PHYSICAL REVIEW E 83, 036605 (2011)

Analytical Green’s function of the radiative transfer radiance for the infinite medium
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An analytical solution of the radiative transfer equation for the radiance caused by an isotropic source which
is located in an infinitely extended medium was derived using the Py method. The results were compared with
Monte Carlo simulations and excellent agreement was found. In addition, the radiance of the S Py approximation
for the same geometry was derived. Comparison with Monte Carlo simulations showed that the S Py radiance,

although being more exact than the radiance derived from diffusion theory, has relatively large errors in many

relevant cases.
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I. INTRODUCTION

The radiative transfer equation (RTE) is often used as a
model for describing different processes in physics such as
neutron transport or light propagation in biological tissue
or in the atmosphere [1]. In the literature, solutions of
the RTE are usually based on numerical methods such as
the discrete ordinates method or Monte Carlo simulations
[2]. Analytical solutions of the three-dimensional RTE are
known only for the case of isotropic scattering [2—4], al-
though these solutions have many advantages in relation
to the accuracy and speediness compared to the numerical
techniques. Recently, we derived the fluence of the RTE
for an isotropic source, which is located in an infinitely
extended scattering medium, for the case of anisotropic
scattering [5]. The obtained solutions are easily programed,
fast, and were successfully verified with Monte Carlo
simulations.

Lately, the simplified spherical harmonics equations (S Py
equations) [6] were introduced in the field of biomedical optics
for describing the light propagation in scattering media [7].
Despite being an approximation of the RTE, the S Py equations
deliver more precise results than the often used diffusion
equation [1]. Similar to the RTE, the SPy equations have
been solved only numerically [7]. Recently, we derived an
analytical solution for the fluence of an isotropic source in an
infinite medium and compared it to Monte Carlo simulations
showing good agreement even for a relatively large absorption
coefficient [8].

In this study the derivation of analytical expressions for
the radiance in an infinitely extended medium caused by
an isotropic point source is presented using the RTE and
the SPy equations for an arbitrary rotationally symmetric
phase function. The obtained solutions are given in the
form of recursion relations that can be efficiently computed.
The analytical solutions were compared to Monte Carlo
simulations and the diffusion theory. The solution of the RTE
shows excellent agreement with the Monte Carlo method,
whereas the S Py radiance and especially the diffusion ra-
diance have relatively large errors compared to Monte Carlo
simulations.
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II. THEORY

A. Radiative transfer equation

The RTE for the radiance v (r,7,) in spherical coordinates
is given by [9]

1— 2
T’ail/f(r,rrH i V() + wep(r,7)
r r 01,
=us [ f(R-W(r1)dQ + S(r.7.), (1)
4r

where i, = u, + |4, is the total attenuation coefficient, u, the
absorption coefficient, and u, the scattering coefficient. The
cosine of the angle between the direction of propagation €2
and unit vector 7 of position r is defined as 7, = 2 - 7. The
internal light source density is given by S(r,7,). An arbitrary
phase function f without azimuth angle dependence is applied.
By expanding f in Legendre polynomials P, one obtains [7]
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The expansion coefficients are defined as

1
I =27T/ f(@)Pu(r)dr. 3)
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Two different phase functions are used for the comparison of
the obtained analytical solutions with Monte Carlo simulation.
The Henyey-Greenstein phase function

1 1—g2
47 (1 + g% —2gcosh)3/2’

with the coefficients for the Legendre polynomial expansion
f» = g", and the Rayleigh function

f(cosO) =

4)

f(cosf) = i(1 + cos’0), (5)
167

are applied [10]. In the latter case the coefficients are f, =
8n.0+ 1/10 -8, 2. The Py method is used for solving Eq. (1).
In this theory the angular quantities are expanded in spherical
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harmonics. For the case of spherical symmetry, the radiance is
given by

