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We revisit the problem of the spontaneous symmetry breaking (SSB) of solitons in two-component linearly
coupled nonlinear systems, adding the nonlinear interaction between the components. With this feature, the
system may be realized in new physical settings, in terms of optics and the Bose-Einstein condensate (BEC). SSB
bifurcation points are found analytically, for both symmetric and antisymmetric solitons (the symmetry between
the two components is meant here). Asymmetric solitons, generated by the bifurcations, are described by means
of the variational approximation (VA) and numerical methods, demonstrating good accuracy of the variational
results. In the space of the self-phase-modulation (SPM) parameter and soliton’s norm, a border separating stable
symmetric and asymmetric solitons is identified. The nonlinear coupling may change the character of the SSB
bifurcation, from subcritical to supercritical. Collisions between moving asymmetric and symmetric solitons
are investigated too. Antisymmetric solitons are destabilized by a supercritical bifurcation, which gives rise to
self-confined modes featuring Josephson oscillations, instead of stationary states with broken antisymmetry. An
additional instability against delocalized perturbations is also found for the antisymmetric solitons.
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I. INTRODUCTION

Spontaneous symmetry breaking (SSB) is a fundamental
feature of two-core physical systems, originating from the
competition of the linear tunnel coupling between the cores
and nonlinearity acting inside each of them. The possibility
of this effect was originally demonstrated in Ref. [1]. The
first physical setting where the SSB was studied in detail
theoretically is represented by dual-core optical fibers, in
which this effect was predicted for continuous-wave states
[2] and solitons [3–5]. Later, the analysis of the SSB was
extended to Bose-Einstein condensates (BECs) trapped in
symmetric double-well potentials, in the framework of both
the quantum [6,7] and mean-field [8] descriptions. In the
experiment, the SSB has been experimentally demonstrated in
the condensate of 87Rb atoms with the self-repulsive nonlinear-
ity [12]. In the settings with the attractive or repulsive intrinsic
nonlinearity, stationary asymmetric modes are generated by
SSB bifurcations from symmetric and antisymmetric states,
respectively. In the framework of the mean-field theory, the
analysis of the SSB in nonlinear matter waves was extended for
two-dimensional solitons, supported by the combination of the
self-attractive [9,10] or self-repulsive [10,11] nonlinearity and
periodic optical-lattice potentials. The SSB was also studied
in settings based on double-well nonlinear pseudopotentials
[15], optical models with the cubic-quintic nonlinearity acting
inside the linearly-coupled cores (which gives rise to closed
bifurcation loops) [16], dipolar BECs [17], two- [13] and
three-component (spinor) [14] BEC mixtures, and Bose-Fermi
mixtures [18].

An effect related to the SSB is Josephson oscillations in
BEC trapped in double-well potentials. After the prediction
of the oscillations in Ref. [19], they were observed in various
experimental settings [12,20]. Further theoretical aspects of the
Josephson oscillations were investigated too [21], including
the oscillations of solitons [22] (similar oscillations of solitons

in dual-core nonlinear optical fibers were studied earlier in
Ref. [23]).

As mentioned above, in the theoretical studies of the SSB
the emphasis was made on effects produced by the competition
between the intercore linear coupling and intracore nonlinear-
ities. A straightforward problem which was not studied yet
is the modification of the SSB scenarios in solitons in cases
when the two wave fields are coupled through both linear
and nonlinear interactions. This extension makes it possible
to predict SSB effects in new physical settings. In optics,
these are waves with orthogonal polarizations propagating in a
single-mode nonlinear fiber, the linear coupling between them
being induced by the twist of the fiber or elliptic deformation
of the core, in the cases of the linear and circular polar-
izations, respectively, while the nonlinear coupling between
the polarizations is accounted for, as usual, by the XPM
(cross-phase-modulation) terms [4]. In BEC, a similar model
applies to a binary mixture of two different atomic states, with
the linear interconversion between them imposed by a resonant
radio-frequency electromagnetic wave [25], or by the two-
photon Raman transition [26], while the XPM nonlinearity is
generated, as usual, by interatomic collisions [24].

