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Analytical traveling-wave and solitary solutions to the generalized Gross-Pitaevskii equation
with sinusoidal time-varying diffraction and potential
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We determine analytical extended traveling-wave and spatiotemporal solitary solutions to the generalized
(3 + 1)-dimensional Gross-Pitaevskii equation with time-dependent coefficients, for the sinusoidally time-varying
diffraction and quadratic potential strength. A number of periodic and localized solutions are obtained whose
intensity does not decrease in time in the absence of externally induced gain or loss. Stability analysis of our
solitary solutions is carried out, to display their modulational stability.
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I. INTRODUCTION

The Gross-Pitaevskii equation (GPE) is essential for the
description of Bose-Einstein condensates (BECs), where it
elucidates the behavior of condensate’s macroscopic wave-
function [1]. It has been introduced by Gross [2] and Pitaevskii
[3] for unrelated problems, but was later found useful in
different quantum systems [4]. Solutions to GPE are of great
interest, because they can be applied to a variety of physical
systems. Various solutions to GPE have been discovered [5],
including localized (solitary) waves. However, proven stable
soliton solutions to GPE exist only in (1 + 1)-dimensions
[(1 + 1)D] [6,7]; there are no known exact stable solitons in
higher dimensions.

In Ref. [8] we discovered a class of exact extended
traveling-wave and spatiotemporal solutions, but only for
constant values of the quadratic potential strength and the
diffraction coefficient. Here we present analytical traveling-
wave and solitary solutions to the GPE in (3 + 1)D when
the potential and the diffraction are changing sinusoidally in
time. Such a periodic choice for the coefficients in GPE is
believed to improve the stability of its solutions [9]. Still,
the stability of solutions to GPE is an involved question,
to be addressed separately. Our preliminary results indicate
that, being extended solitary waves, they are prone to modula-
tional instabilities, however, often displaying prolonged qua-
sistable propagation behavior, which extends over hundreds
of diffraction lengths. For particular choices of coefficients
and modulation parameters, we find our solitary solutions
modulationally stable. These results agree with a recent
analysis [10], in which it was shown that (2 + 1)D extended
solitons of GPE with constant coefficients, similar to ours but
called there the “line-solitons,” are prone to collapse, whereas
when they are rotated and a dissipative loss is included, they
become more stable. It is known that in GPE with optical
spatially periodic lattice potential there exist stable 2D and 3D
solitons [9,11]. It should also be mentioned that in principle all
solutions to the generalized GPE considered here are transient
in nature, because the coefficients in the equation are time
dependent.

The paper is divided into five sections. Section II describes
the model and the solution procedure. Section III presents
some of the solitary and traveling-wave solutions. Section IV

discusses modulational stability of solitary waves, and Sec. V
brings conclusions.

II. GROSS-PITAEVSKII EQUATION AND ITS SOLUTION

In [8] we considered the generalized GPE in (3 + 1)D with
distributed time-dependent coefficients [1]

i∂tu + β(t)

2
�u + χ (t)|u|2u + α(t)r2u = iγ (t)u. (1)

Here t is time, � = ∂2
x + ∂2

y + ∂2
z is the 3D Laplacian, r =√

x2 + y2 + z2 is the radial position coordinate, and α(t) is the
strength of the quadratic potential as a function of time. The
functions β, χ , and γ stand for the diffraction, nonlinearity,
and the gain or loss coefficient, respectively.

According to the F-expansion and the balance principle
techniques [12–16], we search for the solution in the form [8]:

u(x,y,z,t) = A(x,y,z,t) exp [iB(x,y,z,t)], (2)

where

A = f (t)F (θ ) + g(t)F−1(θ ), (3)

θ = k(t)x + l(t)y + m(t)z + ω(t), (4)

B = a(t)r2 + b(t)(x + y + z) + e(t). (5)

Here f , g, k, l, m, ω, a, b, e are parameter functions to
be determined, and F is one of the Jacobi elliptic functions
(JEFs) [17]. When expressions (3)–(5) are plugged into Eq. (1),
the following set of differential equations for the parameter
functions is obtained:

df

dt
+ 3aβf − γf = 0, (6)

dg

dt
+ 3aβg − γg = 0, (7)

dk

dt
+ 2kaβ = 0, (8)

dl

dt
+ 2laβ = 0, (9)

dm

dt
+ 2maβ = 0, (10)
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TABLE I. Jacobi elliptic functions.

