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Stochastic theory of the Stokes parameters in randomly twisted fiber
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We present the stochastic approach of the polarization state of an electromagnetic wave traveling through
randomly twisted optical fiber. We treat the case of the weak randomness. When the geometric torsion of the fiber
is distributed as a Gaussian law, we can write explicitly the Fokker-Planck equation for the Stokes parameters of
the wave, and find the complete solution of the polarization-state distribution.
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I. INTRODUCTION

Understanding and controlling wave propagation in disor-
dered media has been one of the major issues in condensed
matter physics for the last decade [1–3]. The problem has
been investigated for all kind of waves (scalar sound waves,
vectorial electromagnetic waves [4], spinorial quantum waves
such as electrons [5], etc). It is now established that the
classical Boltzmann-like theory is not enough to describe the
behavior of weakly disordered media, particularly because
of localization phenomenon [6]. In this spirit, propagation
of vector polarized waves in weakly disordered media has
been actively studied when randomness is caused by im-
purities [7–9]. In this case, the electric permittivity tensor
can be written phenomenologically as a random matrix,
and the problem is treated either through numerical simu-
lations [10], Brownian theory on the Poincaré sphere [11],
or in the mathematical framework of the random matrices
[12].

In a recent paper [13], we proposed an approach of the
stochastic theory of polarized electromagnetic wave in random
birefringent media, using the functional integral technique.
This way appeared to be powerful enough to obtain the
exact Fokker-Planck equation for the Stokes parameters in
a straightforward way. The purpose of the present paper is to
apply this general formalism to a specific optical medium of
wide technological interest: the randomly twisted optical fiber
without losses. Up to now, regularly twisted or coiled optical
fibers have been investigated in various aspects [14–18], but
the particular role of the randomness remains theoretically
challenging. A series of works by Malykin et al. [19] deals
with optical fibers as sequences of homogeneous segments
with Poisson-distributed lengths. It corresponds to the case
of low density of inhomogeneities (here “inhomogeneity”
corresponds either to a chemical impurity, to a structural
defect, or to a localized mechanical stress), and the elastic
modulus of the fiber is so large that the segment in between
two consecutive impurities is of constant torsion. On the other
hand, we study here the case where the density of impurities
is so large that the twist is fluctuating on a microscopic
scale. Then, we consider the fiber torsion as a continuous
random variable, and we use the functional integral technique
to obtain analytical results about the stochastic behavior of the
polarization state.

II. GENERAL FORMULATION

A. The twisted waveguide

We consider a wave propagating along the smooth
curve (C). The lengthwise distance along the curve (C) is
defined as the value of the curvilinear coordinate s. We define
the vector field t tangent to (C) in every point.

The natural frame along (C) is the orthonormal triad of
tangent, normal, and binormal unit vectors (t,n,b), also known
as the Frenet-Serret frame. The relations

dt
ds

= κ n;
dn
ds

= −κ t + τ b;
db
ds

= −τ n (1)

hold, with κ the curvature and τ the torsion, which both may
depend on the coordinate s.

Generally, t is an anisotropy axis of the material, such
that the electric permittivity takes the form ε̂ = εtt t ⊗ t + ε̂⊥,
where εtt has a real value, and the 2 × 2 tensor ε̂⊥ applies in
the plane locally orthogonal to the tangent vector t:

ε̂⊥ =
(

εnn εnb

εbn εbb

)
.

ε̂⊥ is a Hermitian tensor for the medium to be transparent.

