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collapse, and inverse cascade
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A two-dimensional generalized cubic nonlinear Schrödinger equation with complex coefficients for the
group dispersion and nonlinear terms is used to investigate the evolution of a finite-amplitude localized initial
perturbation. It is found that modulation of the latter can lead to sideband formation, wave condensation, collapse,
turbulence, and inverse energy cascade, although not all together and not in that order.
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I. INTRODUCTION

For many decades the phenomenon of collapse has been
encountered in many theoretical studies of nonlinear wave
interaction [1–5]. When there is strong modulation or in-
teraction of finite-amplitude waves, there can appear within
a finite time a catastrophic decrease of the spatial size of
the wave structure, together with an extreme concentration
of the wave energy. It can occur for gravity waves on
surfaces of deep water [6], Langmuir waves in plasmas
[1,2,7], and during intense light propagation in nonlinear
media [8]. Collapselike behavior can also appear in other
systems such as Bose-Einstein condensates and matter waves
[9,10], as well as during gravitational compression of massive
stars [11].

Many studies of collapse are based on the nonlinear
Schrödinger equation (NLSE), which has become a paradigm
model for investigating weakly nonlinear dispersive waves
[1–5]. For most applications, the system of interest consists
of the classical Schrödinger equation, but with a nonlinear
term, which is self-consistently determined by the nonlinear
response of the system. The collapse behavior appears as a
mathematical singularity during the evolution of the system.
Just before reaching the singularity, or collapse, the wave
energy density approaches infinity and the space scale of the
wave or structure approaches zero. Collapse thus represents a
limitation of the original physical model. One usually invokes
a new process, such as nonlinear damping, that might prevent
collapse [1–5]. However, it has been shown that many common
dissipative and disordering effects, such as linear damping,
wave emission, thermal fluctuations, incoherence, nonlocality,
etc. [1–5,12–16], cannot fully prevent collapse. In this case it
can be expected that the latter will result in a completely new
physical state of the system [1–4,9–11].

There have been many investigations of the standard NLSE
and its variants. Most of the investigations are on the formation
and properties of solitons and other localized structures, as
well as their interactions. Pereira and Stenflo [17] considered a
cubic NLSE equation with complex coefficients. The equation
has since been extended to include other types of nonlinearities
and higher dimensions and exotic soliton, vortex, pattern, and
other solutions have been found and investigated [18–21].
Here, we shall investigate the wave collapse behavior using
as a simple model a two-dimensional (2D) generalized cubic
NLSE equation. The latter is the standard cubic NLSE, but with
complex coefficients for the group-dispersion and nonlinear

terms. That is, viscous effects and nonlinear damping and/or
growth, as well as reaction-diffusion phenomena, can be
included. We are interested in the nonlinear evolution of a
spatially localized finite-amplitude perturbation, in particular,
the onset of collapse and/or turbulence, as well as what
happens after the collapse. Numerical results show that when
collapse does not occur, the initial perturbation first undergoes
modulational instability, followed by gradual cascading of the
wave energy toward that of the shorter waves until a turbulent
state is formed. However, when collapse occurs during the
modulation, the energy is abruptly transferred to the very
short waves, followed by an inverse cascade of energy from
the resulting short waves to the increasingly longer waves,
and eventually a spiky turbulent state appears. However,
for the cases studied, no self-organization to steady state is
found.

II. THE GENERALIZED NLSE

The generalized cubic NLSE in our model is

i∂tE + p∇2E + [V (x,y) − q|E|2]E = 0, (1)

where E(x,y,t) is a complex function of the time t and
space (x,y), and ∇2 = ∂2

x + ∂2
y . Unlike the standard cubic

NLSE, here the coefficients p (= pr + ipi) and q (= qr + iqi)
can be complex, and an externally given potential V (x,y)
has been included. In many physical applications, such as
wave interaction in continuous media, Eq. (1) describes the
nonlinearly modulated envelope of a wave train. In this case,
V (x,y) characterizes an externally given potential, pr and
qr |E|2 are the coefficients of group dispersion and nonlinear
frequency shift, and pi and qi |E|2 are the coefficients of
viscous damping or growth and nonlinear damping or growth,
respectively. We note that pi and qi represent wavelength-
and amplitude-dependent damping or growth, respectively.
That is, the linear Schrödinger operator now has dispersive,
diffusive, as well as dissipative parts. As a result of the complex
coefficients, the generalized NLSE can describe other physical
phenomena, and should be especially useful for investigating
the wave cascade process under realistic conditions.