2 1
V) = Z N (P, (6)

n=0

and ¢,(r) are the Legendre moments. The corresponding
Py equations are obtained by truncating this expansion for
the radiance in Eq. (1), multiplying both sides with P, (t,)
and using the orthogonality properties and recursion relations
between Legendre polynomials. The result is given by the
following set of infinite ordinary differential equations for
n>0[9]
n+1[d
2n 41

n+2
dr

¢n+1(r)
d n—1
[d_ - i|¢n—l(r) + Mun¢n(r) = S(r)(Sn,O’
r r
(7

where ftu, = g + (1 — f,)us are the nth-order absorption
coefficients. Taking the first N 4 1 equations forn =0, ...,N
(N odd) and setting ¢y 1(r) = O the radiance is given by the
expression [9]

2 1
wm—Z " ) P, ®)

n=0

The Green’s function of Eq. (7) is obtained by using an
isotropic source distribution S(r) = 6(r)/(4x r?) located in an
infinitely extended scattering medium. In our recent paper
we derived the first-order moment ¢o(r), which equals the
fluence [5].

It can be shown that an appropriate ansatz for obtaining all
Legendre moments except the highest-order moment is made
by (see Appendix)

N+1

1
— Y A Hy vk (vi1),
T

i=I

On(r) = n=0,....,N, (9

where k,(x) are the nth-order modified spherical Bessel
functions of the second kind. The meaning of the values A;,
H,(v;), and v; is explained after Eq. (14). The first two orders
of these special functions are given by ko(x) = x~'e™ and
ki(x) = (x~2 + x~")e~*. Higher orders can be obtained by
using the upward recursion

knt1(x) = n—1(%). (10)

n

The substitution of this ansatz in the Py equations and the use
of Eq. (10) leads to the relation (see Appendix)

2n +1

1
H,_(v;) = ; [ Man Hy(v;) — (n + 1)H11+1(Vi)] , (1D

with Hy(v;) = vl.IVN!/P()»i) and Hy1(v;) = 0. The values
of P(};), A;, and v; can be found as follows. By setting
Di(A)=1and D,(A) =341, the use of the recursively defined
polynomials

Dn+1()") = (21’l + 1)ManDn()\) + )\47’Z2Dn71()\')7 (12)
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forn =2, ...,N leads to the first polynomial P(A)

%
> . (13)
=0

For Dy(A)=1and Dy(A)=u, Eq. (12) used forn =1,...,N
defines the second polynomial Q(}) as

Dyti(d) = P(1) =

Dyi(h) = Q0) = 3 by, (14)
1=0
The polynomial equation Q(A) = 0 gives all in all (N + 1)/2
negative real valued zeros A;. These zeros are used for defining
the values v; = «/—A;. The coefficients A; are determined as
1 P(2:)
A; = o . (15)

b% nnil,n;ﬁi (A = An)

Note that for N =1 Eq. (15) becomes A} =3y, = 1/D,
where D is the diffusion coefficient. The given formulas are
based on the derivation of the Green’s function for the infinite
space fluence. More background information and a detailed
derivation of these formulas can be obtained in Ref. [5].
There, also the analytical formulas are given for solving the
fourth-order polynomial equation required for the radiance
calculation in the P; approximation. The radiance can be
evaluated with Eq. (8) using these Legendre moments.

Similar to the scaling principle applied in the Monte Carlo
method [11] it is possible to obtain such a relation within the
Py theory. By scaling the absorption and scattering coefficients
with the factor o €R the resulting radiance of Eq. (8) within
the Py theory becomes (see Appendix)

V(r,t) = o’y (or,1,). (16)

B. Simplified spherical harmonics equations

The SPy equations are given by a system of coupled
diffusion-like equations for even-order Legendre moments

(n=0,2,...,N — 1) (N being odd)
1 n+1 n+1
P 1v2[2n++ <)+ 2 mm}
- 2[ i)+, m}
Han—12n + 1 2n —
— Man®n(r) = —S(r)dy,0. (17)
The odd-order moments for n = 1,3, ...,N are given by [7]
1 d[n+1
Gu(r) = — - [2n+ 1¢n+1( )+ ¢>n 1(V)}
(18)

