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An analytical fluid model is proposed for artificially collimating fast electron beams produced in the interaction
of ultraintense laser pulses with specially engineered low-density-core–high-density-cladding structure targets.
Since this theory clearly predicts the characteristics of the spontaneously generated magnetic field and its
dependence on the plasma parameters of the targets transporting fast electrons, it is of substantial relevance to
the target design for fast ignition. The theory also reveals that the rapid changing of the flow velocity of the
background electrons in a transverse direction (perpendicular to the flow velocity) caused by the density jump
dominates the generation of a spontaneous interface magnetic field for these kinds of targets. It is found that
the spontaneously generated magnetic field reaches as high as 100 MG, which is large enough to collimate fast
electron transport in overdense plasmas. This theory is also supported by numerical simulations performed using
a two-dimensional particle-in-cell code. It is found that the simulation results agree well with the theoretical
analysis.
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I. INTRODUCTION

In the concept of fast ignition (FI) [1], a highly compressed
deuterium-tritium pellet, with a density of ∼300 g/cc and a
radius of ∼10–20 μm at its core, is ignited by a ∼10 ps, 10 kJ
intense flux of MeV electrons (or ions). These high-energy
particles are generated by the absorption of an intense petawatt
(1015 W) laser, at the edge of the pellet, which is usually
∼50 μm away from the dense core [2]. In order to deliver
enough energy (∼10 kJ) into the pellet in ∼10 ps, the ignition
laser beam should reach the intensity of I0 ∼ 1020 W/cm2 if
the coupling from the laser to the core plasma is about 20%
for a well-collimated beam [3]. However, studies have shown
that the electron divergence increases with the laser intensity
[4,5]. Shadowgraphy and Kα imaging measurements revealed
an electron beam divergence of half angle of half maximum
larger than 50◦ [6]. Therefore, of particular importance is the
possibility of collimating the fast electron beams with the size
of the compressed core.

To date, several works have been done regarding the control
of the divergence of fast electron beams [7–13]. Robinson
et al.’s hybrid-Vlasov-Fokker-Planck simulations [8] have
shown some promising results, where the fast electrons are
collimated in targets exhibiting a high-resistivity-core–low-
resistivity-cladding structure analogous to optical waveguides.
Recent experiments have also demonstrated this electron
collimation in targets with a resistivity boundary [9,13]. In
these cases, the magnetic-field growth can be derived from
Faraday’s law and Ohm’s law as [14,15]

∂B
∂t

= c[η∇ × jh + (∇η) × jh],
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where η is the resistivity and jh is the fast electron current
density. Furthermore, numerical simulations by Zhou et al.
[11] and Wu et al. [12] showed that a low-density-core–
high-density-cladding structure target can also generate a
megagauss (MG) interface magnetic field, which collimates
fast electrons even better. However, according to the above
equation, the magnetic field generated from the gradient of
resistivity and current density should cause divergence of
an electron beam, instead of collimating a beam. Therefore,
their results clearly indicate that in a low-density-core–high-
density-cladding structure target, other mechanisms tend to
be dominant for the generation of a magnetic field. Such a
spontaneous magnetic field has been explained by several
mechanisms, such as anomalous resistivity [12]. However,
there still does not exist a well-established and satisfac-
tory theory, in particular, for quantitatively predicting the
magnetic field and modeling its dependence on the plasma
parameters.

In this paper, an analytical model describing this scenario
is presented. The model, describing a uniform fast elec-
tron beam propagating in a low-density-core–high-density-
cladding structure target, shows clearly the formation of the
background return current flow and the generation of the spon-
taneous magnetic field. The mechanisms governing the gener-
ation of the magnetic field are studied in detail. It is found
that the spontaneous magnetic field peaks at the interface
and evanesces exponentially into the inner target over a
characteristic skin depth. It is also found that the maximum
magnetic field at the interface is proportional to the fast
electron current and is inversely proportional to the square
root of the background electron density of the inner target.
Two-dimensional particle-in-cell (PIC) simulations have been
run to verify this model. It is shown that the simulation results
are very consistent with the prediction of our analytical model.
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FIG. 1. Schematic of initial plasma density.

