk

n

)+ τ�
(
xk

n

)
λ
]T

. (18)

C. Sampling the joint distribution of trajectories
and parameters

Having schemes available that allow the parameters to
be sampled for a given trajectory and the trajectory to be
sampled for given parameters, we can now construct a Gibbs
sampling scheme, where either sets of variables are sampled
while keeping the others fixed. Such a combined sampling
scheme provides a sample of the joint probability distribution
of trajectories and parameters for a given observation, and the
resulting joint sample can be used to extract the sample means
and statistical uncertainties of the trajectory and the param-
eters. Algorithm 1 summarizes the Gibbs sampling scheme
for the general case of multiple observation trajectories. An
alternative to sampling the full distribution is to compute
the maximum probability (or maximum likelihood) solution
which only yields a single trajectory and parameter set. Such
an approach is given in the Appendix.

Algorithm 1 Gibbs Sampler for p(x1
0:N, . . . ,xK

0:N,θ |Q)

(Initialization)
sample x1,(0)

0:N , . . . ,xK,(0)
0:N and θ (0) from an arbitrary initial distribution

(Iteration)
for j = 1 to M

for k = 1 to K

for n = 0 to N

sample xk,(j )
n ∼ p(xk

n | xk(j )
n−1,x

k(j−1)
n+1 ,θ (j−1),Q)

end for
end for
sample �(j ) ∼ p(� | x1,(j )

0:N , . . . ,xK,(j )
0:N ,λ(j−1))

sample λ(j ) ∼ p(λ | x1,(j )
0:N , . . . ,xK,(j )

0:N ,�(j ))
end for

With the procedure described above, each iteration j

generates samples xk,(j ) of all K full trajectories and a sample
θ (j ) of the parameters. To escape from the bias induced by the
initial draw, the sampler should be run with a burn-in phase
until the mean values and standard deviations of the properties
of the xn and θ have stabilized and show no more drift. These
initial samples must be neglected from the analysis. From
the ensemble of M samples, the properties of interest can
now be estimated. In particular, the expectation values and
standard deviations (uncertainties) of the effective distance
trajectories xk

n and the diffusion constant D = 1
2� can be

directly computed. If D = diag{D1, . . . ,Dm} is diagonal, then
there also exists a corresponding potential energy that is unique

up to an additive constant. To obtain the potential in each
sampling step, one numerically integrates the force

U (j )(x)

kT
∝ −diag

{
D−1

1 , . . . ,D−1
m

} ∫ x

0
θ (j )Tξ (x′) dx′. (19)

Thus, expectation values and uncertainties can also be
straightforwardly computed for the potential of mean force
and the stationary distribution that is obtained by Eq. (4).

IV. APPLICATION TO SINGLE-MOLECULE
EXPERIMENTS

We now show a few examples for different settings in
which the estimation framework presented above is useful.
All of them are microscopy techniques that are widely used in
physics, chemistry, and biology.

A. Single-molecule Förster resonance energy transfer

FRET is an experimental technique used to measure
nanometer distances between pairs of chemical groups. It is
commonly employed to track binding or folding processes in
macromolecules [14–16]. In a FRET experiment, one attaches
two chemical groups, one donor and one acceptor dye, to
the molecule(s) to be measured. The donor is then specifically
excited with a laser and subsequently relaxes either by emitting
a donor photon (usually green), or by transferring the energy
to a nearby acceptor dye which then emits an acceptor photon
(usually red). The probability of an emitted photon being an
acceptor photon is called transfer efficiency and related to the
interdye distance r by the Förster law

E = R6
0

r6 + R6
0

. (20)

Here, R0 is the Förster radius; a number that depends on
the chemical composition of the dyes, the permittivity of
the medium between them, and on their orientation. E is an
interesting “coordinate” of the system which characterizes its
conformational state (although a conversion of E to physical
distances and angles is difficult).

FRET experiments can now be conducted with single
molecules, which provides trajectory information useful for
the present model estimation. In single molecule experiments,
one cannot directly obtain a time-continuous E as in each
time step one only obtains a few red, green, or (very often) no
photon at all. In typical experimental analyses this is addressed
by introducing a time window τ and computing an averaged
Eτ (t). However, the results of the estimation will depend on the
choice of τ and very often this leads to important dynamical
information to be missed. Here, the model estimation can be
straightforwardly made in terms of the photon trajectories
by treating the recorded photons as an observation of the
dynamics.