The objective of this work is to study the SSB bifurcations
of symmetric and antisymmetric one-dimensional solitons in
the two-component model with the self-focusing nonlinearity,
combining the linear and XPM interaction terms, and analyze
properties of asymmetric solitons generated by the bifurca-
tions. The symmetry, antisymmetry, and asymmetry are meant
with respect to the two components, rather than in the sense
of the spatial parity—all the solitons considered here are even
localized modes, except for moving antisymmetric solitons
destabilized by delocalized perturbations (see Fig. 7 below). In
Sec. II, we introduce the models and apply analytical methods,
which allow us to find the bifurcation points in an exact
form, and describe the bifurcations and solitons generated by
them by dint of the variational approximation (VA). The VA
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is also applied to the description of oscillations developed
by unstable solitons, showing, in all cases, good accuracy
in comparison with numerical results, which are reported in
Sec. III. A border between stable symmetric and antisymmetric
solitons is identified, and it is found that the addition of
the XPM interactions may change the character of the SSB
bifurcation for symmetric solitons from subcritical to super-
critical. Asymmetric-asymmetric and asymmetric-symmetric
collisions between moving stable solitons are also studied by
means of direct simulations, demonstrating both quasielastic
and strongly inelastic outcomes. In the case of antisymmetric
solitons, the SSB bifurcation is supercritical. An additional
mechanism of the destabilization of antisymmetric solitons
may be triggered by delocalized (expanding) perturbations.
Results obtained in this work are summarized in Sec. IV.

II. ANALYTICAL RESULTS

A. The model

We consider the two-component Gross-Pitaevskii/
nonlinear Schrödinger equations in one dimension, in the
scaled form:

iφt = −(1/2)φxx − (ε|φ|2 + |ψ |2)φ − ψ,
(1)

iψt = −(1/2)ψxx − (ε|ψ |2 + |φ|2)ψ − φ.

The equations are written in the notation corresponding to the
BEC, with h̄ = m = 1 (this scaling is possible because masses
of two hyperfine atomic states coupled by the linear conversion
are always equal). The linear-coupling and XPM coefficients
are also scaled to be 1, which is always possible (setting the
XPM coefficient equal to +1, in the present notation, means
that the interatomic interactions are attractive), while the SPM
(self-phase-modulation) coefficient, ε, is the single irreducible
parameter of the system.

In the most general case, the SPM coefficients in the two
equations may be different, εφ �= εψ , if the scattering lengths
for collisions between atoms in the two states are unequal. In
this paper, we aim to consider the symmetric system, with the
single coefficient ε. Actually, ε may be readily adjusted by
means of the Feshbach-resonance technique [27].

The number of atoms in the condensate is proportional to
the total norm of the wave function,

N =
∫ +∞

−∞
[|φ(x)|2 + |ψ(x)|2]dx. (2)

The comparison with the Gross-Pitaevskii equations written
in physical units demonstrates that N = 1 corresponds (for
instance) to ∼1000 atoms in the 7Li condensate (with the
scattering length ∼−0.1 nm), confined in the transverse plane
by the harmonic-oscillator potential with frequency ∼100 Hz
[28].

In the application to optics, variables t and x are replaced
by the propagation distance and reduced time (z and τ ,
in the standard notation), the signs in front of the second
derivatives corresponding to the anomalous group-velocity
dispersion in the optical fiber [4]. In the standard model of
optical fibers, ε = 3/2 for linear polarizations, and ε = 1/2
for circular polarizations. Other values of ε are possible too,
in photonic-crystal fibers [29].

Stationary solutions to Eqs. (1) with chemical potential μ

are looked for in the usual form, {φ(x,t),ψ(x,t)} =
e−iμt {u(x),v(x)}, where real functions u and v satisfy equa-
tions

μu = −(1/2)u′′ − (εu2 + v2)u − v,
(3)

μv = −(1/2)v′′ − (εv2 + u2)v − u.

The chemical potentials of the two components may only be
equal in the presence of the linear coupling between them.

