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Superluminal sheath-field expansion and fast-electron-beam divergence measurements
in laser-solid interactions
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We show that including a sufficient description of the target’s rear surface significantly affects the interpretation
of a wide range of laser-solid experiments. A simple Debye sheath model will be shown to be adequate. From this
the sheath field responsible for ion acceleration has been shown to expand at superluminal speeds, leading to very
large ion-emission regions on the target’s rear surface; a new explanation for the dynamics of the ion-accelerating
sheath field accounts for this observation and demonstrates the inaccuracy of measuring the angular divergence
of the injected electron beam, crucial to fast ignition, from the lateral extent of the ion emission. However, it
is shown that on careful probing the sheath field can provide unique insight into details of the fast electron’s
distribution function. The relative merits of probing other physical quantities has been examined. The width of
the background temperature spot overestimates the divergence by a factor of 2 unless electron recirculation is
prevented.
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I. INTRODUCTION

The interaction between high-intensity lasers and solid
targets is of primary importance in current laser-plasma
research. A full understanding of such interactions is crucial
to fast-ignition inertial confinement fusion, which offers the
promise of thermonuclear ignition with less driver laser
energy than standard central hot-spot ignition [1], and in the
acceleration of ion beams from solid targets [2]. In particular,
the beam of relativistic fast electrons generated when the
high-intensity laser strikes the solid must be characterized.
Characterizing the angular divergence of the fast-electron
beam is of particular importance in determining the viability
of the cone-guided fast-ignition scheme where fast electrons
emitted from the tip of a gold cone heat and ignite a
precompressed pellet of deuterium-tritium fuel. The angular
divergence of the electron beam is critical in determining the
flux of fast electrons reaching the core, and hence if ignition is
possible [3]. Experimental studies to this aim frequently rely
on rear-surface probing of densities, temperatures, or electric
fields [4–7]. However, numerical simulations relevant to these
experiments have rarely treated the rear surface sufficiently in
two dimensions (2D); the effect of including the rear surface
on the interpretation of experimental measurements has yet to
be elucidated.

It will be shown that measurements of the half-angle
based on the temperature can be in significant error unless
care is taken. This error is a direct result of processes
occurring at the rear of the target, namely, the generation
of a sheath electric field when fast electrons leave the target
and enter the vacuum region behind it. In order to prevent
the target charging up by fast electrons escaping it, the
field quickly becomes strong enough to reflect almost all
of the incoming fast-electron beam. Therefore fast electrons
recirculate through the target many times. This will be shown to
lead to a broad temperature profile along the rear surface that,
when assuming the electrons are moving ballistically, gives an
apparent half-angle of divergence of 70◦, compared to the value
of 28◦ injected in the simulations [6]. Such a discrepancy could

make the difference to the perceived viability of cone-guided
fast ignition. Furthermore, it will be shown that the lateral
extent of the sheath is dramatically different to that of the fast
electrons on the rear surface; thus a naive interpretation of
measurements of the size of the sheath or ion-emission region
(ions are accelerated by the sheath) will yield a very poor
measurement of the angular divergence.

However, some degree of characterization of the beam is
possible by probing the sheath. This will be explained by the
development of a simple 2D Debye-sheath model, with which
we will show that the sheath field is sensitive to a wide dynamic
range in the fast-electron number density—in particular, those
injected with large divergence angles. From direct probing of
the sheath, in combination with measuring temperature (where
care has been taken to suppress volumetric heating of the target
by recirculating electron currents) and density (inferred from
transition radiation or Kα from tracer layers [4–6,8]), we may
infer not only the average angular divergence of the beam, but
go some way to constraining its angular distribution function.
Furthermore, the sheath potential will be shown to depend
only on the fast electron’s average energy and so can be used
to measure the average energy of the fast electrons and its
dependence on the injection angle.

