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New family of solitary waves in granular dimer chains with no precompression
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In the present paper we report the existence of a new family of solitary waves in general one-dimensional
dimer chains with elastic interactions between beads obeying a strongly nonlinear Hertzian force law. These
dimers consist of pairs of “heavy” and “light” beads with no precompression. The solitary waves reported
herein can be considered as analogous to the solitary waves in general homogeneous granular chains studied by
Nesterenko, in the sense that they do not involve separations between beads, but rather satisfy special symmetries
or, equivalently antiresonances in their intrinsic dynamics. We conjecture that these solitary waves are the direct
products of a countable infinity of antiresonances in the dimer. An interesting finding is that the solitary waves
in the dimer propagate faster than solitary waves in the corresponding homogeneous granular chain obtained in
the limit of no mass mismatch between beads (i.e., composed of only heavy beads). This finding, which might
seem counterintuitive, indicates that under certain conditions nonlinear antiresonances can increase the speed of
disturbance transmission in periodic granular media, through the generation of different ways for transferring
energy to the far field of these media. From a practical point of view, this result can have interesting implications
in applications where granular media are employed as shock transmitters or attenuators.
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I. INTRODUCTION

Granular systems have been the subject of intense research
interest for various reasons. They have potential applications in
passive shock mitigation designs, condensed matter physics,
and solid state physics. Granular systems are comprised of
systems of discrete particles (beads) which may be similar (in
monodisperse media) or dissimilar (in polydisperse media).
One-dimensional granular systems have been well studied
theoretically [1–3], numerically, and experimentally [1,4,5].
Moreover, it was shown that one-dimensional monodisperse
systems support solitary waves which have attracted great
interest and have been studied extensively [1–3]. Indeed,
in homogeneous granular chains spatially localized waves
may propagate without distortion due to counterbalancing of
two effects, namely dispersion and strong nonlinearity due
to Hertzian law interaction between beads. Such waves are
denoted as solitary waves. One may rigorously define [6] a soli-
tary wave propagating in a one-dimensional nonlinear medium
as a right-traveling (left-traveling) localized disturbance whose
transition from its asymptotic state at the limit ξ = −∞ to its
other asymptotic state at the limit ξ = +∞ is localized in terms
of the independent variable ξ , where ξ = x − ct (ξ = x + ct),
with x and t being spatial and temporal independent variables,
respectively, and c the speed of the traveling wave.

Polydisperse systems typically exhibit waves that radiate
energy to the far field as they travel, and thus distort their
initial wave forms due to continuous energy “leakage.” In the
context of one-dimensional granular media much emphasis
has been given to dimer systems [7–9], i.e., in systems
composed of pairs of dissimilar beads. The dynamics of these
systems have been studied both theoretically in the continuum
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approximation [4] and experimentally [4,8]. There has been
little progress, however, in studying the dynamics of these
systems analytically, taking into account the actual discrete
nature of the bead interactions; perhaps this is due to the
complexity of the nonlinear dynamical interactions occurring
in these media, including the possibility of bead separation
in the absence of precompression. Theocharis et al. [10]
studied localized breathers in dimers under precompression
taking into account the linear component in the dynamics
that precompression introduces, but no similar results exist
in the strongly nonlinear case dealt with here, in the absence
of precompression.

In this work we focus on a particular feature of the
dynamics of general one-dimensional elastic dimer chains
with no precompression, and report the existence of a new
family of perfectly localized solitary waves in these systems.
As mentioned previously, this type of wave is not typical
in polydisperse systems, such as the dimer chains consider
herein. Solitary waves in dimers were observed and analyzed
in Ref. [1] for large mass mismatch and in the limit of long
wave approximation. The derived expression was a rescaled
version of the expression for solitary waves in a homogeneous
chain of similar beads derived in Ref. [1]. In our paper we
denote this limiting system with large mass mismatch as
“auxiliary system” and use the analytical expression derived in
Ref. [2] as the O(1) approximation in our asymptotic analysis.
Furthermore, we consider higher-order approximations in the
limit of small mass mismatch and show the existence of a
class of solitary waves in the dimer. We show that this class
of perfectly localized solitary waves (as defined above) is the
direct result of special symmetries or antiresonances in the
strongly (essentially) nonlinear dynamics of the uncompressed
dimers. Moreover, we conjecture that there exists a countable
infinity of members in this new family of solitary waves,
corresponding to discrete values of a mass ratio parameter.
This leads us to the interesting conjecture that nonlinear
antiresonances may give rise to localized solitary waves in
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a more general class of periodic polydisperse granular media,
e.g., involving more complex spatial periodicities than the
dimers considered in this work. An additional interesting
feature of the reported family of solitary waves is that
they propagate faster than the corresponding solitary waves
in the homogeneous system obtained in the limit of no
mass mismatch (i.e., in a homogeneous chain of identical
beads). This observation very much applies to the normalized
system under consideration in our work, and indicates that
nonlinear antiresonances in granular media may speed up the
propagation of disturbances within them. We present extensive
numerical evidence of the presence of localized solitary waves
in dimer chains with no precompression, and provide a general
mathematical condition for the realization of this family of
waves in these systems.

II. NUMERICAL EVIDENCE OF SOLITARY WAVES
IN THE DIMER

We consider a one-dimensional dimer chain of spherical
elastic beads in Hertzian contact with no precompression.
Denoting the materials of two neighboring beads by the labels 1
and 2, and the displacement of the ith bead by ui , the governing
equations of motion are strongly nonlinear and given by

mi

d2ui

dt2
= (4/3)E∗

√
R[(ui−1 − ui)

3/2
+ − (ui − ui+1)3/2

+ ],

mi+1
d2ui+1

dt2
= (4/3)E∗

√
R[(ui − ui+1)3/2

+ (1)

− (ui+1 − ui+2)3/2
+ ],

i = ±1, ± 3, ± 5, . . . ,

where Ri = R1 and Ri+1 = R2; mi = m1 = (4/3)πR3
1ρ1 and

mi+1 = m2 = (4/3)πR3
2ρ2; and E∗ = E1E2/[E2(1 − μ2

1) +
E1(1 − μ2

2)]; E1 (E2) is the elastic modulus, R1 (R2) the
radius, and μ1 (μ2) the Poisson’s ratio of bead 1 (2). We
note that the interaction force between neighboring beads is
given by F = (4/3)E∗

√
R�3/2, where R = R1R2/ (R1 + R2)

and � is the relative displacement between neighboring beads.
Moreover, the (+) subscripts in Eq. (1) indicate that only the
non-negative values of the terms in the parentheses should be
considered and zero values should be assigned otherwise; this
is due to the fact that in the absence of compressive elastic
forces, neighboring beads separate. Note that in the absence
of precompression the dynamics of the dimer is essentially
nonlinear because the interacting forces between neighboring
beads lack a linear component; as pointed out by Nesterenko
[1] this class of systems constitutes a “sonic vacuum” as the
speed of sound (defined by the linearized acoustics) is zero.