The paper is organized as follows. In Sec. II, the analytical
model describing this scenario is studied in detail. In Sec. III,
we present the PIC simulation for the generation of the
magnetic field and the collimation of fast electron beams. In
Sec. IV, a summary of the results is given.

II. ANALYTICAL DESCRIPTION OF THE
SPONTANEOUSLY GENERATED MAGNETIC FIELD

We consider an ultraintense laser pulse with a large spot size
normally irradiating on an unmagnetized low-density-core–
high-density-cladding structure plasma with density profile
as shown in Fig. 1, where ions form a fixed and neutralized
background. A fast electron beam is generated at the laser
plasma interface. If the spot size is large enough, we can simply
assume that an equally infinite and uniform fast electron beam
of density nh propagates with an average velocity vh along
the x axis (longitudinal direction). The fast electron beam
passing through the plasma quickly generates a return current
of background thermal electrons. Suppose for a moment that
the beam head is not neutralized by a balancing return current
as the fast electron beam passes through the target. From the
Maxwell equations, we get ∂E/∂t = −4π jh [16]. The induced
electric field is sufficiently strong to accelerate the background
thermal electrons flowing in x direction with average velocity
ve0(y).

For purpose of the interface magnetic-field excitation
study, we assume that the fast electron beam motion is
unperturbed. Since the magnetic field can develop in a very
short time (of the order of a hundred femtoseconds), the
combined system of the fast electron beam and the response of
the background plasma can be suitably treated by a single
fluid electron magnetohydrodynamic (EMHD) description.
The EMHD equations, including electron-fluid equations and
Maxwell equations, comprise a complete system of equations
describing the electron response to the propagating fast beam
pulse. The electron-fluid equations consist of the continuity
equation

∂ne

∂t
+ ∇ · (neve0) = 0, (1)

and force balance equation

∂pe

∂t
+(ve0 · ∇)pe =−e

(
E+ 1

c
ve0 × B

)
−∇P/ne−νeipe,

(2)

where −e is the electron charge, ve0 is the flow velocity of
the background electrons, pe = meγeve0 is the momentum of
the background electrons, me is the electron rest mass, γe =
1/

√
1 − v2

e0/c
2 is the relativistic factor, ∇P is the pressure

gradient, and νei is the e-i collision frequency. Eq. (2) can be
simplified to

∂(pe − a)

∂t
+ ve0 × ∇ × (pe − a)

= −∇γe + ∇φ − ∇P/ne − νeipe, (3)

where a and φ are the vector and scalar potentials satisfying
Coulomb gauge ∇ · a = 0. Operating on the electron mo-
mentum given by Eq. (3) with ∇×, we obtain the equation
describing the transverse motion,

∂�

∂t
+ ve0 × ∇ × � = ∇ne × ∇P/n2

e − ∇ × (νeipe). (4)

Here, � = ∇ × pe − eB/c is the generalized vorticity. In
the present study, due to the fast motion of the fast electron
beam through the plasma, a flow in the return current is
generated in the plasma with the flow velocity much faster
than the electron thermal velocity. In such cases the electron
pressure term can be neglected, in contrast to the case of
slow beam pulses. Furthermore, there is no resistivity in the
collisionless case (vei = 0). Therefore, vorticity is conserved
[17–19]. If, before the arrival of the beam, we have ∇ × pe = 0
and B = 0, then �(t = 0) = 0. Eq. (4) then tells us that � = 0
for all time, so we can immediately write [20–23]

B = c

e
∇ × pe. (5)

Similar processes have been discussed in Refs. [21–23].
This results in the relation dve0

dy
= − eB0(y)

mec
for the nonrelativistic

case in the present study. Maxwell equations for the self-
generated electric and magnetic fields, E and B, are given
by

∇ × B = 4π

c
(−enepe/meγe + jh) + 1

c

∂E
∂t

. (6)

Here, for a long beam with pulse length lb � vh/ωp, where
vh and ωp are the fast electron beam velocity and background
plasma frequency, the displacement current 1

c
∂E
∂t

is of the
order of (vh/ωplb)2 � 1 compared to the electron current.
Therefore, in the following discussion, the displacement
current is neglected [15,16,23]. Eq. (6) gives

pe = −mecγe

4πene

∇ × B + meγejh/ene. (7)

