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Rayleigh instability is investigated in a Hall thruster under the effect of finite temperature and density gradient
of the plasma species. The instability occurs only when the frequency of the oscillations ω falls within a frequency
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, where u0 is the drift velocity of

the electrons, � is their gyration frequency under the effect of the magnetic field, ky is the wave propagation
constant, n0 is the plasma density together with ∂n0/∂x as the density gradient, and Ti(Te), M(m), Yi(Ye), and
ωpi

(ωpe
) are the temperature, mass, specific heat ratio, and plasma frequency of the ions (electrons), respectively.

A relevant Rayleigh equation is derived and solved numerically using the fourth-order Runge-Kutta method for
investigating the perturbed potential under the effect of electron drift velocity, channel length, magnetic field, ion
temperature, and electron temperature. The instability grows faster because of the magnetic field, ion temperature,
and drift velocity of the electrons but its growth rate is reduced because of the electron temperature, channel
length, and also its far distances from the anode.
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I. INTRODUCTION

A Hall thruster is one of the most efficient devices for space
propulsion. This is an annular device in which a propellant,
usually xenon, is ionized and then accelerated by electrostatic
force (corresponding field �E) to create propulsive thrust. The
thrust is generated by ion acceleration in a quasineutral plasma.
A Hall thruster has a virtual cathode which is located near the
zone where the magnetic field �B is maximum. In this zone the
axial electron mobility is reduced as the electrons are trapped
on the Larmor orbits. Moreover, the ratio E/B is selected
such that the electron gyroradius is much smaller but the ion
gyroradius is much larger than the anode to cathode spacing.
Hence, the ions can be freely accelerated out of the device.
Upon exiting the device the ion beam is neutralized by the
electrons generated from the virtual cathode, thus maintaining
quasineutrality within the plasma plume.

Hall thrusters are more suitable for a long-term mission
in space than other electric thrusters [1–6]. However, in such
thrusters, due to the difference in the drift velocities of the
electrons and ions and their charge difference, an electric field
is produced in the azimuthal direction. On the production of
this electric field the electrostatic waves are generated in the
azimuthal direction. In the presence of a density gradient these
waves can gain free energy from the density gradient, grow
up, and finally become unstable. In addition, the instabilities
of the discharge current and plasma oscillations can occur
in these devices which play an important role in controlling
the transport, conduction, and mobility. Hence, in order to
improve the performance of the Hall thrusters, we need to
better understand inner physical phenomena related to waves
and instabilities. In this direction Choueiri [6] has discussed
different types of discharge instabilities in Hall thrusters
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ranging from kilo-Hertz to giga-Hertz domain. Chable and
Rogier [7] have numerically studied Buneman’s instability
in a Hall thruster and examined the role played by coupling
between the electric field and the ion current. Barral and
Peradzynski [8] have studied low frequency oscillations under
the effect of ionization in a Hall thruster. Keidar [9] has
modeled plasma dynamics and ionization of the propellant
gas within the anode holes used for gas injection of a Hall
thruster. Meezan et al. [10] have presented an analysis for
the anomalous electron mobility in a coaxial Hall discharge
plasma. Thomas et al. [11] have developed a diagnostic for
the azimuthal drift current in a coaxial �E × �B discharge
plasma. A high-frequency (HF) instability in the range of
5–10 MHz has also been reported experimentally by Litvak
et al. [12]. Lazurenko et al. [13] have experimentally stud-
ied the high-frequency instability and anomalous electron
transport phenomena in a Hall thruster. Litvak and Fisch
[14] have analytically studied gradient-driven Rayleigh-type
instabilities in Hall plasma thrusters by neglecting the thermal
motions of the plasma species. Ducrocq et al. [15] have
investigated high-frequency electron drift instability in the
cross-field configuration of a Hall thruster together with the
effect of distorted electron distribution functions obtained
in particle-in-cell simulations. Barral and Ahedo [16] have
developed a low-frequency model of breathing oscillations
in Hall discharges where they observed that unstable modes
are strongly nonlinear and are characterized by frequen-
cies obeying a scaling law different from that of linear
modes.