Introducing the nondimensionalizations,

xi = ui

R1
, τ=

[
E∗

πR2
1ρ1

(
R2

R1 + R2

)1/2
]1/2

t, (2)

we obtain the system of nondimensional equations,

ẍi = (xi−1 − xi)
3/2
+ − (xi − xi+1)3/2

+ ,
(3a)

εẍi+1 = (xi − xi+1)3/2
+ − (xi+1 − xi+2)3/2

+ ,

where the overdot denotes differentiation with respect to
nondimensional time τ and the only nondimensional param-
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FIG. 1. Nondimensional dimer system composed of heavy and
light beads.

eter is ε = ρ2R
3
2/ρ1R

3
1 scaling one of the pairs of beads of

the dimer system (cf., Fig. 1). We note that if R1 = R2 the
parameter ε is the ratio of the mass densities of the two
materials of the dimer. In the following asymptotic analysis
we will use ε as the small parameter of the problem by
assuming that 0 < ε � 1. Hence, we will be assuming that
the dimer system is composed of “heavy” and “light” beads
corresponding to normalized mass ratio equal to unity and ε,
respectively. In the notation of the original system [Eq. (1)],
bead 1 is the heavy bead and bead 2 is the light one. The
clear advantage of studying the normalized dimer [Eq. (3a)]
is that our results will have broad applicability to general
dimer systems after appropriate rescaling. In addition to the
asymptotic analysis we will explore numerically solitary waves
realized for larger values of ε where the asymptotic analysis
is not valid.

We will show that the normalized dimer system [Eq. (3a)]
has a special family of solitary waves (parametrized by energy)
whose members are realized at a monotonically decreasing
sequence of (discrete) values of ε. Because this dimer system is
nonintegrable, asymptotic analysis of these solitary waves can
be performed only in the limit of small ε, so initially we resort
to direct numerical simulations to demonstrate their existence.
For the numerical simulations we employ the setup shown in
Fig. 2 and consider the parameter in the range ε ∈ (0,1]. In
the system shown in Fig. 2 we apply an impulsive excitation
equal to Fδ(t) with F = 2.7 applied on the left-hand side of a
dimer chain composed of a total of 251 beads. The right end
of the chain has a fixed light bead (i.e., its center of mass is
immovable) so that the nondimensionalization and rescaling
employed in Eq. (3a) are valid. To demonstrate the existence of
solitary waves in this system we consider a few pairs of beads
in the middle of the chain and examine only primary pulse
propagation, omitting reflections from the boundaries. Due to
the inhomogeneity of the dimer system, intuitively one would
expect a slow disintegration of the applied impulse, leading
to small-amplitude oscillating “tails” in the corresponding
responses of the light and heavy beads. This has been observed
in previous experimental and numerical works (e.g., Ref. [11]).
However, as shown in the following numerical simulations, at
specific discrete values of ε (normalized mass ratio) the applied
impulse gives rise to propagation of solitary waves which travel
undeformed (i.e., their wave forms remain undistorted during

1 ε 1 ε 1 ε 1 . . . 1 ε 1
Fδ(τ)

FIXED LIGHT 
      BEAD

FIG. 2. Setup for numerical simulations.
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FIG. 3. (Color online) Velocity profiles of dimer pairs for ε = 0.37.

propagation) instead of disintegrating due to scattering at the
interfaces between dissimilar beads.

In Fig. 3 we depict the velocities of four dimer pairs (beads
121–129 of the dimer) of the system of Fig. 2 for the arbitrary
value of the mass ratio ε = 0.37. In this case we see that
following the propagation of the main pulse, both the light
and heavy beads of the dimer execute oscillations caused by
residual energy left behind by the pulse, and appearing as
oscillatory tails in the trail of the propagating pulse. Clearly,
these tails are due to scattering of the main propagating pulse
at the interfaces between beads. We note that this response
is typical in the dynamics of the dimer, and demonstrates
the (slow) disintegration of a propagating pulse. In fact, the
oscillating tails are composed of nonlinear traveling waves that
propagate behind the main pulse, and are similar to traveling
waves in homogeneous granular chains studied in an earlier
work [12]. The continuous radiation of traveling waves leads
to a monotonic reduction of the amplitude of the main pulse
as it propagates through the dimer.

Perhaps counterintuitively, at certain discrete values of the
normalized mass ratio ε, localized solitary waves are formed in
the dimer having the shape of traveling localized pulses with no
residual oscillating tails left in their trails. Due to lack of energy
radiation these solitary waves propagate unattenuated in the
dimer and can be considered as analogs of the well-studied
solitary pulse of the homogeneous granular chain [1]. In the
case of the dimer, however, pulses with distinct wave forms are
realized for the heavy and light beads. A similar observation
of distinct propagating pulses in heavy and light beads in
a dimer has been reported in [1]. These solitary waves are
realized for a discrete set of values of the small parameter ε

of the dimer, as demonstrated in the following section. Before
we proceed with numerical evidence of the solitary waves in
the dimer we comment on the two limiting configurations of
the dimer system [Eq. (3a)], namely in the limits of the interval
0 < ε � 1. In the lower limit ε → 0 the dimer degenerates to
a homogeneous chain with a normalized stiffness coefficient
smaller than unity; this system will be designated as the
“auxiliary system” [cf. Eq. (8b) below]. We note that the
auxiliary system does not imply that there are gaps between
heavy beads, but rather that the inertial effects of the light beads
are negligible so that they act approximately as pure elastic
springs. In the upper limit ε → 1 the dimer degenerates again
to a homogeneous chain with normalized stiffness coefficient
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FIG. 4. (Color online) Solitary wave in the dimer with ε ≈
0.3428: (a) Velocity profiles of dimer pairs. (b) Phase plot of relative
velocity versus relative displacement between successive heavy and
light beads compared to the solitary wave of the homogeneous chain
of heavy beads (ε = 1).

equal to unity; this is the homogeneous chain composed of
only heavy beads.