Substituting Eq. (7) into Eq. (5), we obtain the equation for
the self-generated magnetic field,

mec
2

4πe2
∇ ×

(
γe∇ × B

ne

)
+ B

= mecγe

e2

(
1

ne

∇ × jh − 1

n2
e

∇ne × jh

)
. (8)

Equation (8) shows clearly that, in a collisionless
case, the source of the self-generated magnetic field is
mecγe

e2 ( 1
ne

∇ × jh − 1
n2

e
∇ne × jh), which means a target with

sharp radial density boundary should build up strong magnetic
fields at the boundary between a low-density core and
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high-density cladding, which act to collimate the flow of
fast electrons. The mechanism for magnetic-field generation
described here is distinct from magnetic-field generation aris-
ing from the baroclinic source (∂B/∂t ∝ ∇n × ∇T ), which
requires a temperature gradient [24], and from the resistivity
gradient( ∂B

∂t
= c[η∇ × jh + (∇η) × jh]), which requires the

collision [16]. The mechanism considered here needs the
density gradient instead of the resistivity gradient. The first
term on the right-hand side of Eq. (8) generates a magnetic
field that pushes fast electrons toward regions of higher fast
electron current density, while the second term pushes fast
electrons toward regions of lower density. It is not easy to solve
Eq. (8) directly, even though Eq. (8) shows the physics clearly.
However, we can still derive the magnetic field from Eqs. (5)
and (7). Operating on Eq. (5) with ∇×, and substituting it into
Eq. (7), we obtain

mec
2

4πe2

d2ve0(y)

dy2
= neve0(y) + nhvh. (9)

In the present case, the low-density-core–high-density-
cladding structure background plasma has three different
regions with ion densities as follows: ni1 for region 1 with
y < −d, ni2 for region 2 with −d � y � d, and ni3 for region
3 with y > d, as shown in Fig. 1. Since the fast electron beam

may be affected by this background plasma, we assume the
densities of the fast electron beams for regions 1, 2, and 3
are nh1, nh2, and nh3, respectively. Therefore, we can rewrite
Eq. (9) as[

δ2
pe1

d2

dy2
− 1

]
ve0 = nh1

n1
vh1, y < −d,

[
δ2
pe2

d2

dy2
− 1

]
ve0 = nh2

n2
vh2, − d � y � d (10)

[
δ2
pe3

d2

dy2
− 1

]
ve0 = nh3

n3
vh3, y > d,

where δpej = c/ωpej (j = 1, 2, 3) is the collisionless electron
skin depth and ωpej = √

4πnje2/me (j = 1, 2, 3) is the
electron plasma frequency for the background plasma in
the jth region. Charge neutrality requires that nj = Zjnij −
nhj (j = 1, 2, 3), where nj is the background thermal electron
density and Zj is the charge state for the jth region. That is
to say, some of the thermal electrons will be expelled out of
the regions where fast electrons arrive. We will discuss this
physical process in detail in the next section. From Eq. (10),
the flow velocity of the background thermal electrons can be
solved analytically as follows:

ve0(y) =

⎧⎪⎨
⎪⎩

c1 exp[(y + d)/δpe1] − nh1vh1/n1, y < −d,

c2 exp(−y/δpe2) + c3 exp(y/δpe2) − nh2vh2/n2, −d � y � d

c4 exp[−(y − d)/δpe3] − nh3vh3/n3, y > d

(11)

The constants c1, c2, c3,and c4 can be determined from the boundary conditions:

c1 = δpe1

δpe2

α2β1 + α1β2 exp(2d/δpe2) − α1 exp(−2d/δpe2) − α2

β1 exp(−2d/δpe2) − β2 exp(2d/δpe2)
,

c2 = −α2β1 exp(−d/δpe2) + α1β2 exp(d/δpe2)

β1 exp(−2d/δpe2) − β2 exp(2d/δpe2)
,

c3 = − α1 exp(−d/δpe2) + α2 exp(d/δpe2)

β1 exp(−2d/δpe2) − β2 exp(2d/δpe2)
,

c4 = δpe3

δpe2

−α1β2 − α2β1 exp(−2d/δpe2) + α1 + α2 exp(2d/δpe2)

β1 exp(−2d/δpe2) − β2 exp(2d/δpe2)
,

where

α1 =
nh2vh2

n2
− nh1vh1

n1

δpe1

δpe2
+ 1

, α2 =
nh2vh2

n2
− nh3vh3

n3

δpe3

δpe2
− 1

, β1 = δpe1 − δpe2

δpe1 + δpe2
, and β2 = δpe3 + δpe2

δpe3 − δpe2
.