We propose a one-dimensional model in terms of the
effective normalized distance x

x(t)
def=
(

1

E(t)
− 1

) 1
6

= r(t)

R0
, (21)

which is proportional to the physical interdye distance via
r(t) = R0x(t) if the Förster radius R0 is approximately
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constant for the process under investigation. Even if that is not
the case, it is expected that x(t) and r(t) are well correlated.
Although the equation of motion could be formulated in E(t)
instead of x(t), x is likely a better modeling variable since
it allows changes in the potential to be described at distances
much smaller or larger than R0 which would occur near the 0 or
1 boundary of E. FRET experiments can, in principle, include
more than two dyes and thus be sensitive to more than one
distance, which then calls for a multidimensional model [43].

FRET experiments are passive, tracking the dynamics
that are brought about by Brownian motion. Thus, g(x,t) =
0 and Eq. (1) becomes a one-dimensional Smoluchowski
equation

dx = − D

kT
∇U (x) dt +

√
2DdW.

At each time step n, a number of acceptor and donor photons
Qn = {An,Dn} may be observed. The probability of this event
is (up to a constant that depends on the laser intensity and is
not relevant for the analysis) given by

p(Qn | xn) ∝
(

1

x6
n + 1

)An
(

x6
n

x6
n + 1

)Dn

. (22)

All the the estimation equations above then are one-
dimensional and lend themselves to a simple and efficient
estimation procedure.

Note a special case of the method proposed here is the one
where the potential is identically zero and thus diffusion is
free. This is identical to assuming that {x(t)} is a realization
of Wiener process with effective diffusion coefficient Dw,
(i.e., x(t + s)|x(t) ∼ N [x(t),2Dws]). Such a variant along
with a corresponding maximum likelihood estimator has been
proposed in Ref. [26]. This method is contained in our method
as a special case that is obtained by setting f ≡ g ≡ 0 in
Eq. (1).

B. Single molecule pulling with optical traps

Optical traps, or tweezers, are a measurement and manipu-
lation tool now widely used in nanotechnology and biophysics
[13,20]. Here, one uses optical beads of submicrometer size
that bend laser light and are held in the laser focus due to
restoring forces caused by the photon momenta. The bead
can be moved around by repositioning the laser beam. At the
same time, the trap can also be used to track the position
of the bead when this is displaced by a mechanical force.
For example, one can use two beads and connect them by
a macromolecule than than change its conformation (e.g.,
by unfolding and folding). One can then track intramolec-
ular distance changes when holding the trap on a constant
position, or induce unfolding by pulling on the trap and
then letting loose to watch the molecule refold. The model
coordinate here is the interbead distance x(t) and is again one-
dimensional. The diffusion equation relevant for this case is
given by

dx = − D

kT
∇U (x) dt + α[x − x0(t)]2 +

√
2DdW,

where g(x,t) = α[x − x0(t)]2 is a model for the restoring trap
force and x0(t) is the reference position of the trap set by the

experimenter over the measuring time t . Since x is observed
directly, the fraction p(Qn | x∗

n)/p(Qn | xn) drops from the
acceptance probability (12).

The present framework can be used to estimate the potential
U (x) despite the fact that the experiment can be arbitrarily
driven trough g(x,t).

C. Single particle tracking

Single particle tracking is a fluorescence technique in which
single molecules are labeled with a fluorescent dye and tracked
with a fluorescence microscope [10–12]. The experiment may
be set up so as to watch the interaction of labeled particles with
other molecules on a surface or membrane by attaching this
surface on a glass surface into which the excitation laser light is
scattered at a total reflection angle. As a result, the laser beam
will not leave the glass surface, but there is an evanescent
field just thick enough to have a significant probability to
excite molecules that are directly adjacent to the surface. This
will allow to collect a number two-dimensional trajectories
of molecules that track their diffusion above the surface. In
order setting, this leads to a two-dimensional model with no
forcing g

dx = − D

kT
∇U (x) dt +

√
2DdW,

where we have assumed isotropic diffusion. For modeling
U (x), a dense grid of basis functions in the two-dimensional
area of interest may be used.

V. NUMERICAL EXAMPLES

We now illustrate the usefulness of the Bayesian framework
to estimate trajectories, potentials, and diffusion constants
from FRET measurements. To validate the method, no real
experimental data are used here, except for artificial model
data with experimentally realistic parameters.

To rate the performance of our method, its estimation
results are compared to the standard time window method
commonly used in experimental analyses [44]. In this method,
the FRET efficiency and interdye distance are assumed to be
approximately constant within a time window of width Tw.
Then E(t) and x(t) are estimated as

Ê(t) = |TA(t)|
|TA(t)| + |TD(t)| , (23)

and

x(t) =
(

1

Ê(t)
− 1

) 1
6

, (24)

where TA(t) and TD(t) count the number of acceptor and
donor photons in the time window [t − Tw/2,t + Tw/2], re-
spectively. Here we adopt the “leave-one-out cross-validation”
technique [45] to select the value of Tw. In the time-window
method, the stationary distributions π (x) are conventionally
estimated by simply binning {x(t)} under the assumption that
{x(t)} are samples of π (x). Here we use the kernel density
approximations [46] to get continuous π̂ (x) from {x(t)} and
compute the approximation of potential functions by Eq. (4).