For the sake of simplicity the temperature of plasma
species in most of the studies has been neglected, although
it significantly affects the efficiency and performance of the
thrusters via thermal motions of the ions and electrons [17,18].
Therefore, in order to realize the exact behavior and the
consequences of finite temperatures, it is very important to
investigate the instabilities in Hall thrusters by including the
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finite temperatures of the plasma species. Hence, in the present
article we have analytically derived the conditions and growth
rate of Rayleigh instability in a Hall thruster using relevant
equations along with the contribution of the pressure gradient
term. For this realistic situation an azimuthally propagating
mode becomes unstable when its oscillation frequency falls
within a frequency band that shows a dependence on the
plasma parameters, drift velocity of the electrons, azimuthal
wave number, and magnetic field.

II. THEORETICAL MODEL

We consider a Hall thruster with a two-component plasma
consisting of ions and electrons immersed in a magnetic field
�B = B0ẑ such that the electrons are magnetized and the ions
are unmagnetized. The applied perturbations are assumed to be
potential and nondissipative and the ionization processes are
not taken into account. With regard to the geometry, the x axis
is taken along of the axis of the thruster (i.e., along the applied
electric field �E) and the z axis is taken along the radius of the
thruster radius along which the magnetic field �B is applied.
Hence, the y axis corresponds to the azimuthal dimension.
Under this situation we write the basic fluid equations for the
ion and electron fluids as

∂ni
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In the above equations ni is the ion density, Mis the ion
mass, �υi is the ion fluid velocity, �E is the axial electric
field, ne is the electron density, m is the electron mass, �υe

is the electron fluid velocity, and νe is the collision momentum
transfer frequency between the electrons and neutral atoms.

We use the linearized form of the above equations for small
perturbations of ion and electron densities, their velocities,
and electric field. We represent perturbed densities by ni and
ne, velocities by �υi and �υe where their unperturbed values
are taken as υ0 and u0, respectively, together with υ0 as the
ions’ initial drift in the x direction and u0 as the electrons’
drift in the y direction. The unperturbed density is taken as
n0 and the perturbed value of the electric field is taken as
�E (corresponding potential φ). Hence, the linearized form of
Eqs. (1)–(4) reads
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We seek the solutions of the above equations for which we
have A = A exp(iωt − ikyy) for the oscillating quantities, that
is, densities ni , ne, velocities �υi , �υe, and electric field �E. Here
ω is the frequency of oscillations and ky is the propagation
constant. For the ion motion we use the assumption that the
frequency of the perturbations we consider is high enough
in comparison with the ion flow velocity, that is, υi � ωL

together with L as the inhomogeneity length along the channel.
With the help of Eqs. (5) and (6) we obtain the following
expression for the perturbed ion density in terms of the
perturbed electric potential φ:
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On the other hand, we obtain from Eq. (8)
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is taken as the electron gyrofrequency and
u0 = −E0

B0
as the initial drift of the electrons in the y direction.

The previous equations are solved for the x and y components
of the electron velocities for which we obtain
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Along with the above equations we solve the electron continuity equation (7) and obtain the perturbed electron density ne as
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Finally, we use the expressions for the perturbed ion density ni and electron density ne in the Poisson’s equation ε0∇2φ =
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where we have defined ωpi =
√

n0e2

Mε0
and ωpe =

√
n0e2

mε0
. This

equation encompasses the terms of perturbed and unperturbed
quantities. Since the first-order (perturbed) quantities cannot
be explicitly expressed in term of zeroth-order (unperturbed)
quantities we treat them separately by equating them to zero.

A. Calculation of growth rate of instability

In view of plasma generation in the thruster channel and
neutralization of the ions at the exit of the thruster, it is obvious
that the plasma density would attain maximum value in the
middle of the channel. Hence, we assume the density and
velocity distribution in the acceleration channel as

A0 = A0 max

[
sin2

(
πx

d

)
− 1

2

]
(19)

together with A0 max as the peak value of n0 or u0. Though in the
real thruster the drift velocity distribution may be different, it
simplifies the analytical calculations. In the above expressions
for the density and drift velocity the coordinate x lies in the
interval 0 < x < d, where d is the channel length. We further
simplify our calculations by neglecting the collisions (ve = 0).
The neglect of electron collisions with neutrals is justified for
the present case of Rayleigh instability, which is developed
by the density gradient and the magnetic field. Since in the
presence of magnetic field the electron motion is confined, it
is quite plausible that the collisions will have less consequence
on the excitation of waves and instabilities.