B. Exact results for the bifurcation points

Obvious exact solutions to Eqs. (3) are symmetric and
antisymmetric solitons:

usol(x) = ±vsol(x) = Asech(x/W ), (4)

with amplitude A and the chemical potentials given by

A = 1/(W
√

1 + ε), μ± = −1/(2W 2) ∓ 1, (5)

provided that ε > −1. Norm (2) of these solutions is

N = 4(1 + ε)−1W−1. (6)

It is possible to find the exact position of bifurcation points
which are responsible for the emergence of asymmetric soli-
tons from the symmetric and antisymmetric ones, following the
known approach [3,5]. To this end, in the case of the symmetric
soliton, one substitutes the following perturbed expressions
into Eqs. (3):

{ũ(x),ṽ(x)}symm = {usol(x) + δu(x), usol(x) − δu(x)}, (7)

with the infinitesimal antisymmetric perturbation, {δu(x),
− δu(x)}, which accounts for the onset of the SSB bifurcation.
Similarly, in the case of the antisymmetric soliton, one
substitutes

{ũ(x),ṽ(x)}anti = {usol(x) + δu(x), − usol(x) + δu(x)},
(8)

where the spontaneous breaking of the antisymmetry is
accounted for by the symmetric perturbation, {δu(x),δu(x)}.
In either case, the linearization of Eq. (3) with respect to
perturbations (7) or (8) yields the respective equation for the
perturbation mode,

(μ ± 1)δu = −
[

1

2

d2

dx2
+ (3ε − 1)A2sech2

(
x

W

)]
δu, (9)

where the upper and lower signs pertain to the symmetric and
antisymmetric solitons, respectively, and expression (4) was
substituted for the soliton’s wave form.

The actual bifurcation of the symmetric or antisymmetric
soliton takes place when Eq. (9) has a nontrivial localized so-
lution, i.e., the respective small symmetry-(or antisymmetry-)
breaking perturbation represents a true eigenmode with the
zero eigenvalue (the zero mode is the signature of the
corresponding phase transition). In fact, Eq. (9) is well known
in quantum mechanics, with term −(3ε − 1)A2sech2(x/W )
representing a potential well (provided that ε > 1/3). Accord-
ing to the results from quantum mechanics, Eq. (9) gives rise
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to localized solutions (bound states) at the following discrete
values of the chemical potential:

μ ± 1 = − 1

8W 2
[−(1 + 2n) +

√
1 + 8(3ε − 1)A2W 2]2,

(10)

with integer n taking values n = 0,1,2,..., limited by condition

n <
1

2
[
√

1 + 8(3ε − 1)A2W 2 − 1].

Using Eqs. (5) and (2) to eliminate W , μ and A in favor
of N , we obtain from Eq. (10) with n = 0 (which corresponds
to the ground state in the quantum-mechanical problem) an
eventual result for the norm of the symmetric soliton at the
critical (bifurcation):

N2
c = 256(ε + 1)−1

(
√

25ε − 7 − 3
√

ε + 1)(
√

25ε − 7 + √
ε + 1)

. (11)

Expression (11) is positive (i.e., the bifurcation really occurs
for the symmetric solitons) at ε > 1.

For the antisymmetry-breaking bifurcation, the considera-
tion demonstrates that the bound-state solution for δu exists at
the point which differs from its counterpart for the symmetric
solitons by the opposite sign in Eq. (11):

N2
c = − 256(ε + 1)−1

(
√

25ε − 7 − 3
√

ε + 1)(
√

25ε − 7 + √
ε + 1)

.

(12)

This expression is positive at ε < 1. On the other hand, the
above analysis makes sense if the last term in Eq. (9) represents
the potential well (rather than a barrier), i.e., at ε > 1/3, hence
the bifurcation of the antisymmetric solitons occurs in the
interval of 1/3 < ε < 1. It is worth mentioning that in the
case of ε = 1, when the bifurcation is absent, Eqs. (1) with
the linear-coupling terms represent an integrable system [30],
unlike the situation at ε �= 1.

C. The variational approximation: stationary modes

Except for the identification of the bifurcation points, exact
results for asymmetric solitons are not available, hence the VA
(variational approximation) should be used [5]. To this end,
we note that the Lagrangian of corresponding to Eqs. (1) is

L = 1

2

∫ ∞

−∞
[i(φtφ

∗ − φ∗
t φ + ψtψ

∗ − ψ∗
t ψ)

− (|φx |2 + |ψx |2) + ε(|φ|4 + |ψ |4) + |φ|2|ψ |2
+ 2(φ∗ψ + φψ∗)]dx.