Substituting Eq. (11) into Eq. (5) gives

eB0

mec
= −dve0(y)

dy
=

⎧⎪⎨
⎪⎩

− c1
δpe1

exp[(y + d)/δpe1], y < −d

1
δpe2

[c2 exp(−y/δpe2) − c3 exp(y/δpe2)], −d � y � d,

c4
δpe3

exp[−(y − d)/δpe3], y > d.

(12)

Equations (11) and (12) describe the background electron flow velocity and the spontaneous magnetic field. For simplicity, we
assume a symmetric low-density-core–high-density-cladding structure target, which gives n1 = n3, nh1 = nh3, and vh1 = vh3.
Furthermore, since the lower density region is much thicker than the skin depth d � δpe2, it allows us to neglect the terms
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with exp(−d/δpe2). Therefore, we can simplify the constants as follows: c1 = c4 = δpe1

δpe1+δpe2
( nh2vh2

n2
− nh1vh1

n1
) and c2 = c3 =

δpe2

δpe1+δpe2
( nh2vh2

n2
− nh1vh1

n1
) exp(−d/δpe2). Using Eq. (12), we obtain

eB0

mec
=

⎧⎪⎪⎨
⎪⎪⎩

−1
(δpe1+δpe2)

(
nh2vh2

n2
− nh1vh1

n1

)
exp

[
y+d

δpe1

]
, y < −d,

1
(δpe1+δpe2)

(
nh2vh2

n2
− nh1vh1

n1

){
exp[− y+d

δpe2
] − exp[ y−d

δpe2
]
}
, −d � y � d,

1
(δpe1+δpe2)

(
nh2vh2

n2
− nh1vh1

n1

)
exp

[− y−d

δpe1

]
, y > d.

(13)

Figure 2 shows the schematic of the background electron
flow velocity and the spontaneous magnetic field. It is evident
in Fig. 2 that, for this kind of low-density-core–high-density-
cladding structure target, the fast electron current is neutralized
by the return current of thermal electrons everywhere except at
the interfaces of different density regions over a characteristic
transverse distance �y⊥ = δpe [20]. Hence, the spontaneous
magnetic field B0 exists within a layer of width δpe near the
interfaces of different regions, y = ±d. We notice that B0

peaks at the interface and evanesces exponentially to both sides
over the skin depth. Since the skin depth is δpe ∝ n−1

e in the
lower density plasma region, the magnetic field tunnels much
deeper into the region, as shown in Fig. 2. For the case n1 � n2,
Eq. (13) gives the maximum spontaneous magnetic field

Bmax ≈ meω0

enc

nh2vh2√
n2/nc


 200
η

f

I
1/2
18 λμm

[(Z2ni2 − nh2)/nc]1/2

vh2

c
MG. (14)

Here, the density of fast electrons required to carry the energy
flux has been approximated by nh2 
 2η

f
(I18λ

2
μm)1/2nc [16]. At

these high intensities, we have approximated 2η/f 
 1/
√

2.
Equation (14) means that the magnitude of the magnetic field
is strongly related to the incident laser intensity and the back-

FIG. 2. (Color online) Schematic of the profile of the background
electron flow velocity ve0(y) and the spontaneous magnetic field
B0(y).

ground electron density of the low-density core. This provides
an interesting study when experiments begin to enter this
regime. As a numerical example, we evaluate Eq. (14) for the
case of the low-density-core–high-density-cladding structure
target with Z1ni1 = Z3ni3 = 200nc and Z2ni2 = 10nc, irradi-
ated by a laser light with Iλ2

0 = 1.5 × 1019 W/cm−2 μm2, and
assume nh2 ≈ 3nc and vh2 ∼ c to obtain the qualitative esti-
mate of the maximum magnetic field at the interface, Bmax ≈
110 MG.