In target-normal sheath ion acceleration (TNSA), ions are
accelerated by a sheath electric field at the rear surface of
the target. This field has been observed in experiments to
spread very rapidly along the target’s rear surface, giving
an ion-emitting region larger than is consistent with other
measures of electron-beam divergence [9–12]. The cause of
this spreading is an open question; an appropriate description
of the rear surface must be included in the numerical modeling
to understand TNSA. The 2D ion-static sheath field (i.e., that
generated when the ions are immobile) model discussed in
the context of characterizing the fast-electron beam will be
useful to this end; this is, after all, the field that initiates
TNSA. The sheath will be shown to expand along the target’s
surface superluminally, leading to the large ion-emitting
region observed experimentally. Indeed, the observation of
such superluminal expansion would provide an excellent
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confirmation of the validity of the model. The sheath model
derived here has the potential to explain other curious
observations relating to TNSA, such as the insensitivity of
ion-spot size to target thickness.

In this paper solid density plasmas were simulated with the
Vlasov code FIDO [13]. This code has been recently developed
to simulate realistic target edges in order to study TNSA
and rear-surface effects. In principle, particle-based codes can
simulate such edges, however, in 2D they lack the number
of particles to have a dynamic range large enough to capture
the generation of a Debye sheath by the few electrons far
from the laser spot [14]; this will be shown to be crucial
for modeling the Debye sheath in 2D. FIDO uses the hybrid
approximation [3,15], solving the Vlasov equation for the fast
electrons generated by the high-intensity laser and using a fluid
treatment for the cold electrons that make up the target.

The outline of the rest of the paper is as follows. In Sec. II
the simulation code FIDO will be described and details of the
simulation parameters given. It will next be necessary to derive
the sheath model; this is done in Sec. III using an electrostatic
model. When discussing the sheath model particular attention
will be paid to deriving scaling laws relating the peak electric
field, scale length and the resulting potential to the number
density of fast electrons in the incoming beam and their energy,
and the speed at which the sheath spreads transversely along
the target’s rear surface. In deriving the sheath model, sheath
magnetic fields are neglected; this will be justified in Sec. IV.
A unique model for the spreading of the sheath will be derived
and will be shown to be more important than the previous
explanations reliant on recirculation or B fields.

Once the sheath model is established, its effect on the
interpretation of rear-surface measurements will be discussed
in Sec. V. We will see in Sec. V A that the rapid (superluminal,-
as seen in Sec. III C) spreading of the sheath field along the
target means that the vast majority of fast electrons striking the
rear surface are reflected; i.e., there are strong recirculating
currents throughout the target. It will be shown that the
resultant broadening of the temperature profile on the rear
can be removed by suppressing recirculation, giving a good
measure of the angular divergence. In order to constrain the
angular distribution of the fast electrons further, it will be
shown that direct probing of the sheath field is useful—this
will be demonstrated in Sec. V B. Using the scaling laws
derived using the sheath model in Sec. III, it will be shown
that measuring the sheath’s maximum value and scale length
provides sufficient information to reconstruct the number
of electrons injected with a given angle. In Sec. VI B the
consequences of the sheath model for TNSA ion acceleration
will be discussed, with particular reference to the rapid
spreading of the sheath predicted by the model.

II. NUMERICAL SIMULATIONS

A. Numerical model

The fast electrons were modeled by solving the Vlasov
equation,

∂f

∂t
+ v · ∂f

∂r
+ F · ∂f

∂p
= δfinj

δt
. (1)

f is the distribution function of the fast electrons in position
r and momentum p space. F is the Lorentz force, i.e., F =
−e(E + v × B). The distribution function f is 6D, making any
numerical solution to Eq. (1) prohibitively computationally
costly. This is usually overcome by expanding f in basis
functions in a solid angle in momentum space (for example,
the spherical harmonics [16] or the Cartesian tensors [17]).
This reduces the dimensionality of the problem to 3, but
results in complicated, nonstandard equations. This is not
done in the model used by FIDO. In the kinds of interactions
discussed here the field configuration can be reduced to
E = Ex êx + Ey êy , B = Bzêz. In this case momentum space
can be considered in cylindrical polar coordinates, with z