If the ansatz for solitons is adopted in the form of

φ = Asech(x/W ) exp(−iμt),ψ = Bsech(x/W ) exp(−iμt),

(13)

the Lagrangian is evaluated as

2Leff = μW (A2 + B2) − (1/6)W−1(A2 + B2)

+ (1/3)εW (A4 + B4) + (2/3)WA2B2 + 2WAB,

(14)

the corresponding total norm being

N = 2W (A2 + B2). (15)

If the asymmetry measure of the soliton, r , is defined as

�N ≡
∫ +∞

−∞
dx(|φ|2 − |ψ |2) = 2W (A2 − B2),

(16)

r ≡ �N

N
= A2 − B2

A2 + B2
,

Lagrangian (14) can be cast into the following form:

Leff = N

4

[
μ − 1

6W 2
+ εN

12W
(1 + r2)

+ N

12W
(1 − r2) ± √

1 − r

]
.

Here ± designates the sign of AB, i.e., the relative sign of
the two fields, as per Eq. (13). Then, the following system of
the Euler-Lagrange equations is derived from the variational
principle [5]:

∂Leff

∂N
≡ μ

2
− 1

12W 2
+ (ε + 1)N

12W
± 1

2
√

1 − r2
= 0,

(17)
1

N2

∂Leff

∂r
≡ r

[
(ε − 1)

12W
∓ 1

2N
√

1 − r2

]
= 0,

∂Leff

∂W
≡ 1

6

[
N

W
− εN2

4
(1 + r2) − N2

4
(1 − r2)

]
= 0. (18)

The soliton’s width W is found from Eq. (18),

1

W
= N

4
[1 + ε − (1 − ε)r2], (19)

while asymmetry ratio r is a solution to the equation which
then follows from Eq. (17):

(ε − 1)N

24
[(1 + ε) − (1 − ε)r2] = ±1

N
√

1 − r2
. (20)

Near the bifurcation point r is small, hence one may use
the expansion, (1 − r2)−1/2 ≈ 1 + (1/2)r2 in Eq. (20), which
yields

r2 ≈ N2(ε2 − 1) ∓ 24

±12 − N2(ε − 1)2
. (21)

The critical value εc, at which r2 vanishes (the bifurcation
point), is given by

εc(N ) =
√

1 ± 24/N2. (22)

In fact, Eq. (22) is a variational counterpart of exact relations
(11) and (12) which determine the point of the symmetry- or
antisymmetry-breaking bifurcation. Comparison between the
exact (solid curves) and variational (dashed curves) relations
is shown below in Figs. 1(c) and 6(c).

For AB > 0, i.e., for the asymmetric solitons originating
from the symmetric one at ε > 1 (as shown above), Eq. (21)
with the upper signs yields a relevant result, r2 > 0, at ε >

εc(N ) for N >
√

3, and at ε < εc(N ) for N <
√

3. On the
other hand, for AB < 0, i.e., for the solitons originating form
the antisymmetric one at ε < 1, Eq. (21) with the lower signs
yields r2 > 0 at −εc < ε < εc for N > 2

√
6.

036608-3



HIDETSUGU SAKAGUCHI AND BORIS A. MALOMED PHYSICAL REVIEW E 83, 036608 (2011)

0

0.2

0.4

0.6

0.8

1.5 1.6 1.7 1.8

r

0

0.5

1

1.5

2

2.5

6 8 10 12 14
x

0

2

4

6

8

0 1 2 3 4 5 6
N

FIG. 1. (a) The continuous and dashed curves depict asymmetric solitons for N = 4 and ε = 1.8, as obtained in the numerical form and
predicted by the VA, respectively. (b) The bifurcation diagram, in the form of the asymmetry parameter, r [defined as per Eq. (16)], versus
the SPM coefficient, ε, for a fixed norm, N = 4. (c) The border between symmetric (S) and asymmetric (AS) solitons in the (N,ε) plane. The
solid line denotes the exact analytical result given by Eq. (11). In panels (b) and (c), chains of rhombuses and the dashed curve show, severally,
numerical results and predictions of the VA. The arrow in (c) indicates the border between the subcritical and supercritical bifurcations, as
identified from the numerical results, see the text.