c0 c2 c4 F M = 0 M = 1

1 1 −(1 + M2) M2 sn sin tanh
2 1 − M2 2M2 − 1 −M2 cn cos sech
3 M2 − 1 2 − M2 −1 dn 1 sech
4 M2 −(1 + M2) 1 ns cosec coth
5 −M2 2M2 − 1 1 − M2 nc sec cosh
6 −1 2 − M2 M2 − 1 nd 1 cosh
7 1 2 − M2 1 − M2 sc tan sinh
8 1 − M2 2 − M2 1 cs cot cosech
9 1 −(1 + M2) M2 cd cos 1
10 M2 −(1 + M2) 1 dc sec 1

da

dt
+ 2βa2 − α = 0, (11)

db

dt
+ 2βab = 0, (12)

dω

dt
+ β(k + l + m)b = 0, (13)

de

dt
+ β

2
[3b2 − (k2 + l2 + m2)c2] − 3χfg = 0, (14)

plus two relations connecting some of the parameter functions
with some of the coefficients:

f [β(k2 + l2 + m2)c4 + χf 2] = 0, (15)

g[β(k2 + l2 + m2)c0 + χg2] = 0. (16)

The parameters c0, c2, and c4 are related to the elliptic modulus
M of JEFs (see Table I).

Note that in all these differential equations the parameter
function a(t) appears either explicitly or implicitly. On the
other hand, the differential equation for a, Eq. (11), involves
only the physical coefficients α and β. One has to solve Eq. (11)
for a first and then find solutions to the rest of equations; this
testifies to the importance of the parameter function a, which
is known as the chirp function. Unfortunately, Eq. (11) is a
Riccati equation, which does not admit analytical solutions
for arbitrary α(t) and β(t). It was relatively easy to solve this
equation when α and β were constant, which straightforwardly
yielded different time-dependent solutions [8]. Here we extend
the analysis to the case when α(t) and β(t) are not constant.

In principle, the general case when α and β are not constant
greatly complicates the solution of the Riccati equation (11)
for the chirp function. In [18] we have introduced a procedure
for solving Eq. (11) analytically, when there exists a relation
between α(t) and β(t). In this paper we present and analyze the
solutions to GPE when both the diffraction and the quadratic
potential are sinusoidal functions of time. In other words,
we solve Eq. (1) for two cases: α(t) = α0 sin (
t), β(t) =
β0 sin (
t) and α(t) = α0 cos (
t), β(t) = β0 cos (
t). Such a
choice of sign-changing periodic coefficients is of importance
for the diffraction or dispersion management of systems
described by Eq. (1) [9]. The solution procedure employed
here is different from the procedure in Ref. [18]; the procedure
there requires that α(t) and β(t) be of the opposite signs,
whereas here the requirement is that the ratio of these two
functions is constant. In this case Eq. (11) separates the
variables. There are two separate solutions: when the constant

is positive and when the constant is negative. We present
only the case when the ratio of α(t) and β(t) is a positive
real number, i.e., when the quadratic potential coefficient is
proportional to the diffraction coefficient. While previously [8]
two constant parameters p and C are found necessary to
describe the solutions, now two parameter functions p(t) and
q(t) are found necessary.

After a lengthy calculation, the solutions are obtained for
both cases, in the form:

f = f0p
3/2 exp

( ∫ t

0
γ dt

)
, g = ε

√
c0

c4
f, (17)

k = pk0, l = pl0, m = pm0, (18)

ω = ω0 − (k0 + l0 + m0)b0q, b = pb0, (19)

e = e0 + 1
2

[
κ2

0 (c2 − 6ε
√

c0c4) − 3b2
0

]
q, (20)

where κ2
0 = k2

0 + l2
0 + m2

0 and the subscript “0” denotes the
value of a given function at t = 0. The parameter functions
p and q, as well as the solution for a, can conveniently be
expressed via an auxiliary function τ (t):

p =
√

α0

α0 − 2a2
0β0

sech[τ (t)], (21)

q =
√

α0β0√
2
(
α0 − 2a2

0β0
) tanh [τ (t)] − a0β0

α0 − 2a2
0β0

, (22)

a =
√

α0

2β0
tanh [τ (t)], (23)

where

τ (t) = arctanh

(
a0

√
2β0

α0

)
+

√
2α0β0

∫ t

0
β(t) dt. (24)