B. The slowly varying envelope approximation

The Maxwell equations for the electric component E of the
electromagnetic field of frequency ω is

∇ × (∇ × E) = ω2 ε̂ E (2)

in a medium of electric permittivity ε̂. The magnetic perme-
ability is set to unity. We assume the slowly varying envelope
approximation (SVEA) to be valid [20], that is

E = eiφF, (3)

where the vector F experiences slow spatial variations (on
typical lengths l), while φ is a real phase varying fast in the
space (on the wavelength λ � l). The local wave vector is
defined as k = ∇φ. Using the quasi-isotropic approximation
[21], which is applicable in the case of small anisotropy, φ =
k0

∫
n ds, with n the local refractive index of the fiber. Within

this framework, the wave vector is in the direction of the
tangent vector t, that is, k = kt.
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Moreover, F� · F = constant, since the medium is supposed
to be without losses. Then, considering the transverse vector F
initially perpendicular to t for s = 0, this vector remains in the
plane (n, b): F = fnn + fbb for all s > 0, and the Maxwell
equation (2) allows us to write down a couple of equations for
the components (fn,fb):

2i

k

d

ds

(
fn

fb

)

=
( −a −b + ic + 2iτ/k

−b − ic − 2iτ/k a

)(
fn

fb

)
,

with the real anisotropy coefficients

a = εnn − εbb

2ε′
0

, b = εnb + εbn

2ε′
0

, c = i
εnb − εbn

2ε′
0

. (4)

In these equations, the average electric permittivity in the
plane (n,b) is ε′

0 = (εnn + εbb)/2. The coefficients a,b,c are
considered here as constant functions of s, though a more
general case can be treated as well.

The torsion τ appears naturally as a coupling between the
two polarizations.

In the case where the twist is due to mechanical stress,
the coefficient c should depend linearly (for the small defor-
mations) on the actual value of τ [22]. It would result in the
same previous formulas, with the coefficient 2 in front of iτ/k

changed in a material-dependent elasto-optic constant.

III. THE MAXWELL EQUATION AS A TWO-STATES
SCHRÖDINGER EQUATION

We introduce the alternative basis (e+,e−), which is for-
mally similar to the circular-polarization basis in the Euclidean
frame:

e± = 1√
2

(n ± ib) = At

(
n

b

)
,

where the unitary matrix A is

A = 1√
2

(
1 1

i −i

)
.

Thus, considering the two-components vector � = A†F,
we get

2i

k

d�

ds
=

[
−aσ̂1 − bσ̂2 −

(
c + 2τ

k

)
σ̂3

]
�, (5)

where we used the traceless Pauli matrices

σ̂1 =
(

0 1

1 0

)
, σ̂2 =

(
0 −i

i 0

)
, σ̂3 =

(
1 0

0 −1

)
,

and their transforms A† σ̂1A = σ̂2, A† σ̂2A = σ̂3, A† σ̂3A =
σ̂1.

In (5), the right-hand term can be conveniently written as
Ĥ� with Ĥ = −aσ̂1 − bσ̂2 − (c + 2τ/k) σ̂3 the Hamiltonian
operator.

We introduce the Stokes parameters {Sj }j=1,...,3, as the
average values of the Pauli matrices, namely [23,24]

Sj = �†σ̂j�.

Since �† · � = F� · F = constant, the three-dimensional
Stokes vector S = (S1,S2,S3) has a constant norm. It is
normalized as S2 = 1. Using the Ehrenfest theorem in the
Schrödinger-type equation (5), and the commutation relation
[σ̂1,σ̂2] = 2iσ̂3 (and cyclic permutations), one finds the evolu-
tion equation for the Stokes vector S under the form [14,25]

dS
ds

= k S × G, (6)

with G the pseudomagnetic field written as

G = (a,b,c + 2τ/k) = −∇sH,

with ∇sH the gradient of the classical Hamiltonian H =
−aS1 − bS2 − (c + 2τ/k) S3 in the S space. For completion,
we fix the initial condition to S0 = (1,0,0) to make the later
expressions simple.

Qualitatively, we can guess from Eq. (6) polarization
rotation along the twisted waveguide curve. It is in agreement
with the classical result of rotation of the polarization in a
chiral birefringent material [26].