It is worth stressing that no significant contribution of the
fast electron beam in the cladding regions (regions 1 and 3)
to the magnetic field has been found. In other words, there is
not much difference between the cases irradiating with a very
large spot size laser and a finite spot size laser. In the case
with a finite laser spot size, fast electron flow in region 1 and
region 3 may be very weak, nh1 = nh3 ≈ 0. From Eqs. (13)
and (14), we can see that the magnetic field is only slightly
influenced.

This simple analytical model is helpful for gaining insight
into certain aspects of the generation of a spontaneous
magnetic field and collimation of electron beams when fast
electron beams propagate in a well-engineered low-density-
core–high-density-cladding structure target. Unfortunately,
the vast majority of experiments are inherently more com-
plex, and these complications must be accounted for if
a proper analysis of the physical process is to be done.
The first, and most important, complexity we will discuss
is that of the potential of beam-plasma instabilities. For
this case, PIC simulation is a powerful tool to study it
further.

III. NUMERICAL STUDY OF THE GENERATION OF A
MAGNETIC FIELD

In order to describe the generation of magnetic fields in
more detail, first we study low-density-core–high-density-
cladding structure targets with the 2D3V (two spatial and
three velocity components) PIC code ASCENT [25]. Figure 3
is a sketch of the geometry of the simulations. Regions 1
and 3 are fully ionized carbon (charge state Zi = 6), with
mi/meZi = 1836 × 12/6. Region 2 is the low-density hydro-
gen plasma. The widths of the three regions are 8.4λ0, 7.2λ0,
and 8.4λ0, respectively. The densities of the three regions are
200nc, 5nc, and 200nc, respectively. In order to avoid ruining
the hydrogen plasma by the laser pressure, we place another
high-density target (40nc) in front of the low-density-core–
high-density-cladding structure target. The p-polarized laser
pulse at λ0 = 1.06 μm wavelength and 1.5 × 1019 W/cm2

intensity irradiates the target from the left boundary. The
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FIG. 3. (Color online) The initial density profile of the low-
density-core–high-density-cladding structure target on a logarithmic
scale.

intensity profile is Gaussian in the y direction with a spot
size of 5.0 μm (full width at half maximum). The laser rises
in 15T0, where T0 is the laser period, after which the laser
amplitude is kept constant.

The size of the simulation box is 30λ0 × 24λ0. Here, we
use 3840 × 3072 grid cells with a grid size of �x = �y =
λ0/128. The time step used is 0.005T0, where T0 denotes the
laser period and its value is 3.3 fs for a 1.05-μm laser wave.
During the simulation, we set 49 electrons and 49 ions per
cell. The total number of particles is about 7.5 × 108. For
both the fields and particles, we use the absorbing boundary
condition in both x and y directions. Furthermore, in order
to reduce the restrictions on the grid size compared with the
Debye length, we use a fourth-order interpolation scheme to
evaluate the fields and current [25]. In order to avoid the reflux
of fast electrons, we set cooling buffers at the boundaries in
our simulation.

Figure 4(a) shows the spontaneous magnetic field at time
t = 500 fs. Clearly, a very large magnetic field has been
generated at the interfaces, which plays a role in collimating
fast electrons. Moreover, we observe that there are several
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FIG. 4. (Color online) (a) The spontaneous magnetic fields at time
t = 500 fs. (b) A slice of spontaneous magnetic fields at x = 15λ0;
the solid line is for the simulation result and the dash-dotted line is for
the analytical result. Here, the magnetic fields are averaged over one
laser period. The units of the magnetic field are meω0c/e (1 unit =
100 MG).
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FIG. 5. (Color online) The electron energy density on a logarith-
mic scale at two different times, (a) t = 264 fs, and (b) t = 1000 fs.
Here the electron energy density is normalized by mec

2nc.