We first look at the conservation properties of the cubic
NLSE in the presence of complex coefficients. Multiplying
(1) by the complex conjugate E∗, we obtain

iE∗∂tE + pE∗∇2
⊥E + V |E|2 − q|E|4 = 0. (2)
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Subtracting its complex conjugate in Eq. (2) results in

∂t

∫ +∞

−∞
|E|2 dV = 2

∫ +∞

−∞
(pi + qi |E|2)|E|2 dV, (3)

where the integration is over all space. Thus the quantity∫ +∞
−∞ |E|2 dV , which, following convention, shall be referred

to as the total energy, is conserved if pi = 0 and qi = 0.
This is of course expected since Eq. (1) is then the standard
cubic NLSE [1]. If |E|2 � 1, Eq. (3) can be simplified to
∂t

∫ +∞
−∞ |E|2 dV ∼ 2pi

∫ +∞
−∞ |E|2 dV , so that the total energy

grows or damps according pi > or < 0. It is of interest to
note that in the former case, the growth of small amplitude
modulation will saturate when |E|2 = pi

/|qi | if qi < 0,
because of the built-in amplitude-dependent damping.

Similarly, multiplying (1) by ∇E∗ · ∇ and subtracting the
complex conjugate of the resulting equation, one finds for the
evolution of the reduced total enstropy

∂t

∫ +∞

−∞
|∇E|2 dV = 2

∫ +∞

−∞
(pi |∇2E|2 + qi |E∇E|2)dV,

(4)

so that, as expected, the reduced total enstropy is also
conserved if pi = 0 and qi = 0. Unlike the total energy, in
the |E|2 � 1 limit the evolution of the total enstropy depend
on both the divergence and magnitude of ∇E, as well as the
signs of pi and qi and the magnitude of E. For example, in the
pi > 0, qi < 0 case mentioned above, the saturation (if any)
level of the total enstropy would be |E∇E/∇2E|2 = pi/|qi |.

III. NUMERICAL RESULTS

We are interested in the effect of a localized finite-amplitude
initial perturbation, the evolution of the resulting modulational
instability, as well as the onset of turbulence, wave collapse,
and inverse cascade.

We shall solve Eq. (1) numerically using the spectral
method [1–5]. The size of the computation grid is 256 × 256,
and the length of the simulation box on each side is 4π (−2π to
2π ). Periodic boundary conditions are used on both sides. The
grids are sufficiently fine to ensure that the use of the spectral
method does not lead to preferential alignment of the wave
and turbulence structures. For the cases considered, aliasing
effects are found to remain at a negligible level. There is also
good conservation of the total energy and enstropy for the
nondissipative case, (pi,qi) = 0.

For convenience, we shall adopt the external potential

V (x,y) = V0 cos

[(x

4

)2
+

(y

4

)2
]

, (5)

where V0 = −10. The 2D profile of the potential is shown in
Fig. 1. As expected, since our system is not conservative and
we are interested in finite-amplitude perturbations, the form
and magnitude of the potential does not significantly affect the
main conclusions. Instead, the size of the simulation box with
respect to that of the initial pulse does play a role in triggering
the onset of turbulence, etc., because of the periodic boundary
condition.

FIG. 1. (Color online) The external potential V(x,y). Note that in
this as well as the following figures the color is for clarity only. The
values of the quantities are given by the vertical axis.

A. Generation and spreading of turbulence

We first consider the case where the coefficients are real,
say, p = 1 and q = −1, corresponding to a standard NSE with
an external potential. The initial perturbation is of the form of
a Gaussian pulse E(0,x,y) = E0 exp[−(x2 + y2)/R2

0], where
E0 = 30 and R0 = 1.1. That is, the large amplitude initial
perturbation E(0,x,y) is at the center of the simulation box
and has a narrow spatial profile with respect to the latter.

In Fig. 2 we present the evolution of the energy spectrum
|E(kx,ky)|2 at t = 0.005, 0.010, 0.020, 0.030, 0.050, 0.080,
0.100, and 0.200. One can clearly see that nonlinear modula-
tion of the initial pulse first leads to a weak condensation in the
k space, followed immediately by sideband formation, which
is, in turn, followed by a relatively slow cascading of the scale
of the generated waves toward that of the increasingly shorter
wavelengths (larger k values) until a fairly turbulent state
appears. That is, the onset of turbulence is gradual and there
is apparently no collapse, even though the initial perturbation
is of very large amplitude.

For completeness, in Fig. 3 we show the corresponding
evolution of the enstropy spectrum |kE(kx,ky)|2, where k =√

k2
x + k2

y , at t = 0.005, 0.010, 0.030, and 0.200. One can see
that the enstrophy spectrum evolves similarly as the energy
spectrum, but at different rates.