A similar approach as shown for the Py theory gives the
Legendre moments forn = 1,...,N as (see Appendix)

N+l
1 & ko(vir), neven,
n(r) = — ) ViAiHy(v)) (19)
¢ 47 ; ki(v;r), nodd,
within the S Py theory. Note that ¢o(r) within the S Py theory is
the same as for the Py equations. Again the Legendre moments
are applied for the calculation of the radiance with Eq. (8). The
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coefficients A; and v; are the same as those used for the solution
of the Py equations.

C. Diffusion equation

The radiance within the diffusion theory is given by a sum
of the first two Legendre moments [1]

V() = %(ﬁo(r) + %%(V)Tr- (20)
The fluence obtained from the diffusion equation is [12]
o Meft?" a
¢o(r) = m Meff = 3 21

By setting vi = petr, A1 = 3a1, and Hi(vy) = v1/Guar),
Eq. (9) gives the first-order Legendre moment in the diffusion
theory as

—Heff?

4rr?

$1(r) = (I + Hettr). (22)

D. Monte Carlo method

To validate the derived analytical solutions the radiance was
compared with results obtained from Monte Carlo simulations.
The Monte Carlo method simulates the propagation of photons
through the scattering medium using appropriate probability
functions and the random number generator of the computer.
In the limit of an infinitely large number of photons used in
the simulations, the Monte Carlo method is an exact solution
of the RTE. Our existing code was modified to be able to
calculate the angle-resolved radiance, similar to what was
described in the literature [13]. The Monte Carlo code itself
was successfully (with a relative difference smaller than 1079)
verified by comparison with simple, but exact analytical
solutions of RTE [14]. For example, we showed that the
average of the squared distance d between an isotropic source
and the location of absorption in an infinitely extended medium
equals

2
Ma(fa + /’L/s) ’

We note that this and further equations derived in Ref. [14]
permit not only to verify the Monte Carlo code, but also the
applied random number generator.

(d* = (23)

III. RESULTS

In this section the derived analytical solutions are compared
with Monte Carlo simulations and the diffusion theory. When
the results obtained from the Py equations converge to the
same values for increasing N they are denoted as P,. Figure 1
shows the radiance versus angle in an infinitely extended
medium which is illuminated by an isotropic point source
obtained from different theories. The Henyey-Greenstein
function with g = 0 is applied as the phase function. The
radiance calculated with the solution of the diffusion theory
(open circles), the P; equations (dashed-dotted curve), the
S Ps-approximation (dashed curve), the Monte Carlo method
(solid noisy curve), and P., equations (solid curve) are
shown.
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FIG. 1. (Color online) Radiance in an infinitely extended scatter-
ing medium for an isotropic point source obtained from different
theories, see legend. The optical properties are p, =2.0mm™,
e =0.1mm~', and g = 0. The distance to the isotropic point source
isr = 10 mm. The inset shows the relative difference of P., compared

to the Monte Carlo method.

It can be seen that the derived analytical solution of the
Py equations converge to the exact solution of the RTE.
The relative differences between the results obtained with the
Monte Carlo simulations and the P equations are in the
range of 0.001, as is shown in the inset. These differences can
be made arbitrarily small by increasing the number of photons
used in the Monte Carlo simulations. The radiance of the S P
equations shows larger differences than the result obtained
from the P; equations, whereas the differences between the
diffusion theory and the radiative transfer theory are much
larger.
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FIG. 2. (Color online) Radiance in an infinitely extended scatter-
ing medium for an isotropic point source obtained from different
theories, see legend. The optical properties are p) = 1.0mm™,
e =0.5mm™', and g = 0.9. The distance to the isotropic point

source is r = 2 mm.
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FIG. 3. (Color online) Radiance in an infinitely extended scat-
tering medium for an isotropic point source obtained for two
different phase functions. The optical properties are ! = 2.0mm~!,
iy = 0.01mm~!, and g = 0.9. The distance to the isotropic point
source is r = 8 mm. The dashed curve shows the radiance for the
Henyey-Greenstein function with g = 0.