In Fig. 4(a) we present the localized solitary wave realized
in the dimer with ε ≈ 0.3428. In this case there are no
oscillating tails following the propagation of the main pulse.
The velocity profiles of the heavy beads are in the form of a
single hump and those of the light beads is a double hump
(that is, a slow-scale single hump superimposed to fast-scale
oscillations possessing significant amplitude). Although the
heavy bead wave forms of these waves resemble the solitary
wave discussed by Nesterenko [1], they have some very
distinct differences. This is evidenced by the wave form of the
heavy beads which is significantly affected by the fast-scale
oscillations of the light beads, and also by the corresponding
wave form of the light beads. However, in similarity to the
Nesterenko solitary wave in the homogeneous chain, both
velocity profiles of heavy and light beads decay to zero with
increasing time and remain undistorted as the solitary wave
propagates through the dimer. In Fig. 4(b) we depict both
localized humps of the heavy and light beads in the phase
plane (depicting relative velocity versus relative displacement
for alternating heavy or light beads) and compare them to
the solitary wave that develops in a homogeneous chain of
heavy beads (obtained in the limit ε → 1) with identical
maximum displacement amplitude. It is clear that the two
solitary humps of the dimer can be regarded as a disintegration
of the solitary wave of the limiting homogeneous system due
to scattering; yet, the fact that there is no disintegration of the
main pulse to oscillatory tails implies that a special symmetry
(or antiresonance) condition is realized at this special value
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FIG. 5. (Color online) Solitary wave in the dimer with ε ≈
0.1548: (a) Velocity profiles of dimer pairs. (b) Phase plot of relative
velocity versus relative displacement between successive heavy and
light beads compared to the the solitary wave of the homogeneous
chain of heavy beads (ε = 1). (c) Primary solitary wave followed by
secondary solitary waves.

of ε preventing the complete disintegration of the pulse (as
it occurs for arbitrary values of ε, cf. Fig. 3). Moreover, the
addition of the alternating light beads in the dimer introduces
a softening effect in the dynamics, and thus the amplitude of
the solitary pulse between alternating heavy beads in the dimer
is higher than that of the solitary wave in the corresponding
homogeneous chain [see Fig. 4(b)].

Additional solitary waves realized in the dimer have been
numerically detected for ε ≈ 0.1548 (see Fig. 5), ε ≈ 0.0901
(see Fig. 6), and ε ≈ 0.0615, 0.04537, 0.03448, 0.00868, . . ..
Similar to the solitary wave for ε ≈ 0.3428 these additional
solitary waves have no oscillating tails but rather have
velocity profiles that decay to zero with increasing time. With
decreasing ε (i.e., increasing normalized mass mismatch) the
light beads execute high-frequency oscillations while they are
being compressed in between adjacent heavy beads; later we
will denote this phase of the motion as the “squeeze mode.”
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FIG. 6. (Color online) Solitary wave in the dimer with ε ≈
0.0901: (a) Velocity profiles of dimer pairs. (b) Phase plot of relative
velocity versus relative displacement between successive heavy and
light beads compared to the solitary wave of the homogeneous chain
of heavy beads (ε = 1).

Generally, the frequency of oscillation of the light beads during
the squeeze mode increases with decreasing ε. For a general
value of ε, typically the light bead loses contact with its left
neighboring heavy bead at the end of its compression phase
(i.e., at the end of the squeeze mode), and retains a small
portion (residual) of the energy of the propagating pulse. This
generates a residual oscillation of the light bead even after
the propagation of the primary pulse, which in turn leads to
the formation of traveling waves in oscillating tails appearing
at the wake of the propagation of the main pulse. These tails
radiate energy to the far field in the opposite direction to that
of the propagating pulse, and cause a continuous decrease of
the amplitude (energy) of the primary pulse as it propagates
through the dimer. Hence, for a typical value of ε no solitary
wave can be formed.

In contrast, at the aforementioned discrete values of ε

solitary waves are formed once the light beads stay in
continuous contact with adjacent heavy beads (that is, no
separation between light and heavy beads occurs), and the
entire energy of the main pulse is conserved and transferred
without loss from each heavy bead to the next heavy bead, after
which each heavy bead reaches a stationary position at the end
of the squeeze mode. As a result, no residual oscillating tails are
formed in this case, there is no energy radiated to the far field,
and the main pulse propagates unattenuated through the dimer.
Clearly, this lossless transfer of energy through the dimer
occurs only if certain symmetry conditions are satisfied. These
conditions are formulated asymptotically in the next section
where it is proved that a discrete set of solitary waves exists
in the dimer accumulating to a definite limit as ε → 0. It is
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FIG. 7. (Color online) Time shifts τs versus peak velocities of the
different families of solitary waves in the dimer.

also important to point out the formation of secondary solitary
waves [cf. Fig. 5(c)] belonging to the same class of solitary
waves discussed so far. These secondary waves are generated
due to separations of the initial beads of the system following
the application of the impulse, and the fact that they have the
exact form of the solitary wave provides additional numerical
evidence that at the mentioned discrete values of ε the solitary
waves provide the principal (fundamental) mechanism for
transferring energy in the dimer. We conclude that this family
of solitary waves constitutes the most natural type of localized,
traveling pulses in the dimer system for the mentioned special
discrete values of ε, in similarity to the solitary waves studied
by Nesterenko [1], which provide the principal mechanism for
transferring energy in homogeneous granular chains.

A particularly interesting feature of solitary waves in the
dimer chain is that their phase velocities are higher than the
phase velocity of the solitary wave in the homogeneous system
obtained in the limit ε → 1; in fact the solitary waves become
faster as the normalized mass ratio ε decreases. Indeed, in
Fig. 7 we depict the time shift [labeled as τs in Figs. 4(a), 5(a),
and 6(a)] of a solitary wave in the dimer (defined as the time
difference between velocity peaks of successive heavy beads)
plotted against the velocity amplitude of the solitary wave.
In essence, this plot represents the energy–speed relations for
the different families of solitary waves in the dimer. Due to
the discrete nature of the system, defining phase velocity as
in continuum systems is not possible. An analogous quantity,
which can be attributed to the velocity of propagation of the
solitary waves, is the time shift that we present in Fig. 7.
The lower bounding curve corresponds to the auxiliary system
obtained in the limit ε → 0, and corresponds to the fastest class
of solitary waves. As shown in the asymptotic analysis that
follows, every point in the lower bounding curve represents
an accumulation point of solitary waves as ε → 0 (that is,
fixing the peak velocity amplitude of the solitary wave and
letting ε → 0). Moreover, there is an upper bounding curve
corresponding to the solitary wave of the homogeneous chain
corresponding to ε = 1, which demonstrates that every solitary
wave propagating in the dimer is faster than the solitary
wave propagating in the corresponding homogeneous system
composed exclusively of heavy beads. We also note that due
to the homogeneous nonlinear potential of the Hertzian law
interaction [13], the dimer system is fully re-scalable in the
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FIG. 8. (Color online) Normalized transmitted force (a) and
normalized time delay (b) as functions of the normalized mass ratio
parameter ε for an impulsively excited dimer.

sense that for any input impulse the time shifts for the solitary
waves bear a constant ratio compared to that of the solitary
wave realized in the limiting homogeneous chain with ε = 1.