We address two numerically simulated FRET experiments
with artificial potential functions. For modeling the nonlinear
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force f (x) we used Gaussian-shaped membership functions
as suggested in Eq. (6) with α = 1 and positions xl =
{0,0.5,1,1.5,2}. The estimation procedure uses the following
parameters: M = 10 000, J = 20, �0 = 104, and 	0 = m0 =
1. The initial sample of trajectories is provided by the time-
window method.

A. Potential/invariant distribution estimation

We first consider a potential function that exhibits metasta-
bility, defined by

V (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−111.01x3 + 178.63x2 − 82.27x + 8.98, x < 0.75,

182.8915x3 − 482.64x2 + 413.69x − 115.01, 0.75 � x < 1,

−153.36x3 + 526.11x2 − 595.06x + 221.24, 1 � x < 1.25,

84.94x3 − 367.53x2 + 521.98x − 244.20, 1.25 < x,

(25)

see Fig. 1 (right, black line) for an illustration. The noise
intensity is set to � = [1.42]. Thirty trajectories of length 3 s
are run using the Heun scheme [47] with simulation time step
�t = 50 μs. The initial points are generated from the invariant
density

x(0) ∼ π (x) ∝ exp

(
−2V (x)

�2

)
. (26)

The probability of recording a single photon in each
time step is 0.2. This setup mimics the situation in FRET
experiments of immobilized molecules [48].

Figure 1 shows the invariant distribution π (x) (right
column) and the corresponding potential U (x) (left column)
of the system (true values in black lines) and compares the
corresponding estimates from the Bayesian estimator proposed
here Figs. 1(a) and 1(b), mean shown as solid blue line,
one-standard-error confidence intervals as dashed blue line].
Figures 1(c) and 1(d) show the time-window-based estimates
for short, intermediate, and long window lengths. By direct
counting, the time-window estimate would have a spurious
metastable state at x = 0, resulting from the fact that for
many time windows the distance cannot be estimated due
to lack of donor photons. To avoid this, time windows with
x = 0 were removed before generating the estimate shown
in Fig. 1. A consequence of this is that for short time
windows the distribution and the potential cannot be estimated
at small values of x. Both the time-window estimate with
an intermediate window length and the Bayesian estimate
capture the essential features of the system (i.e., the existence
of the three metastable states and their relative depths or
probabilities).

The Bayesian estimator has the advantage that it also
provides a rigorous error estimate, and the true invariant

density and potential are indeed correctly estimated by the
Bayesian mean within this uncertainty. The time-window
estimates miss some features, in part, due to the lack of
photons in short windows, in part due to smoothing out
effects at long time windows. Clearly, for TW → ∞, the
time-window method will estimate π (x) as a δ distribution
located at the mean distance. This bias leads to a more
than tenfold increase of the estimation error in the invariant
density of the time-window estimate compared to the Bayesian
estimate (see Table I). Finally, the true noise intensity of√

� = 1.4 is well approximated by the Bayesian estimate of√
� = 1.8372 ± 0.1130.
Figures 1(e) and 1(f) show the results for the Bayesian

estimator for the case where the potential is flat (i.e.,
the deterministic force is zero). This is a “free diffusion”
estimator of the type proposed in Ref. [49]. It is seen
that this model performs much better than window-based
estimators. However, at small and large distances, where the
potential increases significantly, this estimator is significantly
off.

B. Trajectory estimation

Figure 2 shows one of the 30 trajectory realizations (black
line) along with estimates from the Bayesian method (B), the
time-window (TW) estimates, and the Bayesian method with
free diffusion.

This system poses a hard estimation problem because the
main metastable state at x ≈ 0.3 has a FRET efficiency close
to 100% (i.e., very few donor photons will be emitted in
that state and with any time window that is not very long,
the time-window method will often estimate a distance of 0).
This is seen in the time-window estimation of the trajectory

TABLE I. Quantitative comparison of errors of estimating the trajectory and the stationary distribution from few long trajectories using
different methods (Bayesian estimator, time-window estimator with different window widths, Bayesian estimator with a flat potential/free
diffusion). The error of the trajectories was defined as MSEx = 1

T

∫ T

0 [x̂(t) − r̄(t)]2dt , and the error of the stationary distribution as DKL(π ‖
π̂) = ∫

π (x) log[π (x)/π̂(x)]dx.