For the next comparison the optical and geometrical pa-
rameters are changed. Again, the Henyey-Greenstein function
was applied, but for a different anisotropic factor (g = 0.9).
Figure 2 shows the result of this comparison using the same
theories as in Fig. 1. Note that now, for better visualization,
the Monte Carlo results are depicted as filled circles. It can
be seen that the Py, solution is again very close to the Monte
Carlo simulation, whereas P3, S P3, and especially the diffusion
theory exhibit significant errors compared to the solutions
of the RTE. For large angles the radiance calculated by these
theories is even negative.

Figure 3 shows the radiance of the P, solution (solid
curves) and the Monte Carlo method (noisy curves) for two
different phase functions. The comparison using a Henyey-
Greenstein function with ¢ = 0.9 and a Rayleigh function
(g = 0) shows, again, excellent agreement between the two
solutions. It can also be seen that, even at relatively large
distances from the source (i), - r = 16), there is an influence of
the phase function on the radiance. In addition, the P, solution
using the Henyey-Greenstein function for g =0 (dashed
curve) was plotted showing smaller, but still significant dif-
ferences to the radiance calculated with the Rayleigh function
although both phase functions have the same anisotropy
factor.

IV. SUMMARY AND DISCUSSION

An analytical solution of the RTE for the radiance caused
by an isotropic source which is located in an infinitely
extended anisotropic scattering medium was derived using the
Py method. The calculation is based on the results recently
obtained for the fluence in an infinitely extended medium by
solving the RTE [5]. In addition, the radiance of the SPy
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equations was derived. The radiance calculated with both
theories and those obtained with the Monte Carlo method and
diffusion equation were compared. An excellent agreement
was obtained between the Py solution and the Monte Carlo
method for both investigated phase functions, the Henyey-
Greenstein function, and the Rayleigh function. The radiance
calculated with the S Py approximations and, especially, that
of the diffusion approximation showed relatively large errors
compared to solutions of the RTE. We note that, in general,
the differences obtained for the radiance are larger than those
calculated for the fluence. The fluence obtained from the S Py
equations shows good agreement with the RTE fluence [5].

The presented formulas are solutions in the steady-state
domain. They are the base for deriving the solutions for the
important cases of the frequency and time-domain radiance.
By using the modified nth-order absorption coefficients w,, =
Ha + (1 — fi)us + jow/c the corresponding solutions can be
obtained for the frequency domain [5]. For the time-domain
radiance, in addition, the inverse Fourier transform has to be
applied.

For small values of r(us; + @,) a significant part of the
radiance consists of unscattered photons, which produces a
delta peak of the radiance at angle § = 0. This has to be
considered when evaluating Eq. (6) because higher-order terms
are needed for reaching convergence.

As an example, the derived solutions can be applied to
retrieve the optical properties by means of a single fiber which
is used to measure the radiance inside scattering media caused
by an isotropically emitting fiber [15,16]. An application is,
for example, the monitoring of drug concentrations during
photodynamic therapy. In the literature, the P; approximation
was used for these calculations. However, as can be seen
in Figs. 1 and 2 in many cases the P; solution, although
being much more exact than the diffusion equation, might
still cause significant errors due to its approximations. Thus,
higher-order solutions of Py have to be applied. The advantage
of using P, compared to Monte Carlo simulation is that
they are many orders of magnitude faster, allowing the
convenient retrieval of the optical properties in a nonlinear
regression.