The form of the auxiliary function τ (t) naturally differs in
the two cases for α(t) and β(t). Functions p and q place the
following restriction on the parameters: α0 > 2a2

0β0, which

for positive α0 and β0 implies |a0| <
√

α0
2β0

.

The final solution for u is thus

u = f0p
3/2 exp

( ∫ t

0
γ dt

)[
F (θ ) + ε

√
c0

c4

1

F (θ )

]
,

× exp i[a(x2 + y2 + z2) + b(x + y + z) + e], (25)

where

θ = ω0 + (k0x + l0y + m0z)p − (k0 + l0 + m0)b0q. (26)

The parameter ε can take the values 0, ± 1. As a consequence
of Eqs. (15) and (16), our solution method imposes an
integrability condition on the coefficients:

χ (t) = −β(t)c4κ
2
0 f −2

0 p−1 exp

[
−2

∫ t

0
γ (t) dt

]
. (27)

This condition, naturally, places a restriction on the utility
of the method of solution. In principle, such a condition
is possible for a realistic physical system. However, it has
not been contemplated before, for a simple reason: No exact
solutions of the type described here were thought possible.

The form of solutions depends on what JEFs are utilized.
Table I lists some of JEFs that may appear in the solutions. The
elliptic modulus M varies between 0 and 1, and the functions to

036609-2



ANALYTICAL TRAVELING-WAVE AND SOLITARY . . . PHYSICAL REVIEW E 83, 036609 (2011)

which F converges to for these two values are also indicated in
the table. Depending on the value of M , one can obtain either
traveling-wave or localized (solitary) solutions.

III. SOLITARY AND TRAVELING-WAVE SOLUTIONS

We present in this paper a few typical examples of solutions
for both cases, α(t) = α0 sin (
t), β(t) = β0 sin (
t) and
α(t) = α0 cos (
t), β(t) = β0 cos (
t). The initial conditions
(sin 0 = 0, cos 0 = 1) produce a crucial difference in the chirp
parameter a, which in turn affects both p and q. Another
important point to note is that while the traveling-wave
solutions are periodic in time, they are not periodic along the
traveling variable k0x + l0y + m0z, in contrast to the solutions
found in Ref. [19]. Similar to [8], the initial value of the chirp
is of not much importance; the solutions remain qualitatively
the same. The major change however, is a shift of all the
parameters a, p and q, which causes a shift in the graphs
along the transverse variable, and a decrease in the magnitude
(for positive a0), which causes a narrowing of the peaks.

Figure 1 presents the sine case, and Fig. 2 the cosine case of
the extended solitary waves; Fig. 3 presents the traveling-wave
solutions for both the sine and the cosine case. For a better
perspective, a small loss (γ = −0.05) is included in all the
figures; without it, the waves keep the amplitude constant, but
still breathe. Note the influence of the parameter b0, which
causes the solitons to wiggle.

Despite the apparent complexity of these solutions, they
yield relatively straightforward and elegant spatiotemporal
breathing solitary solutions for F = sn (dark solitons) and
F = cn (bright solitons) without any need for positive γ . In

FIG. 1. (Color online) Soliton solutions to the Gross-Pitaevskii
equation as functions of time, for the sine case: α(t) = α0 sin(
t),
β(t) = β0 sin(
t). Intensity |u|2 for (a) and (c) dark solitons (F =
tanh), and (b) and (d) bright solitons (F = sech) presented as
functions of k0x + l0y + m0z and t . For (a) and (b) b0 = 0, for (c) and
(d) b0 = 1. Other parameters: α0 = 1, β0 = 1, 
 = 1, γ (t) = −0.05,
a0 = 0, e0 = 0, k0 = l0 = m0 = 1, ω0 = 0, ε = 0.