IV. THE TWISTED FIBER

As a first special case, we assume that the fiber has no
intrinsic birefringence [i.e., (a,b,c) = (0,0,0)]. The pseudo-
magnetic field G = [0,0,2τ (s)/k] is the consequence of the
only geometric torsion, and the equations of motion for the
Stokes parameters are

dS1

ds
= 2τ (s)S2;

dS2

ds
= −2τ (s)S1;

dS3

ds
= 0. (7)

These equations can also be derived using the Rytov equations
for the components fn,fb [27]. It results in the rotation of the
Stokes vector on the Poincaré sphere around the third axis:

S = [cos 2ψ(s), sin 2ψ(s),0], (8)

with the orientation angle

ψ(s) = −
∫ s

0
τ (s ′)ds ′. (9)

The result S2/S1 = tan 2ψ(s) is in agreement with the parallel
transport law for the wave electric vector, as derived under the
form fb/fn = tan ψ(s) by Berry [18].

These equations of motion do not depend on the actual
value of k, thus the change in the polarization state does not
depend on the wavelength.

V. THE RANDOMLY TWISTED FIBER

With the result (8) at hand, we address the question of the
random torsion on the evolution of the Stokes vector. Let us
suppose that the torsion τ (s) is fluctuating around an average
function τ̄ (s) according to the Gaussian distribution with the
width μ [28]:

P [τ (s)] = A exp

{
−

∫ s

0

1

2μ
[τ (s ′) − τ̄ (s ′)]2ds ′

}
, (10)

with A the normalization constant.
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The average value of exp[iψ(s)], with ψ the function
defined in (9), is calculated as the functional integral

〈e2iψ(s)〉 = A

∫
exp

[
−2i

∫ s

0
τ (s ′)ds ′

]

× exp

{
−

∫ s

0

1

2μ
[τ (s ′) − τ̄ (s ′)]2ds ′

}
D[τ (s)]

= e2i〈ψ(s)〉 exp(−2μs). (11)

It results in the exponentially decreasing averaged Stokes
vector

〈S〉 = e−2μs[cos 2〈ψ(s)〉, sin 2〈ψ(s)〉,0],

where the average orientation angle is

〈ψ(s)〉 = −
∫ s

0
τ̄ (s ′)ds ′.

Similarly, the autocorrelation of the actual Stokes vector
behaves like

〈S(s)S(0)〉 = e−2μs cos[2〈ψ(s)〉], (12)

and the associated power spectral density �(f ) =∫ ∞
−∞〈S(s)S(0)〉 exp(−2iπf s)ds is generally that of a Brownian

noise, �(f ) ∼ 1/f 2.

VI. STOCHASTIC BEHAVIOR OF THE
POLARIZATION STATE

We consider now the case where the average torsion τ̄ is
independent of s. This assumption may be connected with
the statistical homogeneity of the medium, and most of the
applications deal with such a general assumption.

Many results can be obtained exactly in this case. For
example, the power spectral density associated with the
autocorrelation of the Stokes parameters (12) is

�(f ) = μ(μ2 + τ̄ 2 + π2f 2)

[μ2 + (τ̄ − πf )2][μ2 + (τ̄ + πf )2]
,

which well behaves as ∼1/f 2 for the large values of
f . More importantly, we will see that the Fokker-Planck
equation can be written explicitly and solved analytically. It
gives a rare example where the stochastic behavior is fully
available.

A. Direct calculation of the Stokes-vector probability
distribution

The value of the S3 component of the Stokes vector is a
constant, independent of the torsion [see Eq. (7)]. Here S3 = 0,
since we assume the initial state S0 = (1,0,0).