Finally, the obtained formulas can be used as a starting point
to derive analytical solutions of the RTE for finite geometries
which include the boundary condition at the interface to
nonscattering media.
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APPENDIX
1. Legendre moments of the spherically symmetric Py equations

In the following, the correctness of Eq. (9) is proved via
complete induction. The base of induction is given by the
lowest-order Legendre moment ¢o(r). This calculation was
done explicitly in our earlier publication [5]. The correctness
of the Legendre moments is assumed until the moment ¢, (r).
The induction step is made by solving the corresponding
Py equation for obtaining the moment ¢,4(r). For an
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arbitrary n > 1 the corresponding Py equation is given by,
see Eq. (7),

d n+2
(n+ 1)[d— + _i|¢n+l(r)
r r

n—1 d

= n[ - _]¢n—l(r) — @n+ Dpandu(r).  (AD)
r dr

The given ordinary differential equation in ¢,,;(r) can by

solved by using the method of variation of the constant. The

solution of the homogeneous equation

d m n+2
d—r¢n+1(") + T%H(V) =0, (A2)
I
C
P = (A3)

where C is an arbitrary constant. The ansatz for the unknown
Legendre moment is given by variation of C

C@r)

¢n+l(r) = }"”T (A4)
The derivative is obtained as
d d n+?2
T = s O = e C0). ()

In the following calculation the derivative of the modified
spherical Bessel function of the second kind

K, (x) = —kn1(x) + j’—cknu), (A6)

is used. The first part of the right-hand side of the Py equation
[see Eq. (A1)] becomes

N+1

n—1 d 1 <
( - E)ml(r) = i:Zlvl-Aianl(vi)vikn(w),

;
(AT)

where Eqs. (A6) and (9) are used. The simplified version of
the differential equation, Eq. (Al), for the unknown varied
constant becomes

N+1

1 d e 1 & viA; [winH, (%)
————C(r == vinH,_(v;
2 dr T A e

n
i=1
- (27’1 + I)Huan(vi)]kn(Vir)~

This equation can be integrated directly as follows

(A8)

N+1

1 & vidi
Cr= -3 n" S lvin o (0) = @0 Dt Hy ()

X / "2k, (vir)dr. (A9)

The calculation of the integral can be done by following
consideration

d
d—r[r"“km(wrn

="y, [—knJrz(Vﬂ’) + 2

1
knJrl(Vir)]

1

+n+ 2" k1 (vir)
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2 3
= vt |:_kn+2(vir) + = ki kn+l(Vir)i|
v;r
= —vr" 2k, (vir). (A10)
The result of the integration becomes
rn+2
/ "2k, (vir)dr = — k1 (vir). (Al1)

Thus, the varied constant is

N+1

Vn+2 2 U,‘A,‘
C =
) 4 ; n+1

[2n+1
X

1

Maan(Vi) - anl(Vi)i|kn+1(Vir)~
(A12)

Finally, the Legendre moment is obtained as

N+1

2
e Z Vi Ai Hy 1 (v)kn 1 (i),
i—1

C 1
¢n+l(r) = % =

(A13)

delivering Eq. (11). By applying the assumed formula to obtain
the moment ¢, 41(r) we get the same result.

2. Legendre moments of the spherically
symmetric S Py equations

This Appendix contains the derivation of the Legendre
moments in the S Py theory, see Eq. (19). In the S Py theory,
normally the composite moments ¢; are used instead of the
Legendre moments [7]. In our recent publication, analytical
solutions of the composite moments of the SPy equations
were derived [8]. The composite moments are, in principle,
given by a linear combination of two even-order Legendre
moments fori = 1,...,(N +1)/2

@i(r) = 2i — Depaio(r) + 2i i (r).