To demonstrate the effect that the solitary waves can have
on the response of the dimer chain to shock excitations we
reconsider the system of Fig. 2 with a total of 85 heavy and
light beads, with the last heavy bead of the dimer being in
contact with a fixed light bead. Again, no precompression in
the chain exists. A unit impulse excitation is applied to the
first bead on the left end of the dimer chain. As described
previously this system is fully rescalable, and thus, for any
applied impulse the ratio of the force Ft transmitted to the
fixed light bead over the corresponding force in the limiting
homogeneous chain with ε = 1 is constant for any value of
ε. This argument is valid also for the time delay τd between
the application of the pulse on the first bead at the left end of
the dimer chain (Fig. 2) and its arrival to the right fixed bead.
It follows that we only need to consider the dynamics of the
dimer subject to a unit impulse, with our results being valid
at different energies (or applied pulses). Again, this result
originates from the “homogeneous” nature of the nonlinear
interaction potential between beads, leading to dynamics that
are fully rescalable with energy.

In Fig. 8(a) we depict the force transmitted to the fixed
light bead normalized with respect to the corresponding force
transmitted in the homogeneous system with ε = 1. From
these results it is clear that the force transmitted is always
smaller for the case of the dimer compared to the homogenous
chain. The intermediate local peaks of normalized transmitted
force (occurring at ε ≈0.3428, 0.1548, 0.0901, . . .) are realized
at the specific values of ε for which solitary waves are
formed, because only then energy is transferred unattenuated
through the dimer. On the contrary, in between the local
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peaks of normalized transmitted force where no solitary waves
are formed and the propagating pulse disintegrates due to
scattering at bead interfaces, the normalized transmitted force
decreases, with maximum reduction of the order of 75%
of the normalized transmitted force occurring for ε ≈ 0.59.
These results indicate that the solitary waves represent an
efficient mechanism for transferring energy through the dimer
system. The normalized time delay [14] (with respect to
the corresponding time delay for the homogeneous system
with ε = 1) for the dimer is presented in Fig. 8(b), from
which we infer that for an arbitrary value 0 < ε < 1 the
normalized time delay is smaller than unity. This leads us
to the claim that solitary waves in the dimer propagate
faster than the Nesterenko solitary wave in the homogeneous
system of heavy beads. It is worth noting that the number
of beads and the loading conditions are identical for each
dimer system considered in Fig. 8(b), and we vary only the
normalized mass ε. Clearly, the time delay described here is
more applicable for practical and/or experimental applications
instead of theoretical analysis because it does not provide a
rigorous measure of the speed of the solitary wave in the dimer.
From a theoretical perspective, the time shift (Fig. 7) is a valid
measure to describe the speed of solitary waves and Fig. 7
rigorously evidences our claim of faster propagation of solitary
waves in a dimer when compared to that in a homogeneous
chain of heavy beads. Moreover, the previous observations
are valid only for the normalized system under consideration,
wherein the mass of the heavy bead is fixed to unity, and only
the normalized mass of the light bead is varied in the range
ε ∈ (0 1].

The previous numerical results show that a granular chain
with periodic inhomogeneities can support different classes of
solitary waves. The solitary waves with perfect localization
(i.e., with no oscillating tails following the propagation of
the main pulse) considered here differ from traveling waves
observed by previous researchers [8,11] in these systems that
can at best be described as either quasistationary primary
pulses or solitary-like pulses, but are not solitary waves
following the definition in Ref. [6]. In the context of our
discussion the propagating solitary waves conserve their
energy, do not radiate energy to the far field and retain their
wave forms intact.

In the family of solitary waves considered herein, even
though the light beads execute relatively high-frequency
oscillations (in their squeeze mode) they do not lose contact
with their neighboring heavy beads even towards the end of
the squeeze mode. Such behavior can occur under special
conditions, that is, only if the velocity (displacement) wave
form of each light bead possesses special symmetric (antisym-
metric) properties. For the velocity wave form to be symmetric
a light bead should end its high-frequency oscillation with
precisely zero velocity, i.e., with precisely the initial velocity
with which it begins its motion during the squeeze mode. Such
synchronization between the motion of the light and heavy
beads can only imply that a certain resonance or antiresonance
condition is satisfied when a solitary wave is formed; this will
be confirmed in the theoretical study of the next section. For
smaller values of ε (i.e., for large mass mismatch in the dimer)
the oscillation of the light bead does not affect the motion
of its neighboring heavy beads. It follows that in the limit of

small ε we may introduce multiple time scales to describe the
dynamics of the solitary waves: a fast time scale that governs
the relatively high-frequency oscillations of the light beads,
and a slow time scale that governs the slowly varying localized
pulse in the heavy beads. However, as the normalized mass
ratio increases and we progress towards the region of upper
bound (ε ≈ 0.3428) of realization of these solitary waves,
we clearly see that the amplitude of oscillations of the light
beads become comparable to the solitary pulse in the heavy
beads. At this stage the time scale separation breaks down and
we may no longer partition the dynamics of the heavy and
light beads in terms of slow and fast components (that is, the
time scales become entangled). Hence, the normalized mass
ratio ε ≈0.3428 represents an upper bound for the existence of
solitary waves in the dimer, in the sense that beyond this point
no solitary waves can be formed, with the exception, of course,
of the well-studied solitary wave in the limiting homogeneous
system with ε = 1 studied by Nesterenko [1].

The fact that the solitary waves in the dimer propagate
faster than the solitary wave in the limiting system with ε = 1
might seem counterintuitive. Taking into account, however,
that solitary waves in the dimer are formed under conditions of
antiresonance, it implies that antiresonance phenomena may be
responsible for the higher phase velocities of the solitary waves
in the dimer. As shown in the numerical results of Fig. 8 the
existence of solitary waves in granular chains with periodicity
facilitates the transmission of energy and increases the speed
of disturbance transmission in these media. This implies that
antiresonance phenomena in granular chains represent an
important dynamical mechanism which significantly affects
the capacity of these media to transmit disturbances.