The propagator K linking the Stokes-vector state at the
coordinate s to its value at the origin is generally [28]

K[S(s)|S0] =
∫ ∏

s

δ

(
dS
ds

− kS × G
)

× exp

{
−

∫ s

0

1

2μ
[τ (s ′) − τ̄ (s ′)]2ds ′

}

×D[τ (s)]D(S). (13)

Writing S(s) = (cos 2ψ, sin 2ψ,0), with the unknown func-
tion ψ of the arc-length s, one can perform the integration
in (13) over all the functions τ , following the same for-
malism and derivation as detailed in Ref. [13]. To explain
briefly the technique we use Eq. (7) to rewrite the integrand
δ (dS/ds − kS × G)D(S) appearing in (13), in terms of the
orientation angle ψ , namely δ(dψ/ds + τ )D[ψ(s)]. Then,
integration over the ensemble of all the functions τ (s) leads to

K[S(s)|S0] =
∫

exp(−S)D[ψ(s)],

with the action S:

S = 1

2μ

∫ s

0

(
dψ

ds
+ τ̄

)2

ds ′. (14)

The most probable path is given by the condition δS = 0,
that is d2ψ/ds2 = 0. Then, the first derivative of ψ is a
constant, and can be written as dψ/ds = (ψ + nπ )/s, with
ψ the value at the coordinate s. The winding number n is the
number of times the path goes past the value ψ over the range
[0,s]. This leads to the formula

K[S(s)|S0] = 1√
2πμs

∞∑
n=−∞

exp

[
− s

2μ

(
ψ + nπ

s
+ τ̄

)2]
.

Because only the angle ψ is variable in this geometry,
the propagator K[S(s)|S0] coincides with the probability, say
P [ψ ; s], to get the value ψ , modulo π , at the location s. Then,
using the reciprocal Jacobi θ -function identity

√
α

∞∑
n=−∞

e−πα(n+z)2 =
∞∑

n=−∞
e−πn2/α+2iπnz,

valid for any α > 0 and complex z, we can write the propagator
under the form

P [ψ ; s] = 1

π
+ 2

π

∞∑
n=1

e−2μsn2
cos[2n(ψ + τ̄ s)], (15)

which is a Jacobi-θ function [29] {namely πP [ψ ; s] =
ϑ3[ψ + τ̄ s, exp(−2μs)]}. Also, the distribution could con-
veniently be rewritten in terms of the reduced adimensional
variable μs and parameter τ̄ /μ. The function (15) is plotted
in Fig. 1 for the case τ̄ /μ = 0.

One can note that, calculating the average value 〈e2iψ 〉 =∫ π/2
−π/2 e2iψP [ψ ; s] dψ , one recovers the result

〈e2iψ 〉 = e−2iτ̄ s exp(−2μs),

which is a particular case of (11). More generally, all the
moments of S can readily be calculated analytically. One
finds for example for the variances 〈S2

1 〉 − 〈S1〉2 = 1
2 [1 −

exp(−4μs)][1 − exp(−4μs) cos(4τ̄ s)], 〈S2
2〉 − 〈S2〉2 = 1

2 [1 −
exp(−4μs)][1 + exp(−4μs) cos(4τ̄ s)]. When μs � 1, which
should be the usual case, the variances behave as ∼8μ2s2

and ∼4μs, respectively. In this case, the variance of S2 is
much larger than the variance of S1, and its measurement
could give access to the value of μ which governs the torsion
fluctuations.
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FIG. 1. (Color online) Probability distribution function of the
orientation angle ψ , for increasing values of the reduced curvilinear
coordinate μs. This example is for a Gaussian distribution of the
torsion, with τ̄ = 0 and positive standard deviation μ. For μs = 0,
the P [ψ ; s] distribution is a δ-distribution centered in ψ = 0. When
μs increases, the distribution P [ψ ; s] is given in (15) and resembles
a Gaussian distribution with increasing value of the variance. The
exact expression for the variance is given in (16).

Correlation functions or average values can be calculated
from (15). For example, the quantity 〈ψ2〉 is known to be
meaningful in the case of real fibers [30]. Here, it is as the
function of s:

〈ψ2〉 =
∞∑

n=1

(−1)n−1

n2

[
1 − e−2μsn2

cos(2nsτ̄ )
]
, (16)

and it increases monotonically from 0 to π2/12.