More details about these moments can be obtained in
Ref. [7]. All composite moments can be expanded in a
sum of diffusion-like Green’s functions. Thus, the even-order
Legendre moments are also diffusion-like Green’s functions,
see Eq. (A14). Recently we showed that the zeroth-order
Legendre moment, which equals the fluence of the planar-
geometric Py equations, is obtained as [5]

(Al4)

N+1

2 A eV x]
Po(x) = - (A15)
=2 v
Therefore, the ansatz for the even-order moments is
N+1
2 A X
$n(x) =Y ——H,(v)e "M, (Al6)

21),'

i=1

In the SPy theory, the odd-order Legendre moments
for the planar-geometric case are given by the
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derivative of the even-order Legendre moments for

n=13,...,N[7]
1 d[n+1
$n(x) = — e |:2n+1¢n+1( )+ ¢n 1()0}
(A17)

Thus, the following ansatz

N+1
2

A; d
¢n(-x) = 22 2H (Vz) dx —v,-Ix\

H (v;)sgn(x)e "

—Z

for the odd-order Legendre moments is used. Substituting
Egs. (A16) and (A18) in the planar-geometric Py equations [7]

(A18)

n+1 d d
m+1 dx ¢n+l( )+ n+ 1 Ed)n—l(x)'i_uan(bn(x)
= S(x)dp.0. (A19)

leads to the condition
1 |:2n +1

Hyp1(v) = ——

n+ 1 //LanH (vl) anl(Vi)] .

(A20)

i

The special form of the ansatz in Eq. (A18) is used for getting
the same recursion formula for even- and odd-order Legendre
moments. The spherically symmetric results can be obtained
by using the relation

1 d
¢n(r) = —Ea%(x)’xr, (A21)

and by replacing the d/dx by the derivative d/dr along the
radius vector [17]. The even-order moments become

N+L N+L
2 e V" 1 2
n(r) =) AiH,(v))—— = — i Ai Hy (v )ko(vir).
Gu(r) ; ) — 4n§” (viko(vir)
(A22)

For obtaining the odd-order moments using Eq. (A21) the
following calculation step

d[ -1d v2 d
4 vl | = L S g
dx© dr |:271r ar’ } 2 ar o)
V3
= —5=ki(vir), (A23)
2
is used. The final result for odd n is given by
N+l
l 2
Gu(r) = — > viA; Hy(wi)ky (vir). (A24)
-

3. Scaling principle within the Py theory

In our earlier publication [5] it was shown that the one-
dimensional Py equations in the transformed space can be
rewritten as

T [go(k),¢1(K), . ...y ()]" =[1,0,...,0]",  (A25)
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with a symmetric tridiagonal system matrix

wa  jk 0 0o - 0
jk Bpa  j2k 0 :
|0 J2% 0
0 0 0
. .. . jNk
0 0 0 jNk (@2N+ Duan

(A26)

The fluence that is the base for our derivation of the three-
dimensional radiance can be extracted by using Cramer’s
rule as

det(Ty)
det(T)

_ Pk)

k
do(k) = = 00’

(A27)

where Ty is a symmetric tridiagonal matrix obtained by
replacing the first column of T by the vector [1,0, ...,0]”. By
scaling the absorption and scattering coefficients with o € R
the nth-order absorption moments become fi,, = o {44,. Note
that the diagonal elements of the given matrix contain these
moments. The use of determinant rules gives the scaled fluence
in the transformed space as

SVP() 1

k
~ ovrg(E) ;%(;) |

The spherically symmetric fluence in the steady-state domain
can be obtained from the Fourier-transformed fluence of the
planar symmetric pendant as [8]

Go(k) (A28)

o0

Po(r) = 772 kepo(k) sin(kr) dk. (A29)

Inverting the scaled fluence gives

12 / h lqﬁo( )sin(kr)dk. (A30)
0

JT°r

Go(r) = 5

The substitution of k = o & leads to

2 oo
do(r)= 55— f £¢o(&) sin(or8)ds =0 po(or). (A31)
weor Jy

Using the scaled fluence for the derivation of the radiance
Eq. (16) is obtained.
In addition the scaled radiance in the frequency domain
becomes
V(r1.0) = 0*Y(or..0/0). (A32)

Again the scaling rule of the Fourier transform leads to the
scaled radiance
V(1) = oY (onT.o1), (A33)

in the time domain.
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