as an ignorable coordinate, reducing the dimensionality to 4
and rendering numerical solution feasible (if costly). Further,
because Eq. (1) is solved directly as a standard conservative
advection equation, standard techniques may be employed,
namely, the piecewise-parabolic method [18]. This method can
handle very steep density gradients and enabled the solution
of target edges. In addition, as f is a 4D phase fluid, we were
able to resolve the effect of very low relative particle densities
on the generation of the sheath field; this would be difficult to
achieve with a particle-based code.

The fast population was injected using the function

finj(p,θ ) ∝ exp

[
−

(
E − E0

2E0

)2]
exp

[
−

(
θ

θ1/2

)2]
. (2)

This was derived by Sherlock [13]. Here E0 = 1 MeV
and θ1/2 = 28◦ was used to parametrize the angle of
injection. Note that Sherlock described 1D absorption
and found a super-Gaussian distribution in θ ; in hy-
brid Particle-in-Cell simulations it is more usual to use
a Gaussian dependence [19], the difference being ow-
ing to 2D effects or numerical heating. The more stan-
dard Gaussian dependence is used here. Collisions were
neglected for the fast electrons as their scattering time from
the ions was 1.6 ps, which was longer than the simulation time.
The bulk (cold) target electrons affected the fast electrons
indirectly by providing a return current jR = σE, where σ

is the Spitzer electrical conductivity [20]. Note that this
conductivity is only strictly valid at background temperatures
over 100 eV. Using the Milchberg resistivity [21] increased
the collimating B field inside the target, but as the beam was
already collimated this made no significant difference to its
propagation and interaction with the rear surface. Ionization
dynamics was not included and could act as an energy sink,
changing the temperature, resistivity and degree of collimation
inside the target; this will not dramatically affect the physics
discussed here, which is concerned with the generation of the
sheath outside the target.

B. Simulation parameters

The target was fully ionized (Z = 13) solid aluminum
(density 2.7 g cm−3) and its thickness was 10 μm. The laser
intensity I0 was 2.0 × 1019 W cm−2, giving an average injected
energy of 1 MeV, and the absorption fraction was set to 0.3.
The laser spot was Gaussian with width λL = 3.6 μm, i.e.,
I = I0e

−(x/λL)2
. The electron beam was injected moving in

the +y direction over a thin 0.5-μm layer in y. The spatial
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FIG. 1. (Color online) The two types of targets considered in this
paper.

domain was resolved with cells 0.5 μm × 0.5 μm inside the
target (−120 μm � x � 120 μm, 0 � y � 10 μm). Outside
the target the cell size for adequate resolution of the sheath
was small (20 cells per fast-electron Debye length, 0.2 μm)
so that 2D simulations including the sheath were limited to
100 fs—small compared to typical experiments but sufficient
to measure the field’s expansion speed. To overcome this,
1D simulations were performed in order to derive scaling laws
for the peak sheath field and its potential with the fast-electron
current jy = −enf c; these were then used in conjunction
with 2D simulations where the rear surface was not directly
modeled (but treated as a reflecting boundary) to reconstruct
the expected sheath fields after longer times.

In order to determine if an improved correspondence
between the temperature and density measurements made on
the rear surface and the actual size of the beam inside the
target could be achieved (and so the accuracy of estimates
of its initial angular divergence improved), 2D simulations
were performed with refluxing suppressed; recirculation was
found to be crucial in determining the width of profiles on
the rear. This was done by stretching the numerical grid in
the −y direction, allowing the fast electrons to escape to
y → −∞, as was achieved in the experimental arrangement
of Lancaster et al. [6]; the targets used in the experiment are
illustrated in Fig. 1, where that on the left-hand side is the
standard target and that on the right-hand side is shaped to
suppress recirculation. This provides a numerical test of the
conclusion of Lancaster et al. that suppressing refluxing by
using targets shaped as the left-hand one in Fig. 1 allows for
an accurate measurement of the beam’s injection angle.