B. The general Fokker-Planck equation

To obtain the general Fokker-Planck equation for this
problem, one can either consider the motion of a magnetic
moment S in a magnetic field which is the sum of a constant
field G0 = (a,b,c + 2τ̄ /k) and a random field g = [0,0,2(τ −
τ̄ )/k] of 0 mean

dS
ds

= k S × (G0 + g), (17)

or as a magnetic moment in the constant magnetic field and
submitted to the random torque R:

dS
ds

= k S × G0 + R, (18)

with the constraint S2 = 1.
Both approaches are known to be equivalent [31], leading

to the same Fokker-Planck equation. Indeed, R is a vector
field of 0 mean and variance 4μ2, independent of the values
of S, and it can be treated as uncorrelated Gaussian vectorial
random field.

Using the Brownian theory applied to Eq. (17) [32] or
the functional integral technique applied to Eq. (18) [13,31],
one can derive the exact general (i.e., for any anisotropy
coefficients a,b,c, complying with the weak anisotropy as-
sumption, and any initial condition S0) Fokker-Planck equation
for the probability distribution P [S; s] of the Stokes parameters
S = (S1,S2,S3) = (sin θ cos φ, sin θ sin φ, cos θ ), of an elec-
tromagnetic wave propagating in a transparent fiber of random
Gaussian torsion. It is

∂P

∂s
= − 1

sin θ

(
∂H

∂φ

∂P

∂θ
− ∂H

∂θ

∂P

∂φ

)
+ μ

2
∇2P, (19)

with the classical Hamiltonian H = −aS1 − bS2 −
(c + 2τ̄ /k) S3, and a,b,c given as in (4). The solution of the
Fokker-Planck equation (19) for the case (a,b,c) = (0,0,0)
and the initial condition S(0) = (1,0,0) is (15).

VII. SUMMARY AND POSSIBLE DOMAINS
OF APPLICATION

The behavior of the polarized electromagnetic wave in
a medium with random birefringence has been formulated
within the framework of the Fokker-Planck theory in the
case of the randomly twisted optical fiber. Figure 2 shows
an example of such a fiber. The vectors show the directions of
the normal vector n, and they visualize the random twist of the
fiber.

The propagation medium is then essentially characterized
by the torsion that is a geometric feature of the curve
in space. In the present paper, we have shown how to
calculate the probability distribution of the Stokes parameters
on the Poincaré sphere in such a case, using a general
technique that we developed in a previous paper [13]. In
the case of fibers without any intrinsic birefringence, exact
results on the statistics of the polarization state were ob-
tained by examining the angular distribution of the Faraday
rotation.

FIG. 2. (Color online) Sketch of a fiber with curvature κ = 0, null
average torsion τ̄ = 0, and random torsion τ distributed as a normal
law with positive standard deviation μ. The cylinder represents the
fiber, and the sequence of arrows shows 100 successive directions
of the normal vector n along the fiber. The range 0 � μs � 10 is
shown.
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This approach is relevant to the analysis of data on optical
fibers with weakly randomized twisting. It might be the case
for loose optical fibers in a fluid at rest (air or water, for
example), the small random motion of the fluid resulting in
random torsion of the fiber, through the fluid viscosity.

It could also be the case for the photonic crystal fibers,
made of array of identical fibers [33]. The small deviations to
the perfect fiber being analyzed through the statistics of the
polarization states at a given fiber length.

Another case worthy to be investigated that way, is
the propagation of the light through a weakly disordered
transparent material. The sequence of scattering events leads
to a number of various “optical paths” as through infinity of
dissipative waveguides with random torsion. If the disorder
is weak, only the paths close to the null average torsion
(the straight line) are relevant, then the distribution of the
polarization fluctuations should give insight of the statistics of
the inhomogeneities.
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