Bayesian Tw = 5 ms Tw = 30 ms Tw = 200 ms Free diffusion

Error in trajectories x(t) 0.0066 0.0865 0.0544 0.0262 0.0138
Error in stationary distribution π (x) 0.0196 5.9601 1.0862 0.2379 0.2160
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FIG. 1. (Color online) Invariant distribution and potential function estimation results from few long trajectories comparing the true values
(solid line) with estimations from different methods. (a,b) Bayesian estimator, (c,d) time-window estimate using different time windows, (e,f)
free diffusion estimator.

in Figs. 2(b) and 2(c), which frequently drops to x = 0 for
small time windows. At the same time, any time window
that is not very short will smooth over the trajectory and
loose many fast features of the dynamics. This is illustrated
in Figs. 2(b) and 2(d), where long time windows are seen to
smooth out the transitions between metastable states 2 and
3, arriving at an averaged distance estimate of ≈1.2, a value
that is actually close to a potential maximum rather than a
stable state, thus providing a deceptive picture of the dynamics.

In conclusion, no single time-window length is adequate for
all data.

The Bayesian estimator [Fig. 2(a), mean is the blue solid
line, one-standard-error confidence intervals are represented
by the blue dashed line] does a much better job of estimating
the trajectory. In the statistically, poorly determined first
metastable state, the estimate cannot track all fluctuations of
the real trajectory simply because they are not supported by
any of the recorded data, but the mean and error estimates of
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FIG. 2. (Color online) Trajectory estimation results from few long simulations comparing the real trajectory (solid line) with different
estimation approached. (a) Bayesian estimation for the mean and the statistical uncertainty. (b) Estimation results using the standard time-window
binning approach for different window sizes. (c,d) Close comparison on two parts of the trajectory between the Bayesian estimate and
time-window estimates. (e) Results of the Bayesian estimator when the potential is forced to be flat (free diffusion).

x are in the correct range. In metastable states 2 and 3, the
estimate follows the real trajectory and even detects the fast
re-crossings missed out by the time-window estimator. The
maximum likelihood estimate gives a very similar estimate
to the mean of the sampled Bayesian estimator and is not
shown for clarity. For a more quantitative result consult
Table I, which shows that the mean square error of the

estimation is about five times better for the mean of the
Bayesian estimate than the time-window estimate.

When dismissing the deterministic force from the potential,
we obtain the free diffusion estimator [Fig. 2(e)]. As for the
estimation of the stationary distribution, it is much better than
any time-window-based estimator, but is biased in estimating
the fluctuations at very small or very large FRET efficiencies.
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FIG. 3. (Color online) Stationary distribution and potential function results of artificial data from many short trajectories, comparing true
values (solid line) with the time-window estimator using 20-ms window length and the Bayesian estimator.

C. Single versus multiple trajectories

There are two common approaches to conduct FRET
experiments: (1) immobilizing a few molecules and measuring
their FRET signal for a long time (illustrated by the simulations
above), and (2) letting them diffuse freely at a very low
concentration and simply waiting until a molecule enters the
measurement spot. The second method typically generates a
similar total amount of data, but scattered across many more
and much shorter trajectories. This situation is simulated here
by using the trajectory data from above and cutting it into 3600
pieces of 0.025 s each (free diffusion trajectories are usually
even shorter; 25 ms length can be obtained with microfluidic
devices).

1.52 1.525 1.53 1.535 1.54
0

0.5

1

1.5

t

x
x̂B
x̂B
x̂TW

FIG. 4. (Color online) Trajectory estimation results of artificial
data of a single out of many short trajectories, comparing the
true trajectory (solid line) with the time-window estimator using
20-ms window length, the Bayesian estimator using all data, and
the Bayesian estimator using this single trajectory only.

Figure 3 compares the estimation results of the time-
window and Bayesian estimators. The Bayesian estimate of
the invariant density and the potential is now significantly
better than the time-window estimate owing to the fact that
the time-window estimate looses a lot of information as a time
segment of length Tw/2 is discarded from the beginning and
at the end of each trajectory. Figure 4 illustrates the quality
of the trajectory estimation on a trajectory that transitions
from metastable state 1 to 2. It is apparent that the Bayesian
estimate is much smoother and closer to the real trajectory
than the time-window estimate. Moreover, the (blue) dashed
line shows for comparison a Bayesian estimate that was
constructed from this single trajectory only. The Bayesian
estimate constructed from the complete data (solid blue line) is
better (i.e., taking into account the other trajectories helps each
individual estimate through the improved estimation of the
joint dynamical model consisting of the potential and diffusion
constant).