In the next section we perform a theoretical study of the
dimer system in the limit of small ε in order to confirm the
numerical results of this section, and to study the resonance
conditions that lead to the formation of solitary waves in
the dimer for specific values of normalized mass ratio ε.

III. THEORETICAL STUDY

Considering again the nondimensional governing equations
for the dimer,

ẍi = (xi−1 − xi)
3/2
+ − (xi − xi+1)3/2

+ ,

εẍi+1 = (xi − xi+1)3/2
+ − (xi+1 − xi+2)3/2

+ , (3b)

i = ±1, ± 3, ± 5, . . . ,

we assume that 0 < ε � 1, i.e., study the dynamics in the
limit of large normalized mass mismatch. The index notation
in Eq. (3b) indicates that odd indices correspond to heavy
beads, and even indices to light beads. The subscripts (+) will
be dropped from here on as we will be concerned only with
primary pulse transmission in the dimer, that is, we will be
concerned only with the phase of the squeeze mode during
which the light beads are under continuous compression from
their neighboring heavy beads so that no separation between
beads occurs.

Clearly, for sufficiently small values of ε, system (3b) is in
the form of a singularly perturbed problem that calls for a slow-
fast time scale separation. We will be interested only in primary
pulse transmission in the dimer, omitting secondary waves.
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Within this context we may study solitary wave transmission
in the dimer because this corresponds exclusively to primary
pulse transmission with no separation between beads. Hence,
we describe the dynamics of solitary wave formation by
introducing the following asymptotic approximation for the
bead displacements of the dimer:

xi = xi0(t0) + εαxi1(t1) + · · · (heavybeads),
(4)

xi+1 = x(i+1)0(t0) + εγ x(i+1)1(t1) + · · · (lightbeads),

where t0 and t1 are distinct time scales of the dynamics defined
as follows:

t0 = τ, t1 = εβt0, (5)

and the real exponents α,β,γ are to be determined by balancing
terms at various orders of approximation of the asymptotic
analysis. Substituting Eqs. (4) and (5) into Eq. (3b), and
expanding the rational powers in a power series with respect
to ε we obtain the following set of governing equations valid
in the limit of sufficiently small ε:

ẍi0 + εα+2βx ′′
i1 = (x(i−1)0 − xi0)3/2 − (xi0 − x(i+1)0)3/2

+ (3/2)(x(i−1)0 − xi0)1/2(εγ x(i−1)1 − εαxi1)

− (3/2)(xi0 − x(i+1)0)1/2(εαxi1 − εγ x(i+1)1)

+O(‖εαxi1 − εγ x(i+1)1‖2), (6)

ε(ẍ(i+1)0+εγ+2βx ′′
(i+1)0)

= (xi0 − x(i+1)0)3/2 − (x(i+1)0 − x(i+2)0)3/2

+ (3/2)(xi0 − x(i+1)0)1/2(εαxi1 − εγ x(i+1)1)

− (3/2)(x(i+1)0 − x(i+2)0)1/2(εγ x(i+1)1 − εαx(i+2)1)

+O(‖εαxi1 − εγ x(i+1)1‖2). (7)

In the equations above overdots indicate differentiation
with respect to the time scale t0 = τ and primes represent
differentiation with respect to the time scale t1. By considering
the order of magnitude of the various terms in Eqs. (6) and
(7), the exponents in the asymptotic analysis are chosen as
α = 2, β = −1/2, and γ = 1 because this leads to appropriate
balancing of terms at successive orders of approximation. It
follows that t0 = τ is the slow time scale, whereas t1 = ε−1/2τ

the fast time scale of the dynamics.
Considering the zeroth-order approximation in Eqs. (6) and

(7), respectively, we obtain the following set of equations that
govern the slow dynamics of the dimer:

ẍi0 = (x(i−1)0 − xi0)3/2 − (xi0 − x(i+1)0)3/2,
(8a)

x(i+1)0 = xi0 + x(i+2)0

2
.

The first set of nonlinear ordinary differential equations
in Eq. (8a) provides the first-order approximation of the
dynamics of the heavy beads, whereas the second set of linear
algebraic equations provides the first-order approximation of
the dynamics of the light beads. It is clear that system (8a)
is expressed exclusively in terms of the slow time scale t0, so
the leading-order approximations of the responses of both the
heavy and light mass beads of the dimer are slow dynamical
motions.

By simple algebraic manipulations, Eq. (8a) may be
rewritten in the following form:

ẍi0 = (1/2)3/2[(x(i−2)0 − xi0)3/2 − (xi0 − x(i+2)0)3/2],
(8b)

x(i+1)0 = xi0 + x(i+2)0

2
.

It follows that the first-order approximation of the (slowly
varying) motion of the heavy beads is identical to the response
of a homogeneous granular chain [i.e., the first set of nonlinear
ordinary differential equations in Eq. (8b), which is in terms
only of the responses of the heavy beads], whereas the
first-order approximation of the response of the light beads
is expressed in terms of the (slowly varying) responses of the
heavy beads [i.e., the second set of linear algebraic relations in
Eq. (8b)]. In fact the homogeneous granular chain in Eq. (8b)
corresponds to the auxiliary system defined in the previous
section derived in the limit ε → 0 of the dimer.

Hence, in the first-order of approximation the slow dy-
namics of the light beads is determined in terms of the slow
dynamics of the heavy beads. At this point we emphasize
that we are interested only in the analytical description of the
primary pulse propagating in the dimer. Therefore, we select
the solution of the first set of equations in Eq. (8b) to be the
solitary wave of the homogenous system for which analytical
approximations have been derived in the literature [1,2,12].
Following Ref. [2] the analytical approximation of the slowly
varying motion of the heavy beads is expressed as

xi0(t0) = Si(κt0), κ = (1/2)3/4, (9a)

where

Si(κt0) = S[κ(t0 − iT )],

S(ξ ) = A + (A/2)(tanh{[C1(ξ/T ) (9b)

+C3(ξ/T )3 + C5(ξ/T )5]/2} − 1),

C1 = 2.395 36, C3 = 0.268 529, C5 = 0.006 134 7.