The VA may also predict the type of the SSB bifurcation,
subcritical or supercritical [i.e., with the corresponding curves
r(N ) for the asymmetric-soliton family that do or do not feature
turning points, at which dN/dr = 0 [3,5]. Differentiating
Eq. (20) with respect to r and substituting dN/dr = 0, after
simple manipulations we arrive at the following relation which
must hold at the turning point:

r2 = (1/3)(ε − 3)/(ε − 1). (23)

Obviously, the turning point exists (within the framework
of the VA) if Eq. (23) yields r2 > 0, which takes place at
ε > 3, i.e., for the asymmetric solitons emerging from the
symmetric ones, if ε is large enough (in accordance with the
above-mentioned fact that, in the model without the XPM
interaction, i.e., at ε → ∞, the bifurcation of the symmetric
soliton is always subcritical [3,5]). Further, the condition
εc > 3, if substituted into Eq. (22) with the upper sign, gives
N <

√
3, hence the bifurcation of the symmetric soliton is

subcritical if it happens at N < N0 ≡ √
3, and supercritical in

the opposite case.
Thus, the addition of the XPM nonlinearity to the two-

component system may transform the corresponding SSB
bifurcation from subcritical into supercritical. It is relevant
to mention that a similar effect is produced, in the absence of
the XPM terms, by the periodic (optical-lattice) potential [11].

D. The variational approximation: Dynamics

To consider the dynamics of nonstationary solitons
within the framework of the VA, we assume a generalized
ansatz [cf. Eq. (13)], φ = A sech(x/W ) exp[−iθ1(t)],ψ =
Bsech(x/W ) exp[−iθ2(t)], with time-dependent phases
θ1,2(t). In this case, the effective Lagrangian is evaluated as

2Leff = N [(1/4)(θ̇1 + θ̇2) + (r/4)(θ̇1 − θ̇2) − (1/12)W−2

+ (ε/24)NW−1(1 + r2) + (N/24)W−1(1 − r2)

± (1/2)
√

1 − r cos(θ1 − θ2)],

with the overdot standing for the time derivative. Accordingly,
the time evolution of r and �θ ≡ θ1 − θ2 is governed by the
following variational equations:

dr

dt
= ∓2

√
1 − r2 sin(�θ ),

d

dt
�θ = 2

{ ±r√
1 − r2

cos(�θ )

− N2

24
[(ε2 − 1)r + (ε − 1)2r3]

}
. (24)

III. NUMERICAL RESULTS AND VERIFICATION OF THE
VARIATIONAL APPROXIMATION

A. Symmetric and asymmetric solitons

Proceeding to the presentation of numerical results, we first
consider the symmetric solitons and their SSB instability. Soli-
ton solutions were generated by means of the imaginary-time
integration of Eqs. (1), which produces the ground (lowest-
energy) state. Figure 1(a) shows soliton profiles for N = 4
and ε = 1.8. The solid lines display the numerical solutions
(the taller and lower ones are |φ| and |ψ |, respectively), and
the dashed curves represents the predictions of the VA for the
same values of parameters, which are |φ(x)| = 2.47sech[(x −
10)/0.299] and |ψ(x)| = 0.76sech[(x − 10)/0.299], as per
Eqs. (13), (15), (16) ), ((19), and (20). The taller profile is
very well approximated by the VA, with a slight discrepancy
observed for the lower one. The stability of symmetric solitons
generated by the (obviously, supercritical) bifurcation in this
case was verified by direct simulations of Eqs. (1).