A main advantage of applying the present framework to
data of this type is that the diffusion model obtained can
be directly queried for long-time information that cannot
directly be computed from the trajectories. To illustrate this,
we have computed the transition rates between the three
metastable states from the diffusion model, defined by the
inverse mean passage times between the potential energy
minima. These rates cannot be computed from the trajectory
data directly because the individual trajectories are usually too

TABLE II. Bayesian estimates of transition rates for the three-
state system from many short trajectories.

True Rate Estimated Rate

Transition mean standard error mean standard error

1 → 2 1.5719 s−1 0.0306 s−1 1.1659 s−1 0.0217 s−1

2 → 1 3.2010 s−1 0.0550 s−1 2.4656 s−1 0.0401 s−1

2 → 3 6.5849 s−1 0.0800 s−1 5.0941 s−1 0.0611 s−1

3 → 2 4.2004 s−1 0.0575 s−1 4.3455 s−1 0.0538 s−1
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FIG. 5. (Color online) Stationary distribution and potential function results of artificial data from few long trajectories all started in the left
potential energy minimum, comparing true values (solid line) with the time-window estimator and the Bayesian estimator.

short to connect two metastable state minima. The results are
shown in Table II, showing that the transition rates are well
estimated.

D. Equilibrium estimates from nonequilibrium
measurement conditions

A particular advantage of estimating a dynamic model
compared to directly evaluating the observed trajectory data
is that it is, in principle, able to provide the equilibrium
dynamical information of a system even if the experiment
was conducted under nonequilibrium conditions. For this,
let us now investigate a potential with two metastable states
defined by

U (x) =
∑5

i=1(|x − xi | + 0.001)−2zi∑5
i=1(|x − xi | + 0.001)−2

, (27)

where (x1,. . .,x5) = (−0.3,0.5,1.0,1.5,2.3) and (z1,. . .,z5) =
(21,4,8, − 1,20). This model has two potential wells centered
at r̄ = 0.5 and 1.5, with the second well being deeper than
the first one. The invariant density and potential are illustrated
in Fig. 5 (black lines). Again, 30 trajectories of 3-s length
were launched using the same simulation settings as above,
but this time the initial positions were not generated from the
invariant density, but all started in the left metastable state
at x = 0.05. While this precise setup is somewhat artificial,
nonequilibrium starting conditions can indeed be found in
experiments, for example, if environmental parameters that
influence the dynamical behavior, such as the magnesium
concentration, are varied faster than the global relaxation time
of the system under study [50] to drive the system into visiting
unlikely states.

Most of the trajectories are too short to cross the potential
barrier and reach the second well during the observation time.
This is visible from the time-window estimate shown in Fig. 5
(red line) that is based on directly counting the number of
occurrences of each value x. In this estimate, the stability
of the first metastable state is strongly overestimated due to
the predominance of trajectories in this state. The Bayesian

estimate (solid blue line), on the other hand, excellently
approximates the true invariant density and potential within
the error (dashed blue line).

VI. CONCLUSION

We have introduced a Bayesian framework for estimating
realizations and parameters of stochastic differential equa-
tions with nonlinear force terms from possibly incomplete,
nonlinear, and stochastic observations. The method has been
demonstrated for single-molecule Förster energy resonance
data and has proved to be useful even in cases where the
estimation was difficult (e.g., due to few statistics).

This framework will be useful for analyzing and inter-
preting data from various types of experiments or observa-
tions. A particular strength of estimating a diffusion model
from experimental data over analyzing this data directly is
that information can be reconstructed that is not directly
computable from the data. We have demonstrated how to
reconstruct very slow transition rates from very short trajectory
data. Another property that is accessible with the model are
transition path times in fluorescence-probed molecules that
cannot be computed directly from the data due to the limited
photon resolution [51].
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APPENDIX

1. Modeling the nonlinear drift via the potential

A special case of modeling the nonlinear drift f(x) is in
terms of a generating potential U (x) with quadratic terms. This
also generates a mix of locally linear force models as proposed
in the main text, but generates only conservative vector fields
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f(x). For this, consider a potential that is a mix of potential
minima and maxima

U (x) =
L∑

l=1

μl(x)

(
1

2
(x − xl)

TAl(x − xl) + bl

)
,

where Al can be positive-definite (minimum) or
negative-definite (maximum), and define the corresponding

force

f(x) = −∇V (x) = −
L∑

l=1

μl(x)Al(x − xl)

−
L∑

l=1

1

2
∇μl(x)(x − xl)

TAl(x − xl) −
L∑

l=1

bl∇μl(x).

This equation involves the definitions λ =
(aT

1 , . . . ,aT
L ,b1, . . . ,bL)T

�(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μ1(x)Id ⊗ (x − x1) − 1
2∇μ1(x) (Id ⊗ (x − x1)) (x − x1)

...