In Eq. (9b) A is the amplitude of the solitary wave and
T is the time shift in the response between the maxima
of two successive heavy beads (or the peak-peak delay for
velocity pulse transmission between successive heavy beads).
Accordingly, the slowly varying component of the motion of
the light beads is expressed as

x(i+1)0(t0) ≡ s(i+1)(κt0) = Si (κt0) + Si+2 (κt0)

2
. (9c)

Thus we observe that the O(1) approximation of the
responses of both the heavy and light beads always decays
to zero. Such an approximation is valid only in the limit
of very small ε. Such a solution was previously derived
by employing the long wave approximation by Nesterenko
[1]. This long wave approximation and the solitary wave
approximation used in our work are compared in Ref. [15].
Although such approximations well predict the dynamics of
the heavy beads for smaller ε, the responses of the light beads
need not necessarily decay to zero for arbitrary values of ε.
It follows that in order to realize solitary waves we need to
find the discrete values of ε for which higher-order asymptotic
corrections of the dynamics of the light bead decay to zero.
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Proceeding to the next order approximation, at O(ε) we
derive the following equations governing the fast dynamics of
the heavy and light beads:

x ′′
i1(t1) = (3/2)[S(i−1)(κt0) − Si(κt0)]1/2x(i−1)1(t1)

+ (3/2)[Si(κt0) − S(i+1)(κt0)]1/2x(i+1)1(t1),

x ′′
(i+1)1(t1) + 2

i+1(t0)x(i+1)1(t1) = fi+1(t0), (10)

where

2
i+1(t0) = 3

[
Si(κt0) − S(i+2)(κt0)

2

]1/2

,

fi+1(t0) = −s̈(i+1)(κt0)

are the square of a slowly varying natural frequency and the
slow varying excitation, respectively. These equations provide
the leading-order approximation to the fast dynamics of the
dimer for solitary wave propagation. We note that the second
set of Eqs. (10) is uncoupled from the first set and governs
the fast oscillations of the light beads. It is interesting to point
out that this is in the form of uncoupled linear oscillators with
slowly varying frequencies and excitations. Once analytical
approximations for the fast oscillations of these oscillators
are derived, the fast oscillations of the heavy beads can be
approximated by integrating twice the first set of Eqs. (10).
Hence, it is interesting to note that in the next order of
approximation of the solitary wave solution the fast dynamics
of the heavy beads is determined in terms of the fast dynamics
of the light beads, which is the reverse of what occurred in the
slow dynamics at the leading order of approximation.

From the previous discussion it is clear that we only
need to focus on the second set of slowly varying linear
oscillators [Eq. (10)] because these determine completely the
fast dynamics of the dimer for solitary wave propagation.
Once an analytical approximation of the fast oscillation of
an arbitrary light bead, say the 2pth light bead, p ∈ Z, is
computed, the responses of the other light beads can be
determined by imposing appropriate time shifts (i.e., multiples
of T ) to the solution. Hence, in the remainder of this section
we focus exclusively on the analysis of the following linear
oscillator with slowly varying frequency and forcing:

x ′′
(2p)1(t1) + 2

2p(t0)x(2p)1(t1) = f2p(t0), (11)

which governs the fast oscillation of the 2pth light bead of
the dimer for solitary wave propagation. Clearly, localized
solutions in terms of the slow time scale of Eq. (11) correspond
to solitary waves in the dimer through appropriate time shifts.

Before we proceed to the analytic approximations of the
localized solutions of Eq. (11), we discuss the symmetry
conditions that these solutions should satisfy according to the
numerical results of the previous section. From the velocity
profiles of the three localized solitary waves depicted in Figs. 4,
5, and 6 we notice that they have reflectional symmetry
with respect to the time instant where the two neighboring
heavy beads attain equal (but nonzero) velocities. Based on
this observation we formulate a symmetry condition for the
solitary waves of the dimer. Indeed, for the (i + 1)th light
bead a reference time instant τ = Ts(i+1) is defined as the time
instant at which its velocity profile attains a local extreme
and the ith and (i + 2)th neighboring heavy beads [which

compress the (i + 1)th light bead in the squeeze mode] attain
identical but nonzero velocities. The symmetry condition
states that the velocity profile of the (i + 1)th light bead has
reflectional symmetry with respect to the reference time instant
τ = Ts(i+1). In fact this time instant may also be regarded as
the point of maximum compression of the light bead by its
neighboring heavy beads. Therefore, for the velocity profile
vi+1 of the (i + 1)th light bead we formulate the following
symmetry condition:

vi+1(Ts(i+1) − u) = vi+1(Ts(i+1) + u), ∀ u ∈ R,
(12)

vi(Ts(i+1)) = vi+2(Ts(i+1)), i = ±1, ± 3, ± 5, . . . .

Note that if the symmetry condition (12) is satisfied, it
automatically prevents the appearance of an oscillatory tail in
the velocity profile of the light intruder (as in Fig. 3) resulting
from secondary reflections in the trail of the propagation of the
primary pulse. Hence, the symmetry condition (12) provides
the necessary condition for the formation of a localized solitary
wave in the dimer by preventing scattering of the main pulse
at the interfaces between beads.

The symmetry condition for the velocity profile of the (i +
1)th light bead implies that the corresponding displacement
profile is antisymmetric with respect to the reference time in-
stant τ = Ts(i+1). Recalling that the asymptotic approximation
of the response of the light bead is given by

xi+1(t0,t1,...) = si+1(κt0) + εx(i+1)1(t1) + · · · ,
t0 = τ, t1 = ε−1/2τ,

and that the slow part si+1(κt0) is already antisymmetric with
respect to the reference time instant, condition (12) implies
that the fast part of the dynamics, x(i+1)1(t1), should also be
antisymmetric with respect to the reference time instant. It
follows that a necessary condition for the existence of the
solitary wave in the dimer is that the fast dynamics [Eq. (11)]
of the (i + 1)th light bead is antisymmetric with respect to the
reference time instant.

Returning to the fast dynamics [Eq. (11)] of the 2pth light
bead, without loss of generality we assume that its reference
time instant is equal to zero, i.e., Ts(2p) = 0. We recognize that
by construction the excitation f2p(t0) is antisymmetric, and the
natural frequency squared 2

2p(t0) is symmetric with respect
to the reference time instant τ = 0. It follows that in order
to satisfy the antisymmetry condition of the fast dynamics
[Eq. (11)] with respect to τ = 0 we require that

x(2p)1(t1= 0) = 0. (13)

This provides a necessary condition for the formation of
the solitary wave in the dimer.