Now for obtaining the growth rate of the instabilities we
solve the unperturbed part of Eq. (18) with the expressions
of n0 and u0 given by Eq. (19). After making mathematical
simplifications we obtain the following dispersion equation:
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together with ξ = 2πx
d

. The above equation is cubic in ω and
has the following three roots:
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In the above expressions m1 = 2a3
1 − 9a1a2 + 27a3 and

n = m2
1 − 4K3 together with K = a2

1 − 3a2. Also, a1 and a2

are the coefficients of ω2 and ω terms in Eq. (20) and a3 is the
constant term, that is,
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Here it turns out that the root ω1 is real but the roots ω2

and ω3 are complex. Moreover, it is seen that the root ω3

corresponds to a growing mode or the instability if the below
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mentioned condition is satisfied:
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B. Condition for Rayleigh instability

Now we examine the perturbed part of Eq. (18). This equation takes the following form when we use expression (23):

∂2φ

∂x2
− k2

yφ −
ω2

pe

�2
kyφ

(ω−kyu0)

(
� ∂

∂x
ln B0

n0
− ∂2u0

∂x2

)
[

1 − YeTeky

m�2

(
∂2u0
∂x2 +�

∂n0
n0∂x

(ω−kyu0) − ky

)][
1 − ωp

2
i

ω2
(

1− Yi Ti k
2
y

Mω2

)
]

+ ωp
2
e

�2

= 0. (25)

It is interesting to note that this equation reduces to Eq. (25)
of Litvak and Fisch [14] when the ion and electron temper-

atures are omitted. Moreover, the term
ω2

pi

ω2 was neglected in
Ref. [14] for the sake of simplicity. However, we retain all the
terms arising due to the finite temperature of the plasma species
and ion plasma frequency. Under this more realistic situation
we obtain Eq. (25) which is a modified form of the well-known
Rayleigh equation of fluid dynamics. This equation attains the
identical form of the Rayleigh equation [19] if the following
condition is met:

ω � kyu0 + 1

ky

∂2u0

∂x2
+ �

kyn0

∂n0

∂x
. (26)

In addition, the oscillation frequency ω should satisfy the
following condition:
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Based on Eqs. (26) and (27), it is inferred that the
oscillations will grow into the Rayleigh instability only when
their frequency remains within a frequency band described by
the following inequalities:

kyu0 + 1
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It is evident that this frequency band is the consequence of
the finite temperatures of the plasma species and the higher cut-
off frequency attains larger values for the higher temperature
of the ions and electrons. Hence, a broader frequency band is
realized in a more realistic situation where the plasma species
carry finite temperature. This interesting frequency band was
not explored by other investigators [6–8,12–16,23,25] and
is the new result. Based on this, the oscillations (perturbations)
of only higher frequency would grow into instability if the
plasma contains stronger density gradient, the electrons drift
with higher velocity, or stronger magnetic field is applied.
Moreover, the oscillations of larger wavelength or smaller ky

are found to be unstable even at lower frequency.

III. RESULTS OF GROWTH RATE
AND PERTURBED POTENTIAL

In this section we plot various figures for investigating
the variation of growth rate of the instability with magnetic
field B0, initial drift of the electrons u0, channel length d, ion
temperature Ti , and axial distance x. Moreover, Eq. (25) is
solved numerically using a fourth-order Runge-Kutta method
for the perturbed potential φ along with the use of boundary
conditions φ(0) = φ(d) = 0, where d is the distance between
the anode and cathode (channel length).