Figure 1(b) shows the bifurcation diagram, in the form of the
asymmetry measure r [see Eq. (16)] as a function of ε for N =
4, along with the VA-predicted counterpart of this dependence.
Further, Fig. 1(c) displays the phase diagram for the symmetric
and asymmetric solitons in the (N,ε) plane. The numerically
identified bifurcation is supercritical for N > N0 ≈ 1.15, and
weakly subcritical for N < N0 [the border between these types
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FIG. 2. (a) A blowup of the diagram from Fig. 1(c) for N < 1
(in the region where the symmetry-breaking bifurcation is slightly
subcritical). (b) The same as in Fig. 1(b), but for N = 1. In (a), the
solid curve represents the exact result given by Eq. (11), the closely
set dashed curves delineate a narrow bistability region, as predicted
by the VA, and two almost overlapping sets of symbols represent a
tiny bistability region as produced by the numerical results. In (b),
two nearly vertical dashed lines depict the VA-predicted hysteresis
(bistability).

is indicated by the arrow in Fig. 1(c)]. The above-mentioned
prediction produced by the VA for the border between the sub-
and supercritical bifurcations, N0 = √

3, is reasonably close
to the observation elicited from the numerical data.

Additional comparison of the numerical and variational
results is presented in Fig. 2. In particular, (a) shows a zoom of
the tiny mismatch between the numerical and VA-predicted
borders separating symmetric and asymmetric solitons in
Fig. 1(c) at N < 1, and Fig. 2(b) shows r as a function of ε

for N = 1. A very weak hysteresis (bistability) is observed in
the numerical results displayed in the latter panel at 7.815 <

ε < 7.850, owing to the weakly subcritical character of the
bifurcation. In this respect, the VA is less accurate, predicting a
much broader and shifted hysteretic region between the nearly
vertical dashed lines in Fig. 2(b).

Direct simulations of Eqs. (1) corroborate the stability of
the asymmetric solitons generated by the bifurcation, and the
instability of the symmetric soliton past the bifurcation point.
In particular, the continuous curve in Fig. 3(a) shows the
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FIG. 3. (a) The continuous curve displays the evolution of the
asymmetry parameter r in oscillations of the unstable symmetric
soliton, with N = 4 and ε = 1.7, as obtained from direct simulations.
The dashed curve is the same, as predicted by the variational equation
(24). (b) The peak value (amplitude) rp of r(t) versus ε for N = 4
(see further explanations in the text).

temporal evolution of the asymmetry measure r as produced
by the simulations of Eqs. (1) with initial conditions

φ0(x) = Asech[(x − L/2)/W ] exp(0.01i),ψ

= Asech[(x − L/2)/W ] exp(−0.01i), (25)

where the amplitude and width,A = 1/(W
√

1 + ε) and W =
4/[N (1 + ε)], are taken as per the exact solution for the
symmetric soliton, see Eqs. (4) and (2) (x = L/2 is the central
point of the integration domain), for N = 4 and ε = 1.7. The
small phase shift between the two components in expression
(25), �
 = −0.02, triggers the onset of the instability of the
symmetric soliton past the bifurcation point. The simulations
demonstrate that r(t) oscillates between −0.903 and +0.903.
For comparison, the dashed curve in Fig. 3(a) shows the
evolution of r(t) produced by simulations of variational
equations (24), with the corresponding initial conditions:
r0 = 0 and �θ0 = −0.02.

Note that the peak value (amplitude) of r in the oscillatory
regime is rp = 0.903 ≈ 1.27 × rst, where rst = 0.711 is the
value of r for the stationary asymmetric soliton, with the
same N and ε. The chain of symbols in Fig. 3(b) shows
numerically found amplitudes rp for the oscillations starting
from the same initial conditions (25) with other values of ε

and N = 4. The long-dashed line in the same figure is the
prediction for rp produced by Eqs. (24), while the short-dotted
curve is a phenomenological fitting, 1.25 × rst, where rst is
the aforementioned asymmetry parameter of the numerically
found stationary solitons. Thus, one may conclude that the VA
produces results similar to their numerical counterparts in the
dynamical regime too.

B. Collisions between asymmetric solitons

The availability of the stable asymmetric solitons suggests
to study interactions between moving ones, cf. Ref. [31].
We have performed simulations of collisions between two
identical asymmetric solitons, which were set in motion with
velocities ±k by applying the kicks to them, i.e., multiplying
the wave function of each soliton by exp(±ikx). Typical results
are displayed in Fig. 4. For small and large velocities, k = 0.1
and k = 0.5, the collisions are quasielastic, with the difference
that the slowly moving solitons, with k = 0.1, bounce from
each other, while fast solitons, with k = 0.5, pass through each
other. On the other hand, in Fig. 4(b) the collision is clearly
inelastic for an intermediate velocity, k = 0.3.