B. Collapse and inverse cascade

Next we consider the case p = −1 + 0.01i, q = 10 − 0.5i.
That is, the system is characterized by negative group disper-
sion and viscous (or diffusive) growth, as well as amplitude-
dependent damping. The initial Gaussian perturbation is of
amplitude E0 = 1.6, and of the same width R0 (=1.1) as the
preceding case. The viscous growth coefficient is taken to be
sufficiently small, and the nonlinear damping is sufficiently
large (recall that E0 = 1.6), so that linear or nearly linear
growth of the initial perturbation is suppressed, which may
overshadow the nonlinear evolution that we are interested in.
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FIG. 2. (Color online) Evolution
of the energy spectrum for the
cases p = 1, q = −1, R0 = 1.1, and
E0 = 30.

Figure 4 shows the energy spectrum corresponding to the
evolution of the initial perturbation at t = 0.150, 0.170, 0.200,
0.240, 0.255, 0.265, 0.275, 0.300, and 0.322. Here one can
see that the initial perturbation also first condenses in the
k space. However, instead of sideband formation and gradual

spreading of the waves to smaller scales, at approximately
t = 0.2 the energy (actually a part of it, since the system is
dissipative) in the long (small k) waves making up the initial
pulse is abruptly (i.e., in a much shorter time scale) transferred
to the very short (large k) waves, followed by gradual inverse
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FIG. 3. (Color online) Evolution of the reduced enstropy spectrum. The parameters are the same as in Fig. 2.

cascade back toward the longer waves. Eventually a fairly
uniform turbulent state is formed. That is, here we have a
typical collapse scenario as predicted by Zakharov [1,4,5], who
analytically considered the conservative case (pi,qi = 0) up to
the singularity, and predicted that dissipation or other effects
will then lead to short-wave turbulence. It should be noted that,
as compared to the preceding case of a conservative system,
here the initial perturbation is of relatively small amplitude.
One can also see that the resulting turbulent state (which is
not stationary) is much more spiky than that of the preceding
case. This behavior can be attributed to the fact that here the
turbulence is formed by harmonic interaction of the very short
waves created at the end of the collapse stage (or the start of
the inverse cascade process), and in the preceding case it is
formed by smooth modulation of the long waves of the initial
pulse.

Figure 5 shows the corresponding evolution of the enstropy
spectrum |kE(kx,ky)|2 at t = 0.150, 0.220, 0.255, and 0.320.
One can see that again the enstrophy spectrum evolves
similarly as the energy spectrum, but at different rates.

IV. DISCUSSIONS

Although there is clear evidence of inverse cascade in
most cases that we have considered, we have not found
any evidence of self-organization, that is, the formation of
regular or coherent structures from an earlier disordered

state, despite the fact that our system allows built-in viscous
and nonlinear damping or growth, as well as management
of energy and enstropy. We found that for the cases with
nonlinear dissipation, the turbulence becomes increasingly
more homogenous [but not stationary, as to be expected from
Eqs. (3) and (4) for the total energy and enstropy] as the
evolution continues. However, still no general conclusion can
be made on this point since our numerical trials are necessarily
limited in scope and not all of the many possibilities could
be considered. More analytical investigation in this direction
is clearly needed. On the other hand, with proper (such as
introducing time- and space-dependent, or even feedback)
control of the coefficients, one can use the generalized NLSE
to investigate in great detail (e.g., at the different stages) the
properties of wave cascade as well as possible control of
turbulence.

Although the generalized NLSE can take into account
features in nonlinear processes that are otherwise precluded,
it should, however, be cautioned that for some physical
systems the introduction of complex coefficients can lead
to violation of the system’s physical requirements, such
as that of normalization and conservation. On the other
hand, some physical systems can be investigated directly by
numerical simulations based on first principles. For example,
Langmuir wave collapse can also be investigated by solving
the Vlasov equation numerically [22,23] and by particle-in-cell
simulations [24]. It should thus be possible to verify the present
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FIG. 4. (Color online) Evolu-
tion of the energy spectrum for
p = −1 + 0.01i, q = 10 − 0.5i,
R0 = 1.1, and E0 = 1.6.

results using these approaches after appropriate modifications.
Finally, it may be of interest to point out that, because p and
q are complex, the generalized NLSE can be expressed in
other familiar forms, such as that not containing i = √−1
in the time derivative or the other coefficients. That is, the

generalized NLSE is also relevant to completely different
physical phenomena, such as that of the reaction-diffusion
type that is common in the study of chemical reactions and
biological evolutions [25–29], as well as in future theories on
the development of economies [29] and financial markets [30].
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FIG. 5. (Color online) Evolution of the reduced enstropy spectrum for the same parameters as in Fig. 4.
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