A second condition that we need to impose on the
asymptotic solution of the 2pth light bead is that it is
localized in time and decays as τ → ±∞. Recalling the
asymptotic approximation of the dynamics of the light bead,
x2p(t0,t1, . . .) = s2p(κt0) + εx(2p)1(t1) + · · ·, and taking into
account that the slow part of the dynamics already satisfies
this asymptotic requirement in the far field, we impose the
condition that limt1→±∞ x ′

(2p)1(t1) = 0. Taking into account
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the antisymmetry condition for the fast dynamics it suffices to
impose the condition

lim
t1→+∞ x ′

(2p)1(t1) = 0. (14)

The combined relations (13) and (14) formulate necessary
and sufficient conditions for the formation of solitary waves
in the dimer and provide the appropriate boundary conditions
for the asymptotic approximation of the fast dynamics of the
2pth light bead.

Our next goal is to find the discrete values of ε for
which conditions (13) and (14) are satisfied. Recalling that
a small parameter ε enters into the problem [Eq. (11)] through
the differentiation with respect to the fast time scale, it is
convenient to rewrite Eq. (11) in terms of the slow time scale
t0 = τ as follows:

ẍ(2p)1(τ ) + 2
2p(τ )

ε
x(2p)1(τ ) = f2p(τ )

ε
, (15)

and seek the initial conditions x(2p)1(0) = 0, ẋ(2p)1(0) =V and
the specific values of ε for Eq. (14) to be satisfied. This task
was performed numerically and the discrete set of values {εn}
and initial velocities {Vn} required for the formation of solitary
waves in the dimer were computed.

Before we review the numerical solutions of this problem,
however, we explore the possibility of constructing analytical
approximations of the solitary solutions of Eq. (15). To this
end we apply the Wentzel-Kramers-Brillouin (WKB) approx-
imation [16] under the assumption of ε being sufficiently
small. It is well known that the WKB approach ceases to
be valid in the vicinity of turning points (i.e., at points of
nullification) of 2p(τ ), and in our case we are interested
to find an approximation of the solutions of Eq. (15) in the
semi-infinite time interval τ ∈ [0, + ∞). However, 2p(τ ) is
an exponentially decaying function of time so there exists a
turning point at infinity. It follows that for relatively small
values of 2p(τ ) the proposed methodology may become
invalid. According to the WKB approximation [16] we seek
the solution of Eq. (15) subject to the aforementioned initial
conditions in the form

x(2p)1(τ ) ∼ exp

[
1

ε1/2

∞∑
n=0

εn/2Gn (τ )

]
+ f (τ )

2p(τ )2
, ε → 0,

(16)

where the first term represents the homogeneous solution of
Eq. (15), whereas the second term is a particular solution of
the problem. Although this approximation is valid in a finite
interval τ ∈ [0,T ∗], T ∗ < +∞, as shown below this interval
provides the main contribution to the sought solitary wave.
Inserting Eq. (16) into Eq. (15), and considering the main
(zeroth-order) terms we obtain the following results [where
j = (−1)1/2]:

G0(τ ) = ±j

∫ τ

0
2p(ζ )dζ ⇒

x(2p)1(τ ) ∼= C1√
2p

exp

[
j√
ε

∫ τ

0
2p(ζ )dζ

]

+ C2√
2p

exp

[−j√
ε

∫ τ

0
2p(ζ )dζ

]
+ f (τ )

2p(τ )2
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FIG. 9. (Color online) Comparison of the numerical solution of
the fast dynamics [Eq. (11)] and the WKB analytical approximation
(19).

≡ C̃1√
2p

cos

[
1√
ε

∫ τ

0
2p(ζ )dζ

]

+ C̃2√
2p

sin

[
1√
ε

∫ τ

0
2p(ζ )dζ

]
+ f (τ )

2p(τ )2
,

ε → 0. (17)

The antisymmetry condition x(2p)1(0) = 0 yields C̃1 =
0. Imposing the second initial condition ẋ(2p)1(0) =V we
determine the second constant C̃2 as follows:

C̃2(ε,V ) =
[

ε

(0)

]1/2 [
V − ḟ (0)

2(0)

]
, (18)

where it holds that ̇2p(0) = 0,ḟ (0) �= 0, owing to the
symmetric and antisymmetric nature of these functions,
respectively. Therefore, the WKB asymptotical approximation
in the finite interval τ ∈ [0,T ∗] reads

x(2p)1(τ ) ∼= C̃2(ε,V0)√
2p

sin

[
1√
ε

∫ τ

0
2p(ζ )dζ

]
+ f (τ )

2p(τ )2
,

ε → 0. (19)

Although the limiting condition (14) in the far field cannot
be imposed in the WKB approximation (because as mentioned
previously the problem has a turning point at τ → +∞),
nevertheless we can find sets of values {εn,Vn} for which
the condition limτ→+∞ ẋ(2p)1 (τ ) = 0 is satisfied for Eq. (19),
and solitary waves are formed in the dimer. Moreover, the
analytical expression (19) compares favorably with the direct
numerical solution of problem (15) that satisfies Eq. (14).
Hence, the WKB approximation (19) can be regarded as an
ad hoc analytical approximation of the solitary wave over the
semi-infinite interval τ ∈ [0, + ∞). This is demonstrated in
Fig. 9, where the numerical solution of Eq. (15) for εn =
0.062 913 and the analytical solution (19) for εn = 0.062 748
are compared. We note that the solutions are in agreement,
especially in the finite interval of rapid oscillations of the
response where the WKB approximation is valid.

In Table I we give the comparison of the set of discrete
values {εn} where solitary waves are realized in the dimer,
computed in two different ways: (i) by direct numerical
simulations of the normalized system (3b)—exact results in
the right column; and (ii) by the numerical solutions of the
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TABLE I. Parameter values εn for realization of solitary waves in
the dimer.

Numerical simulation of the Numerical simulation of system
O(ε) fast dynamics [Eq. (11)] (3b)

n εn εn

2 0.82835
3 0.278115 0.3428
4 0.146747 0.1548
5 0.091702 0.0901
6 0.062913 0.0615
7 0.0458955 0.04537
8 0.034984 0.03448
16 0.0086818 0.00868

asymptotic model (11) [or equivalently Eq. (15)] describing
the fast dynamics of the light beads—approximate results in
the left column. As stated previously the results predicted by
the asymptotic model (11) have physical meaning only for
sufficiently small values of ε, so we expect better convergence
of the two sets of results for decreasing values of εn (or for
increasing order n). This is confirmed in the results listed
in Table I, where we note that the error between the exact
and approximate estimates decreases with increasing order n.
Even though the asymptotic analysis predicts the existence
of a solitary wave for ε2 = 0.828 35 (for n = 2), this is not
confirmed by the exact numerical analysis. The reason for the
absence of a solitary wave for n = 2 will be discussed below,
and here we only make the remark that for this relatively large
value of normalized mass ratio the slow-fast partition of the
dynamics is not valid for describing the solitary wave in the
dimer, so the asymptotic analysis is not expected to be valid
in that range of values of ε.