Figure 1 shows the variation of growth rate γ [≡ (ω3/ωpi)]
of the instability with magnetic field when Te = 10 eV,
Ti = 1 eV, Ye = 2, Yi = 2, n0 = 1018/m3, u0 = 106m/s,
ky = 25/m, and d = 5.5 cm. These parameters are within
the prescribed range as used in the literature [12,20–22] and
realized in the experiment [22]. It is seen from the figure
that the instability grows faster in the presence of stronger
magnetic field. Wei et al. [23] also observed experimentally
an enhancement in the growth rate of coupling instability
with the magnetic field. The large growth rate is attributed
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FIG. 1. Variation of growth rate γ with magnetic field in a
plasma having Xe ions (mass = 131 amu), when Te = 10 eV, Ti =
1 eV, Ye = 2, Yi = 2, n0 = 1018/m3, u0 = 106 m/s, ky = 25/m, and
d = 5.5 cm.
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FIG. 2. Effect of magnetic field on the perturbed potential φ for
the same parameters as in Fig. 1.

to the nonuniformity of the velocity in the presence of a larger
magnetic field. This can be understood based on Eq. (25)
along with the condition (28) which describes the stability of
ideal fluid flow with the lateral flow velocity nonuniformity.
Since the presence of at least one point of inflection in the
velocity profile is required for the Rayleigh instability, it is
plausible that the nonuniformity in the velocity is enhanced in
the presence of the magnetic field due to the electrons’ gyratory
motion and that the instability grows at a faster rate. Moreover,
the presence of the magnetic field confines the electrons’
trajectories and increases their residence time in the channel.
This will enhance the oscillation frequency, resulting in a more
unstable situation and hence the increased growth rate.

The perturbed potential distribution for the two different
values of magnetic field is shown in Fig. 2, where it is seen
that the potential increases with the increasing magnetic field.
Similar results were reported by Keidar and Boyd [24] for
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FIG. 3. Dependence of growth rate γ on the initial drift velocity
u0 of the electrons when B0 = 0.015 T and other parameter are the
same as in Fig. 1.
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FIG. 4. Dependence of perturbed potential φ on the drift velocity
of the electrons corresponding to Fig. 3.

the potential of plasma plume. The enhancement in perturbed
potential with the magnetic field can be understood in the
following manner. In the present case plasma jet enters a
transverse magnetic field with a high supersonic directed
velocity under the condition that the magnetic field is relatively
weak so that only the electrons are magnetized, whereas
the ions move out of the effect of magnetic field. However,
ambipolar current less plasma flow across the magnetic field
may require an electric field to appear under the above
conditions. Therefore, we can expect the potential to increase
across the magnetic field. This result is consistent with the
behavior of growth rate of the instability (Fig. 1) with the
magnetic field, where the instability grows faster.

In Fig. 3 we show the behavior of growth rate of the
instability with initial drift velocity of the electrons. It is seen
that the growth rate is increased for the larger drift velocity
of the electrons. Since the drift velocity can be correlated
with the discharge voltage, it can be said that the growth
rate is increased with the discharge voltage. Esipchuk and
Tilinin [25] also reported the proportionality of the frequency
of drift instability to the discharge voltage. The cause of the
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FIG. 5. Weak dependence of growth rate γ on the channel length
when B0 = 0.015 T and other parameter are the same as in Fig. 1.
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FIG. 6. Dependence of perturbed potential φ on the channel
length d corresponding to Fig. 5.

increase in growth rate can also be understood as the strong
coupling between the electric field and the electron current [7].
When we focus on the variation of the perturbed potential φ

with the drift velocity in Fig. 4, we notice that the effect of drift
velocity on the potential is in accordance with the variation of
the growth rate. Similar behavior of the potential was reported
experimentally by King et al. [26] for the potential of plasma
plume.

In Fig. 5 we show the dependence of growth rate on
the channel length. Clearly the growth rate of the instability
decreases as we increase the channel length. This is obvious
because the channel length can be viewed as the scale length
of the plasma density gradient. For the larger channel length
the density gradient becomes weaker due to the longer scale
length, which results in more stability of the system or the
reduction in the growth of the instability. Also, the corre-
sponding perturbed potential goes down (as shown in Fig. 6).
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FIG. 7. Effect of ion temperature on the growth rate γ of the
instability when B0 = 0.015 T and other parameter are the same as
in Fig. 1.
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FIG. 8. Variation of growth rate γ with the electron temperature
when B0 = 0.015 T and other parameter are the same as in Fig. 1.