III. SHEATH-FIELD FORMATION AND EXPANSION

Inside the target the current from the fast-electron beam
was canceled out by a return current drawn from the cold
background electrons (in order to maintain quasineutrality).
When the density of the background plasma dropped below
the density of the beam, i.e., below the critical density,
this cancellation was no longer possible. In this case the
Ampere-Maxwell law, ∂Ey/∂t = −jy/ε0 (where we have
ignored ∇ × B; see Sec. IV), predicts the rapid growth of
a large electric field—the sheath field. Thus when the fast
electrons reached the rear surface of the target and entered
the vacuum, they generated a sheath electric field in the
y direction. Experimentally, such sheath fields are seen to

move very rapidly along the target surface [10,22], so therefore
there must be a jy sufficient to generate such fields over a
large area on the rear surface. This has so far been explained
by recirculating currents leading to electrons present far from
the injection region or by large magnetic fields on the rear
surface causing an “E × B” drift along this surface [23]. We
will show that a unique mechanism dominates that is reliant
on electrons on their first pass through the target. The weak
dependence of the sheath field on the incoming jy meant that
the few electrons that were injected with large angles could
generate large sheath fields.

First, the formation of the sheath field will be discussed
in 1D. This will then be used to derive a scaling law for
the maximum value of the electric field (and the resulting
potential) in its formation and saturated phases along with
the formation time (i.e., the time to transition between these
phases). These scalings will be tested in 2D over 100 fs and
used to estimate the sheath field and potential after 1 ps.

A. 1D simulations

The dependence of the peak sheath field E
peak
y and the

potential 	 on the incoming fast-electron number density was
investigated in 1D owing to strong resolution constraints. The
number density of injected fast electrons was set to different
fractions nf /n0f of that calculated by the injection function
n0f . Two distinct regimes were observed. Initially, the field was
not strong enough to reflect fast electrons—this is the setup
phase. After a time scale of ω−1

pf (ωpf is the relativistic plasma
frequency for the fast electrons) the field was sufficiently
strong to reflect most of the electrons and a Debye sheath
was set up—the saturation phase.

In the setup phase Ampere-Maxwell’s equation can be
integrated straightforwardly as jy may be assumed constant:

∂Ey

∂t
= −jy

ε0
= nf ec

ε0
(3)

⇒ Ey = nf ec

ε0
t. (4)

The sheath potential 	 can be calculated by assuming that the
electric field grows uniformly in the region over which the
fast-electron beam has penetrated into the vacuum. Thus
the scale length of the field is LE = ct and so

	 = −
∫ ct

0
dy ′ Epeak

y = −Epeak
y

∫ ct

0
dy ′ = −nf e

ε0
(ct)2. (5)

Therefore, in the setup phase,

Epeak
y ∝ nf

nf 0
, 	 ∝ nf

nf 0
. (6)

These relations hold until the field becomes large enough
to reflect a significant number of fast electrons; jy can then
not be assumed to be constant and the saturation phase is
reached. In this phase the sheath field was found to fall off
exponentially over the fast-electron Debye length—a Debye
sheath was formed [24]:

Ey = Epeak
y exp

(
− y ′

λDf

)
, λDf =

(
ε0Tf

nee2

)1/2

, (7)
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FIG. 2. (Color online) The peak sheath field (top) and potential
(bottom) against the fractional number density of fast electrons
injected in 1D simulations (nf /n0f ) various times into the simulation.

where y ′ is the distance from the target edge. This sheath does
an amount of work equal to the average energy of the injected
beam Tf , i.e.,

	 = Tf = −
∫ ∞

0
Ey dy ′ ⇒ Epeak

y = Tf

λDf

∝
(

nf

nf 0

)1/2

. (8)

Note that in the saturated phase 	 is independent of nf and
only depends on the energy of the fast electrons.