We conclude this analysis by commenting that the antisym-
metry conditions formulated for the solitary wave in the dimer
may also be viewed in the context of imposing antiresonance
conditions in the bead dynamics. In fact, the absence of a tail
in the solitary wave is due to the antisymmetry conditions
(13) and (14), resulting in an antiresonance condition in the
dynamics of the dimer. This contrasts to a resonance condition
in the dimer dynamics, which occurs when a phase difference
of π/2 exists at t = 0 between the response x(2p)1(τ ) and the
(slow) excitation f2p(τ )/ε of the fast oscillator [Eq. (15)].
Current research by the authors indicates that such a nonlinear
resonance leads to the drastic reduction of the transmitted
normalized force in the plot of Fig. 8(a) for ε ≈ 0.59, through
the magnification of the amplitudes of the traveling waves in
the tail of the propagating pulse and corresponding maximum
radiation of a significant part of the energy of the pulse as
it scatters at the interfaces between heavy and light beads;
we note that this is the exact opposite of the “zero tail”
situation of the solitary wave corresponding to the condition
of antiresonance.

In this context, the formation of the solitary wave in the
dimer for the eigenvalue ε = εn determines the order of
antiresonance satisfied by the velocity profile of the solitary
wave. Because the characteristic frequency 2p(τ ) of the
linearized system (15) is slowly varying, we must resort to
a nonstandard definition of antiresonance in this case. Hence,
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FIG. 10. (Color online) Numerical solutions of the fast dynamics
[Eq. (11)] for certain values of εn at which solitary waves are realized
in the dimer.

we will refer to the number of peaks exhibited in the fast
oscillations of a light bead compared to the two peaks of
the applied forcef2p(τ ) [cf. Fig. 10 where numerical solitary
waves of the asymptotic model (11) or (14) are depicted].
Considering the first value ε = ε2 predicted by the asymptotic
model (11), we note that the fast oscillations of the light bead
also possess two peaks, so this would correspond to a condition
of 1 : 1 antiresonance between the applied force and the light
bead response; however, as discussed previously this value of
ε does not correspond to a physically realizable solitary wave.
Proceeding to the next eigenvalue ε = ε3 the fast oscillation
response of the light bead possesses four peaks (cf. Fig. 10),
so this would be a condition of 1 : 2 antiresonance, which
indeed corresponds to a class of physically realizable solitary
waves parametrized by energy. Extending this argument,
the class of solitary waves corresponding to the eigenvalue
ε = εn corresponds to a 1 : (n − 1) antiresonance, with the
fast oscillation response of the light bead possessing 2n peaks
compared to the two peaks of the forcing functionf2p(τ ).
Hence, as the order n increases (and the eigenvalue εn

decreases), the fast frequency of the light bead response also
increases. It follows that each solitary wave solution in the
dimer corresponds to a precise antiresonance condition, which
is equivalent to the antisymmetry conditions posed previously.

Again, we emphasize that the asymptotic analysis is valid
only as long as the slow-fast time scale separation exists.
Therefore, we do not expect that the asymptotically predicted
value of ε2 = 0.829 will correspond to the formation of a
solitary wave in the dimer, because that would imply an exact
1:1 antiresonance between the slow and fast dynamics, a
fact that contradicts the slow-fast time scale partition upon
which the asymptotic analysis is based. However, the rest
of the asymptotically predicted antiresonance conditions do
correspond to physically realizable solitary waves in the
dimer starting from ε3 = 0.2781, which corresponds to (1 : 2)
antiresonance between the slow and fast dynamics and indeed
was numerically detected in the dimer chain (see Fig. 4).

Finally, we note that the lack of a uniformly valid analytical
approximation for system (15) [for given slow frequency
2p(τ ) and forcing f (τ )] prevents us from stating that there
is a countable infinity of families of solitary waves that can
be realized in a typical elastic dimer system. The fact that the
derived WKB solution (19) is valid only in finite intervals τ ∈
[0,T ∗], T ∗ < +∞, prevents us from formulating a boundary
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value problem by imposing conditions of decay of the motion
at infinity. Hence, we can only conjecture on the existence of
a countable infinity of families of solitary waves in the dimer.

IV. CONCLUDING REMARKS

Summarizing the findings of this work, we demonstrated the
existence of a new family of solitary waves in one-dimensional
granular dimer chains with elastic interactions between beads
according to the Hertzian interaction law and in the absence
of precompression. The problem was brought in normalized
form, and ultimately was governed by a single parameter ε,
defined as the ratio of normalized masses between the light and
heavy beads of the dimer. Hence, our results are applicable to
a general class of dimers of different materials and geometric
properties.

The solitary waves in the dimer reported in this work can
be considered to be analogous to the solitary wave of the
homogeneous granular chain studied by Nesterenko [1], in
the sense that these localized solitary pulses do not involve
separations between beads; rather they satisfy special anti-
symmetries, or equivalently antiresonances in the dynamics.
We may conjecture, therefore, that these solitary waves are
the direct products of a countable infinity of antiresonances
in the dimer. Moreover, we found that the solitary waves
in the dimer propagate faster than the solitary wave in the
homogeneous granular chain obtained in the limit of no mass
mismatch and composed of only heavy beads. This finding,

which might seem to be counterintuitive, indicates that under
certain conditions nonlinear antiresonances can increase the
speed of disturbance propagation in periodic granular media,
by providing different ways of transferring energy to the
far field of these media. From a practical point of view,
this result can have interesting implications in applications
where granular media are employed as shock transmitters or
attenuators.

The asymptotic analysis of this work was based on slow-fast
partition of the dynamics, and can be applied to a more general
class of granular media with periodic or nonperiodic disorders.
Such studies would identify efficient nonlinear mechanisms
for effectively propagating energy through periodic granular
media. An additional interesting topic of application of the
presented methodologies is to employ resonances for the
reverse scope of efficiently attenuating propagating pulses in
granular media.
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