−μL(x)Id ⊗ (x − xL) − 1
2∇μL(x) (Id ⊗ (x − xL)) (x − xL)

∇μ1(x)

...

∇μL(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

,

where Id ∈ Rd×d denotes the identity matrix, al ∈ Rd2
, and the

(i − 1)d + j th entry of al equals the (i,j )th entry of Al . ⊗ here
indicates the Kronecker product. A more direct discretization
that is only based on support points of some potential values
is obtained by using al = 0 for all l.

2. Metropolis-Hastings step for xn

Starting from the Euler discretization of the Smoluchowski
equation, we are interested in the midpoint problem p(xn |
xn−1,xn+1) and sample xn from it

p(xn | xn−1,xn+1) = p(xn,xn−1,xn+1)

p(xn−1,xn+1)

∝ p(xn | xn−1)p(xn+1 | xn)∫
xt

p(xn | xn−1)p(xn+1 | xn)

∝ p(xn | xn−1)p(xn+1 | xn)

= N [xn−1 − τ f(xn−1) − τg(xn−1),�] |xn

×N [xn − τ f(x) − τg(x),�] |xn+1 .

Now we can consider a MCMC step for the point xn

pacc(x∗
n)

= min

{
1,

p(x∗
n → xn) p(Qn | x∗

n) p(x∗
n | xn−1)p(xn+1 | x∗

n)

p(xn → x∗
n) p(Qn | xn) p(xn | xn−1)p(xn+1 | xn)

}
.

Now we simply choose the proposal step to be given by
the system dynamics [i.e., p(xn → x∗

n) = p(x∗
n | xn−1) and

p(x∗
n → xn) = p(xn−1 | x∗

n)].

3. Metropolis-Hastings step for xn based
on a free diffusion model

An alternative to the above approach is to assume for a
moment that V = const. In this case, we can write

P (xn+1 | xn)P (xn | xn−1)

= N (xn+1|xn,�)N (xn|xn−1,�)

∝ exp
(

1
2 (xn − xn+1)�−1(xn − xn+1)T

)
× exp

(
1
2 (xn − xn−1)�−1(xn − xn−1)T

)
∝ N

(
xn| 1

2 (xn+1 + xn−1), 1
2�

)
.

where N (x|μ,�) denotes the probability density function of
a Gaussian distribution with mean value μ and covariance
matrix �, and use this as a proposal step p(xn → x∗

n)

pacc(x∗
n) = min

{
1,
N
[

1
2 (xn+1 + xn−1), 1

2�
] |xn

p(Qn | x∗
n) p(x∗

n | xn−1)p(xn+1 | x∗
n)

N
[

1
2 (xn+1 + xn−1), 1

2�
] |x∗

n
p(Qn | xn) p(xn | xn−1)p(xn+1 | xn)

}
.
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4. Posterior probability of parameters θ

The likelihood of θ for a given trajectory x0,...,N is given by

p(x0:N |θ ) ∝ |�|− N
2 exp

(
− 1

2τ

N−1∑
n=0

[xn+1 − xn − τg(xn)

+ τ�(xn)λ]T�−1[xn+1 − xn − τg(xn) + τ�(xn)λ]

)
.

If � is known

p(λ|x1, . . . ,xK,�)

∝ p(λ)p(x1, . . . ,xK |λ,�)

∝ exp
(− 1

2λT �−1
0 λ

)
exp

(− 1
2 (λT Asλ + Bsλ)

)
∝ exp

(− 1
2

[
λT
(
�−1

0 + As

)
λ + Bsλ

])
∝ exp

{− 1
2

[
(λ − λ̃)T

(
�−1

0 + As

)
(λ − λ̃)

]}
, (A1)

where we have defined the functionals

As
def= τ

K∑
k=1

N−1∑
n=0

�
(
xk

n

)T
�−1�

(
xk

n

)
, (A2)

Bs
def= 2

K∑
k=1

N−1∑
n=0

[
xk

n+1 − xk
n − τg(xn)

]T
�−1�

(
xk

n

)
, (A3)

λ̃
def= −1

2

(
�−1

0 + As

)−1
BT

s . (A4)

Thus λ can be sampled as

λ | �,x1, . . . ,xK ∼ N
[
λ̃,
(
�−1

0 + As

)−1]
. (A5)

If λ is known

p(�|x1, . . . ,xK,λ)

∝ p(�)p(x1, . . . ,xK |λ,�)

∝ |�|− m0+d+1
2 exp

(− 1
2 trace(	0�

−1)
)

× |�|− NK
2 exp

(− 1
2 trace(Cs�

−1)
)