Further, Fig. 5 displays results for the collisions between the
asymmetric soliton with N = 4 and symmetric one, with N =
2 and ε = 1.8. In the case of k = 0.1, the solitons demonstrate
mutual repulsion (therefore the collision is quasi-elastic),
while they overcome the repulsion and merge into a single
soliton at k = 0.5. At a still larger velocity, k = 1, the solitons
pass through each other. Thus, strongly inelastic interactions
are observed in the intermediate range of velocities in both
cases shown in Figs. 4 and 5.

C. Antisymmetric solitons

According to Eq. (22), the VA predicts that the antisym-
metric solitons undergo a bifurcation at N2 = 24, in the range
of 1/3 < ε < 1 (see the previous section). Accordingly, the

036608-5



HIDETSUGU SAKAGUCHI AND BORIS A. MALOMED PHYSICAL REVIEW E 83, 036608 (2011)

0

10

20

30

40

5 10 15 20 25 30 35

t

x

0

10

20

30

40

50

60

70

5 10 15 20 25 30 35

t

x

0

50

100

150

200

5 10 15 20 25 30 35

t

x

FIG. 4. Collisions between two asymmetric solitons with N = 4 at ε = 1.8. The initial velocities are k = ±0.1 (a), k = ±0.3 (b), and
k = ±0.5 (c).

antisymmetric soliton is expected to be unstable at N2 > 24,

and may be replaced by a nontrivial mode with broken anti-
symmetry. However, the imaginary-time-integration method
fails to generate such stationary asymmetric solitons. On
the other hand, it is easy to test the expected instability of
the antisymmetric solitons at N2 > 24 in direct real-time
simulations. To this end, we have performed simulations of
Eq. (1), starting with the following initial conditions:

φ0(x) = −Asech[(x − L/2)/W ] exp(0.01i),
(26)

ψ0(x) = Asech[(x − L/2)/W ] exp(−0.01i),

with A = 1/(W
√

1 + ε) and W = 4/[N (1 + ε)], where the
phase shift between the two fields, �
 = −0.02, plays the
role of the initial perturbation, cf. Eq. (25). As an example,
the continuous curve in Fig. 6(a) shows the resulting evolution
of the asymmetry parameter, r(t), for N = 8 and ε = 0.75.
Large-amplitude oscillations of r(t) make it evident that the
initial antisymmetric soliton with r = 0 is unstable indeed.
The dashed curve in Fig. 6(a) displays results which were
produced, for the same case, by variational equations (24). In
fact, these figures display Josephson oscillations of the soliton,
cf. Refs. [22].

In Fig. 6(b), the chain of rhombuses shows the peak
amplitude, rp, of the oscillations of r(t) versus ε. In parallel,
the dashed line shows the same amplitude as predicted by

Eqs. (24). The picture suggests that a supercritical bifurcation
from the antisymmetric solitons to the oscillatory mode
(instead of the transition to a stationary state with broken
antisymmetry) occurs near ε = 0.785. The critical line for
the bifurcation in the plane of (N,ε), as obtained from the
numerical data, is drawn as the chain of rhombuses in Fig. 6(c).
The solid curve denotes the exact bifurcation points given by
Eq. (11), and the dashed curve in the same figure is the critical
line εc =

√
1 − 24/N2, as predicted by the VA, see Eq. (22).

In the direct simulations, the antisymmetric solitons are
stable above the critical curve in Fig. 6(c) for N > 6. However,
there is another instability mode for the antisymmetric solitons,
found at N < 6, for ε < ε̃c with some new critical value ε̃c.
Figure 7(a) illustrates the manifestation of this instability for
N = 5 and ε = 0.74. The initial conditions in this case were
taken with a very small difference between the amplitudes of
the two components of the soliton,

φ0(x) = −1.001Asech[(x − L/2)/W ],

ψ0(x) = 0.999Asech[(x − L/2)/W ],

again with A = 1/(W
√

1 + ε) and W = 4/[N (1 + ε)], cf.
Eqs. (25) and (26). This instability breaks the antisymmetry
and sets the soliton into motion.