The reduction in the density gradient with an enhancement in
the channel length can be explained based on Eq. (19), which
shows that the density gradient ∂n0

∂x
= n0π

d
sin

(
2πx
d

)
and hence

the density gradient scale length n0
∂n0/∂x

= d
π

cosec( 2πx
d

). It is
clear that with the increase of channel length d the effective
density gradient gets reduced due to the enhanced scale length.

The effect of ion temperature on the growth rate of
the instability is shown in Fig. 7, where we observe an
enhancement in the growth rate with the ion temperature.
This is attributed to the increased pressure gradient force.
Since the increased pressure gradient force in the presence
of higher ion temperature would have the same consequences
as the stronger density gradient, it is obvious that the Rayleigh
instability grows faster when the ions carry higher temperature.
On the other hand, the electron temperature has opposite effect
on the growth of the instability (Fig. 8). This is due to the
reduced restoring force in the presence of higher thermal
motion of the electrons. Under this situation lower frequency
of oscillations is realized for the fixed wavelength and hence
the reduced growth rate. The opposite effect of ion and electron
temperatures on the growth rate can be understood based on
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FIG. 9. Variation of perturbed potential φ with the ion tempera-
ture corresponding to Fig. 7.
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Eq. (23), where the coefficients a2 and a3 show a dependence
on the temperatures (Ti and Te) and the electron gyrofrequency

via terms
YiTik

2
y

M
, 2m�2YiTi

YeTeM
, and 2kyYiTiu0�

2m

MYeTe
. Physically it means

the effect of gyratory motion of the electrons becomes less
significant in the presence of higher electron temperature
(Te being in the denominator) when the other parameters are
kept fixed. In contrast the ion temperature has the opposite
effect with Ti being in the numerator. It can be seen that
for higher electron temperature the coefficients a2 and a3

decrease which causes the coefficient m1 to increase. This
finally leads to the lower values of the oscillation frequency
ω3 and hence the smaller growth rate. On the other hand, the
coefficients a2 and a3 attain higher values due to the coefficient
m1 being lowered, resulting in larger oscillation frequency ω3

and the enhanced growth rate for the higher ion temperature.
The enhanced perturbed potential φ with the ion and electron
temperatures is shown in Figs. 9 and 10, respectively. The
increased potential for the higher temperature of the plasma
species is in agreement with an experiment [27].

Finally, in Fig. 11 we show the variation of growth rate
with respect to axial distance from the anode. Evidently the
instability grows at a smaller rate when we move away from
the anode. It means the oscillations are more unstable in the
region toward the anode. This can be understood based on the
mobility of electrons and their residence time in the channel.
According to Bohm’s classical model the electron mobility
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FIG. 11. Variation growth rate γ along the axial distance from
the anode for the parameter as in Fig. 1.

increases along the axial distance from the anode. It means the
residence time of the electrons is decreased in the ionization
channel. This results in a reduction in the growth of the
instability.

IV. CONCLUSIONS

We have analytically studied the growth rate of Rayleigh
instability in a Hall thruster under the effect of finite ion and
electron temperatures that were omitted in earlier investiga-
tions. Unlike other investigators, we obtain two interesting
conditions (24) and (28) of the instability for the present
plasma model. The oscillations whose frequency falls within
the frequency band described by Eq. (28) are found to grow
into instability, and the broader frequency band is observed
for the real plasma when its species carry finite temperatures.
It was found that higher frequency oscillations grow into
instability if the plasma contains higher density gradient, the
electrons drift with higher velocity, or stronger magnetic field
is applied. Moreover, oscillations of larger wavelengths are
found to be unstable even at lower frequency. The growth rate
of the instability and the corresponding perturbed potential
were observed to behave consistently.
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