= |�|− m0+d+NK+1
2 exp

(− 1
2 trace[(	0 + Cs)�

−1]
)
, (A6)

where

Cs
def= 1

τ

K∑
k=1

N−1∑
n=0

[
xk

n+1 − xk
n − τg

(
xk

n

)+ τ�
(
xk

n

)
λ
]

× [
xk

n+1 − xk
n − τg

(
xk

n

)+ τ�
(
xk

n

)
λ
]T

. (A7)

Thus � can be sampled as

� | λ,x1, . . . ,xK ∼ W−1(	0 + Cs ,m0 + NK). (A8)

5. Maximum probability and maximum likelihood estimation

In this section we consider the problem of estimating
the parameters θ through maximizing the penalized log
likelihood [52]

Lp(θ ) = log p(Q|θ ) + D(θ ) =
K∑

k=1

log p(Qk|θ ) + D(θ ).

(A9)

Here a penalized term D(θ ) is added to the log-likelihood
function as a regularizer. Note that

p(Qk|θ ) =
∫

p
(
Qk|xk

0:N

)
p
(
xk

0:N |θ)dxk
0:N . (A10)

Therefore, if we chose the logarithm of the prior for θ as
the penalty function, then the maximum penalized likelihood
(MPL) estimate is equivalent to the maximum a posterior
(MAP) estimate and may efficiently be computed with the
expectation maximization (EM) algorithm [53], which consists
of the iterative application of the following steps:

(1) E-step: Compute the functional

QMPL(θ |θj ) = E

[
K∑

k=1

log p
(
xk

0:N |θ)+ log p(θ )|θj ,Q

]

=
K∑

k=1

E
[

log p
(
xk

0:N |θ)|θj ,Q
]+ log p(θ ).

(A11)

(2) M-step: Update

θj+1 = arg max
θ

QMPL(θ |θj ). (A12)

We cannot solve Eq. (A11) analytically, but it is possible to
get a suboptimal solution by

λj+1 = arg max
λ

QMPL(λ,�j |θj ), (A13)

�j+1 = arg max
�

QMPL(λj+1,�|θj ). (A14)

Using Eqs. (A1) and (A6), we can conclude that

QMPL(λ,�j |θj ) = −1

2

[
λT
(
�−1

0 + Aj

)
λ + Bj λ

]+ Cλ,

(A15)

QMPL(λj+1,�|θj ) = −m0 + d + NK + 1

2
log |�|

− 1

2
trace[(	0 + Cj )�−1] + C�, (A16)

where

Aj
def= E

[
τ

K∑
k=1

N−1∑
n=0

�
(
xk

n

)T
�−1

j �
(
xk

n

)∣∣θj ,Q

]
, (A17)

Bj
def=E

{
2

K∑
k=1

N−1∑
n=0

[
xk

n+1 − xk
n − τg(xn)

]T
�−1

j �
(
xk

n

)|θj ,Q

}
,

(A18)

036705-12



BAYESIAN FRAMEWORK FOR MODELING DIFFUSION . . . PHYSICAL REVIEW E 83, 036705 (2011)

Cj
def= E

{
1

τ

K∑
k=1

N−1∑
n=0

[
xk

n+1 − xk
n − τg

(
xk

n

)+ τ�
(
xk

n

)
λj+1

]
(A19)

×[xk
n+1 − xk

n − τg(xk
n) + τ�

(
xk

n

)
λj+1

]T ∣∣θj ,Q
}

.

(A20)

Cλ is independent of λ and C� is independent of �. By setting
∂QMPL(λ,�j |θj )/∂λ = 0 we can get the solution of Eq. (A13)
as in the following:

λj+1 = − 1
2

(
�−1

0 + Aj

)−1
BT

j . (A21)

And �j+1 should be the mode of the distribution W−1(	0 +
Cj ,m0 + NK), so

�j+1 = 1

m0 + d + NK + 1
(	0 + Cj ). (A22)

And the conditional expectations in Eqs. (A21) and (A22) can
be approximated by sampling the path variables xn as described

in Sec. III A. The complete EM algorithm then becomes what
is described by Algorithm .

Remark 1. Obviously, the maximum likelihood (ML)
estimate is a special case of MPL estimate with a flat prior
p(θ̄ ) ∝ 1. And for this case, the update equations are

λj+1 = −1

2
A−1

j BT
j , (A23)

�j+1 = 1

NK
Cj . (A24)

But in practice, the estimated Aj may be nearly singular, which
will make the EM algorithm computationally unfeasible. For
this reason, a prior such as the one introduced above is essential
in practice.