stronger magnetic peaks in the inner target. These peaks are
due to the formation of filament due to the Weibel instability
[26]. Figure 4(b) shows a slice of spontaneous magnetic fields
at x = 15λ0; the solid line is for the simulation result and
the dashed line is for the analytical result. We can see that
the analytical result is consistent with the simulation result.
However, the magnetic field is larger at the lower x position [as
shown in Fig. 4(a)]. This is due to the complex beam-plasma
instabilities (not only due to the present mechanism). At the
position x = 15λ0, the instabilities are still not developed,
while the magnetic field is well developed. That is the reason
why we choose to compare the analytical results with the
simulated results at x = 15λ0 or nearby. It should be noted that
the suggested model is not enough to actually solve the two
stream and Weibel instabilities, yet that is not the purpose of
our study. Indeed, we focus on whether the interface magnetic
field will develop when there is a forward fast electron beam
passing the interfaces. Remarkably though, our explanation of
why the 100 MG interface magnetic fields at the interfaces
are generated applies to the self-consistent problem just
as well.

We next examine how the spontaneous magnetic fields
affect the transport of fast electron beams. In Fig. 5 the
energy density distributions of electrons with energy between
0.5 � Ee � 5.0 MeV are plotted. It is clearly seen that the
fast electrons generated at the laser plasma interface have
a large divergence angle. As time goes on, the electrons
are highly collimated after the generation of the magnetic
field, and few electrons can “leak” out into the high-density
cladding.

For the fast electron beam with currents greater than
the Alfvén limit, a return current moving in the opposite
direction establishes approximately a charge- and current-
neutral equilibrium [11,27]. Our theoretical model in Sec. II
is quasineutral in both charge density and current density at
the regions, except for the interfaces. Now we show how the
neutralization is established. Figure 6 shows that, for electrons
with energy between 1 and 50 keV [subplot (a)], and 100 and
5000 keV [subplot (b)], the mass current density extends from
the layer of interaction is ∼7λ0 up to 25λ0 inside the plasma.
This mass current density is superimposed on the structure
of the spontaneous magnetic field that is mostly concentrated
in the interaction region and low-density-core region. The peak
value of the magnetic field is over 100 MG, which acts to
collimate forward fast electrons and to scatter the returned
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FIG. 6. (Color online) The mass flow of electrons at time t =
500 fs with different energies (a) E = (1,50) keV and (b) E =
(100,5000) keV. This mass flow is superimposed on the spontaneous
magnetic field at t = 500 fs. The units of the magnetic field are
meω0c/e (1 unit = 100 MG).

background electrons. Figure 6(a) shows clearly that some
return electrons are scattered out of the low-density-core region
to keep the charge neutralization. Meanwhile, the returned
background electrons are accelerated to higher velocity to
maintain the current neutralization. Figure 6(b) shows that
the fast electron beams are guided well by the magnetic field
along the interface of the low-density-core region. It is also
found in Fig. 6, when the fast electron pressure is developed,
the inner interfaces of the plasmas of regions 1 and 3 are
eroding, resulting in the outside expansion of the magnetic
fields at the interfaces of the lower x position. However, such
considerations are ignored in our simple model since the theory
is developed in the framework of EMHDs.

IV. SUMMARY AND DISCUSSION

In summary, we have developed a self-consistent model
to explore the generation mechanisms of a spontaneous
magnetic field at the interfaces of a low-density-core–high-

density-cladding structure target when a relativistic electron
beam flows inside. The model revealed that the rapid changing
of the flow velocity of the background electrons caused by the
density jump dominates the generation of the spontaneous
interface magnetic field for these kinds of targets. Our
analytical results indicate that the magnetic field peaks at the
interface, and evanesces exponentially into the inner region
over a characteristic skin depth. It is found that the maximal
magnetic field, which is proportional to the fast electron current
and inverse proportional to the square root of the density of the
inner region, can be as high as hundreds of megagauss. This
should provide an interesting study for target design when
experiments begin to enter this regime. It is also found that
the fast electrons are collimated very well because of this
magnetic field. These processes are verified with 2D3V PIC
simulations.

While the generation of a spontaneous magnetic field
at the interface of a low-density-core–high-density-cladding
structure target and the collimation of fast electrons have
been studied here in detail, the lifetime of this kind of
target during the implosion compression in a fast ignition
scenario still needs further study. In this scenario, radiation
hydrodynamic code is needed to further study the implosion
physics.
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