To study this instability in detail, we used the
corresponding Bogoliubov–de Gennes equations,
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FIG. 6. (a) The continuous curve shows the evolution of r(t) for the unstable antisymmetric soliton, produced by direct simulations at
N = 8 and ε = 0.75. The dashed curve displays the same result, as produced by simulations of variational equation (24). (b) Rhombuses and
the dashed line depict the peak value (amplitude) of r(t), as found, respectively, from the direct simulations and predicted by Eq. (24). (c) The
stability border for the antisymmetric solitons, as revealed by the direct simulations (rhombuses) and predicted by the VA (the dashed line).
The solid curve in panel (c) depicts the exact analytical result as per Eq. (11).

i.e., the linearization of Eqs. (1) for perturbations
{δφ(x,t),δψ(x,t)} around the antisymmetric soliton,
φ = −ψ ≡ φ0 = Asech(x/W ) exp(−iμ−t), see Eq. (4):

i(δφ)t = −(1/2)(δφ)xx − (2ε + 1)|φ0|2δφ − εφ2
0(δφ)∗

+ |φ0|2δψ + φ2
0(δψ)∗ − δψ,

i(δψ)t = −(1/2)(δψ)xx − (2ε + 1)|φ0|2δψ − εφ2
0(δψ)∗

+ |φ0|2δφ + φ2
0(δφ)∗ − δφ. (27)

Equations (27) were solved by direct simulations, and the
soliton’s instability growth rate, λ, was extracted from
the numerically found norm of the perturbation, [S(t)]2 ≡∫ +∞
−∞ [|δφ(x,t)|2 + |δψ(x,t)|]2dx , fitting it to S ≈ const ·

exp(λt). The full instability eigenvalue is complex, as the
instability is oscillatory, and the perturbation modes δφ and
δψ are not localized, gradually expanding along x. Figure 7(b)
shows the so found values of λ, for N = 5 and the system’s size
L = 20, as a function of ε. The instability sets in near ε = 0.85.
Figure 7(c) shows the instability border, ε̃c(N ). A possible
reason for the apparent irregularity of the instability bo rder line
in the latter figure may be an effect of the boundary conditions

on the delocalized perturbation mode which accounts for this
instability.

IV. CONCLUSION

In this paper, we have revisited the problem of the SSB
(spontaneous symmetry breaking) of one-dimensional solitons
in two-component nonlinear systems with the linear coupling
between the components. Examples of such systems are well
known in nonlinear optics and BEC. Unlike the previous
works, our analysis includes the nonlinear (XPM) interaction
between the components, which makes it possible to realize
the system in new physical settings, in optics and BEC alike.
The results were obtained by means of analytical methods (in
particular, the bifurcation points were found in the exact form)
and numerical computations, which corroborate good accuracy
provided by the VA (variational approximation), in both static
and dynamical settings. The border separating stable symmet-
ric and asymmetric solitons in the space of the SPM coefficient
and soliton’s norm was identified. An essential finding is that
the addition of the XPM coupling may change the character
of the SSB bifurcation of symmetric solitons from subcritical
to supercritical. The bifurcation acting on the antisymmetric
solitons generates dynamical localized states which feature
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numerically found instability growth rate versus ε. (c) The border of this instability, ε̃ = εc, evaluated from the numerical solution of
Eq. (27).

036608-7



HIDETSUGU SAKAGUCHI AND BORIS A. MALOMED PHYSICAL REVIEW E 83, 036608 (2011)

persistent Josephson oscillations, instead of stationary modes.
An additional instability mode, induced by delocalized pertur-
bations, was found for the antisymmetric solitons. Collisions
between stationary solitons, asymmetric and symmetric ones,
were explored by means of direct simulations, revealing both
quasielastic and strongly inelastic outcomes.

Because periodic potentials (optical lattices) can also switch
the character of the bifurcation from sub- to supercritical [11],

it may be interesting to consider a more general model, in
the form of Eq. (1) including the periodic potential, and study
competition between the effects induced by the lattice potential
and XPM nonlinearity, including the limit case of the SSB
for discrete solitons in linearly coupled discrete nonlinear
Schrödinger equations, cf. Ref. [32]. Another perspective
extension may be to consider counterparts of these models
in the two-dimensional geometry.
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