FIG. 2. (Color online) Soliton solutions to the Gross-Pitaevskii
equation as functions of time for the cosine case: α(t) = α0 cos(
t),
β(t) = β0 cos(
t). The other parameters are the same as in Fig. 1.

other words, unlike the solutions in Ref. [8], which required
a positive value of gain to form solitary waves, the signals
here stay at the same peak intensity for γ = 0, but breathe.
This is apparent from the fact that p and q, as well as a, the
parameter functions on which all other variables in the final

FIG. 3. (Color online) Traveling wave solutions to Gross-
Pitaevskii solutions in terms of JEFs for the sine and the cosine case.
The parameters for panels (a) and (b) are the same as in Figs. 1(a)
and 1(b), and the parameters in panels (c) and (d) are the same as
in Figs. 2(a) and 2(b), except for M = 0.99. In panels (a) and (c),
F = sn, and in panels (b) and (d), F = cn.
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solution depend, are periodic functions of time in both cases.
Note also that the width of the solitary solutions in Ref. [8] was
increasing in time, because of the positive value of γ . Energy
was pumped into these solitary waves, which is why they were
not the solitons in the usual sense of word.

It was curious to find that if arbitrary phase shifts are
added to α and β, i.e., α(t) = α0 sin(
t + φ1) and β(t) =
β0 sin(
t + φ2), very different solutions are found, often
without a closed analytical form. Even a simple choice, such
as φ1 = 0 and φ2 = π , which makes α and β oscillate out of
phase relative to the cases presented here, causes the solutions
to the Riccati equation for a to belong to a widely different
class from the ones found here, where α and β oscillate in
phase [18]. Furthermore, if one parameter is a sine function
and the other is a constant, the solutions collapse rapidly. In
the next section we present a short stability analysis of our
solitary solutions.

IV. STABILITY ANALYSIS

We present an outline of the stability analysis concerning
modulational instability of our extended solitary solutions. A
more complete analysis, including numerical simulations of
Eq. (1), will be presented elsewhere. The crux of our approach
is to transform the starting Eq. (1) into a form more amenable
to stability analysis [20]. This is accomplished as follows.

Owing to its linear nature, the gain or loss term cannot affect
the stability of solutions. In fact, the gain or loss coefficient
can be eliminated from Eq. (1) by a simple transformation of u

and χ , u = E exp[
∫ t

0 γ (t) dt] and χ exp[2
∫ t

0 γ (t) dt] → χ , as
is visible from Eqs. (25) and (27). Therefore, we concentrate
on the part of the final solution u excluding the exponent:

E = f0p
3/2G exp[ia(x2 + y2 + z2) + ib(x + y + z) + ie],

(28)

where G(x,y,z,t) stands for the expression in brackets in
Eq. (25), but now considered as an explicit function of
the independent variables. The transformation of variables
x → x ′ = px̄ = pκ0(x − ς ), y → y ′ = pȳ = pκ0(y − ς ),
z → z′ = pκ0(z − ς ), t → t ′ = κ2

0

∫
βp2 dt , brings Eq. (1)

into an equation for G in the new variables:

i
∂G

∂t ′
+

(
∂2G

∂x
′2 + ∂2G

∂y
′2 + ∂2G

∂z
′2

)
− c

2
G − c4|G|2G = 0,

(29)

where c = c2 − 6ε
√

c0c4 is a constant. The form of the
function ς (t) in the transformation is of no immediate interest,
other than it explicitly depends on p(t) and τ (t). However, the
new variable t ′, which depends only on t , involves an integral
over β and can change sign. This is important in the analysis
of Eq. (29).

Equation (29) is the usual (3 + 1)D nonlinear Schrödinger
equation with constant coefficients, which is prone to instabil-
ities and the wavefunction collapse. Instabilities in G translate
into instabilities of the general solution u. This would bode
disaster for the stability of exact traveling-wave and solitary
solutions found, were it not for the possibility of diffraction
and nonlinearity management [9] in Eq. (29), due to the form
of the primed variables [21]. We find that, for the choice of

coefficients α(t) and β(t) made here, the typical extended
soliton solutions of Eq. (29) do not collapse when perturbed,
but keep oscillating in a typical breathing behavior.