Algorithm 2. EM Estimator for θ (Initialization) set the
values of θ1 arbitrarily (Iteration) for j = 2 to J (E-step) for
k = 1 to K perform the Gibbs sampler to get the Monte Carlo
estimate of p(xk

0:N |θj ,Q
k) end for calculate Aj , Bj , Cj by the

Monte Carlo estimates (M-step) compute θj+1 by Eqs. (A21)
and (A22).
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[26] G. Schröder and H. Grubmüller, J. Chem. Phys. 119, 9920

(2003).
[27] I. Horenko, E. Dittmer, A. Fischer, and Ch, Multiscale Model.

Sim. 5, 802 (2006).
[28] G. Roberts and O. Stramer, Biometrika 88, 603 (2001).
[29] G. Durham and A. Gallant, J. Bus. Econ. Statist. 20, 297

(2002).
[30] S. Donnet and A. Samson, Tech. Rep. No. 5809, INRIA, 2005.
[31] P. Dellaportas, N. Friel, and G. Roberts, Biometrika 93, 809

(2006).
[32] A. Beskos, O. Papaspiliopoulos, G. Roberts, and P. Fearnhead,

J. Roy. Statistical Society 68, 333 (2006).
[33] K. Kalogeropoulos, Journal of Statistical Planning and Inference

137, 3092 (2007).
[34] A. Golightly and D. Wilkinson, Computational Statistics and

Data Analysis 52, 1674 (2008).
[35] B. Bibby, M. Jacobsen, and M. Sørensen, in Handbook of

Financial Econometrics (North Holland, Amsterdam, 2002).
[36] C. Archambeau, M. Opper, Y. Shen, D. Cornford, and J. Shawe-

Taylor, Advances in Neural Information Processing Systems 20,
17 (2007).

036705-13

http://dx.doi.org/10.1007/s00285-008-0197-8
http://dx.doi.org/10.1007/s00285-008-0197-8
http://dx.doi.org/10.1529/biophysj.105.075507
http://dx.doi.org/10.1073/pnas.0910390107
http://dx.doi.org/10.1073/pnas.0910390107
http://arXiv.org/abs/arXiv:ao-sci/9510001
http://dx.doi.org/10.1126/science.1127344
http://dx.doi.org/10.1364/OL.19.000780
http://dx.doi.org/10.1126/science.283.5408.1670
http://dx.doi.org/10.1073/pnas.93.7.2926
http://dx.doi.org/10.1016/j.polymer.2005.11.094
http://dx.doi.org/10.1021/bi900308c
http://dx.doi.org/10.1038/330769a0
http://dx.doi.org/10.1038/330769a0
http://dx.doi.org/10.1002/cphc.200400609
http://dx.doi.org/10.1038/nature01060
http://dx.doi.org/10.1038/nature01060
http://dx.doi.org/10.1073/pnas.032077799
http://dx.doi.org/10.1021/cr0404343
http://dx.doi.org/10.1021/cr0404343
http://dx.doi.org/10.1016/j.jmb.2006.10.021
http://dx.doi.org/10.1016/j.jmb.2006.10.021
http://dx.doi.org/10.1103/PhysRevLett.56.930
http://dx.doi.org/10.1103/PhysRevLett.56.930
http://dx.doi.org/10.1364/OL.11.000288
http://dx.doi.org/10.1364/OL.11.000288
http://dx.doi.org/10.1111/1468-0262.00226
http://dx.doi.org/10.1111/1468-0262.00226
http://dx.doi.org/10.1111/j.1467-9868.2006.00552.x
http://dx.doi.org/10.1111/j.1467-9868.2006.00552.x
http://dx.doi.org/10.1063/1.3212597
http://dx.doi.org/10.1063/1.3212597
http://dx.doi.org/10.1111/j.1467-9876.2005.00509.x
http://dx.doi.org/10.1111/j.1467-9876.2005.00509.x
http://dx.doi.org/10.1063/1.1616511
http://dx.doi.org/10.1063/1.1616511
http://dx.doi.org/10.1137/050623310
http://dx.doi.org/10.1137/050623310
http://dx.doi.org/10.1093/biomet/88.3.603
http://dx.doi.org/10.1198/073500102288618397
http://dx.doi.org/10.1198/073500102288618397
http://dx.doi.org/10.1093/biomet/93.4.809
http://dx.doi.org/10.1093/biomet/93.4.809
http://dx.doi.org/10.1111/j.1467-9868.2006.00552.x
http://dx.doi.org/10.1016/j.jspi.2006.05.017
http://dx.doi.org/10.1016/j.jspi.2006.05.017
http://dx.doi.org/10.1016/j.csda.2007.05.019
http://dx.doi.org/10.1016/j.csda.2007.05.019
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Nienhaus, Nucleic Acids Res. 35, 2047 (2007).
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