Without loss of generality we put f0 = 1, κ0 = 1, β0 = 1,

and place the z′ axis in the direction of inhomogeneity of
our extended solitary solutions. In this manner the z′ variable
takes the role of the θ variable. The intensity |E| ∼ |G| is
homogenous in two of the three spatial dimensions [i.e.,
in the plane perpendicular to the direction (k0,l0,m0) of
inhomogeneity.] It is in this plane that, owing to nonlinearity,
the modulational instability can develop. For this reason, of
particular interest is the analysis of modulational (in)stability
of perturbations in the plane of homogeneity of |G|.

We consider the perturbation of G in this plane for the two
fundamental solutions, the dark G = tanh(z′) and the bright
G = sech(z′) solitons, in the form:

G → G[1 + (Ur + iUi) cos(Kx̄)], (30)

where U (t) = Ur (t) + iUi(t) is the complex amplitude, and
K is the wavenumber of the perturbation in the direction x̄

perpendicular to z′. In a standard linear stability analysis, the
perturbation is substituted into Eq. (29) and linear first-order
differential equations for Ur and Ui obtained. These equations
can be solved analytically, to yield the following solutions:

Ur (t) = {
C1P

μ
ν [tanh(τ )] + C2Q

μ
ν [tanh(τ )]

}
p−1, (31)

Ui(t) = 2
√

2α0

pK2

∂(pUr )

∂τ
, (32)

where P μ
ν and Qμ

ν are the associated Legendre func-
tions, with ν = −1/2[1 − √

1 − dK2/2(α0 − 2a2
0)], and μ =

iK2/2
√

2α0. Here d = −4 for the dark soliton and d = 8/3
for the bright soliton. The constants C1 and C2 are determined
by the initial conditions for Ur and Ui . [We take Ur (t = 0) =
U0 and Ui(t = 0) = 0.]

The solutions in Eqs. (31) and (32) determine the dynamics
of the modulational instability. Figure 4 depicts a typical
evolution of the modulus of the perturbation amplitude |U |
for different values of the parameters. In all cases, we have a
periodic dependence in time, with the period 2π/
. For large
K we see a superposition of two oscillations, one with the
frequency 
 and the other with the frequency ∼K

√
K2 − d/2.

For small 
, independent of the value of K , the amplitude

FIG. 4. (Color online) Evolution of the modulus of the perturba-
tion amplitude |U | of bright solitons in time for different values of

: (a) 
 = 1, (b) 
 = 8. In both figures a0 = 0.3. Other parameters:
K = 1, α0 = 0.3 [black, (upper) solid line]; K = 1, α0 = 0.1 [black,
(upper) dashed line]; K = 4, α0 = 0.3 [red, (lower) solid line];
K = 4, α0 = 0.1 [red, (lower) dashed line].
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of the perturbation may, for a time period equal to π/
,
grow for several orders of magnitude compared to the initial
value. This is expected: The generalized GPE should display
sensitivity to low-frequency (long-period) perturbations. Such
perturbations of the coefficients bring GPE closer to the limit
of NLSE with constant coefficients, which naturally is prone
to instability and collapse. In contrast to this case, for large 


the variation of the perturbation amplitude is much smaller.
In addition, a decrease in the initial chirp a0 and in the
strength of the potential α0 causes a reduction in the variation
of the perturbation amplitude. In fact, for large 
 � √

2α0

and small chirp α0 � 2a2
0 the maximum variation of the

perturbation amplitude |U | in the lowest approximation can be
expressed as

max ||U/U 0| − 1| < 2|d2 − dK2 + 8α0|/
2,

and by increasing 
 can be made arbitrarily small. In all of
this the crucial point is that the amplitude, while oscillating,

remains finite. Hence, no collapse of the solitons occurs; they
are modulationally stable against the perturbations considered.

V. CONCLUSION

In conclusion, we have solved analytically the generalized
(3 + 1)D GPE with distributed coefficients, for a sinusoidal
time-varying quadratic potential and diffraction. A number
of exact traveling-wave solutions are found, and novel exact
spatiotemporal soliton solutions are obtained. Modulational
stability analysis is carried out, to display stability of our
extended solitary solutions.
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