Validation of these analytical results was done with 1D FIDO

simulations. Figure 2 shows the peak sheath field E
peak
y and the

potential 	 against nf /n0f various times into the simulation;
E

peak
y and 	 each display two distinct scalings with nf /nf 0.

As expected from the arguments given above, both E
peak
y and

	 scale linearly with nf in the setup phase. In the saturation
phase (reached after 1 ps for all nf /n0f ) the potential was
approximately constant falling from 2.4 to 1.8 MeV as the
injected density dropped by five orders of magnitude and E

peak
y

displayed the expected n
1/2
f scaling.

The difference between the scalings at various times shown
in Fig. 2 is that, for earlier times, the sheath is saturated only
at large injected number density; the shift between setup and
saturation phases occurs further to the right. At later times
the sheath has entered the saturation phase at lower injected
densities; the point delineating the two phases in Fig. 2 moves
to the left. This can be understood by noting that if fewer
electrons are injected the sheath’s growth time will be longer
(from the Ampere-Maxwell law the growth rate is proportional
to the fast-electron current ∂Ey/∂t = −jy/ε0), the sheath will
take longer to saturate and so will remain in the linear phase
for longer.

We can quantify this by deriving an expression for sheath’s
saturation time τs . τs can be estimated by approximating the
Ampere-Maxwell law to

E
peak
y

τs

= ecnf

ε0
⇒ τs = 1

ωpf
, (9)

where ωpf is the relativistic plasma frequency of the fast
electrons. In Fig. 2 we see that after 5 fs all injected currents
below 10−1 of the maximum were in the linear growth phase
(i.e., Ey,	 ∝ nf ); by 100 fs only fractional currents less than
10−4 were still in the linear phase. This behavior is well
predicted by the saturation time in Eq. (9).

The fact that the potential of the sheath in the saturated
phase was not equal to Tf but to some multiple of it can
be explained by examining the structure of the sheath in the
y direction. A plot of this profile is shown in Fig. 3. In the
top plot we see that the sheath naturally separated into two
regions: the Debye sheath where the field fell exponentially
over a small spatial region (λDf = 0.2 μm); and the plateau,
where the field fell slowly for a large distance before rapidly
falling to zero. The plateau was caused by electrons escaping
the target before the sheath was set up. The sheath potential up
to y ′, i.e., − ∫ y ′

0 Ey dy ′ is shown in the bottom plot. Here we
see that the Debye part of the sheath had potential 	 ≈ Tf (the
Debye sheath ended at y ′ ≈ 0.2 μm). Therefore, the plateau
was responsible for the excess potential. We will discuss
the plateau further in a followup paper, where we will be
interested in the energy of the escaping electrons. In this
paper we will be interested in the Debye sheath, so 	 ≈ Tf is
valid.
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FIG. 3. (Color online) The sheath field 100 and 500 fs after the
beam enters the vacuum (top). The potential of the sheath after 500 fs
(bottom).

036404-4



SUPERLUMINAL SHEATH-FIELD EXPANSION AND FAST- . . . PHYSICAL REVIEW E 83, 036404 (2011)

B. 2D simulations

The need to resolve the fast electron’s Debye length limited
2D simulations of the sheath-field evolution to durations of
100 fs. These short-time-scale situations were sufficient to
measure the expansion speed of the sheath. In addition, the
scaling laws for the sheath field and potential developed in 1D
in the last section can be extended to 2D. The 2D scaling laws
allow predictions about the sheath field to be made based on
the number density of fast electrons reaching the rear surface.
After validating the 2D scaling laws using the short-time-
scale 2D simulations, they can be used to predict the fields
over longer time scales based on simulations of the interior
of the target only (which do not suffer stringent resolution
constraints).

First, we extend the scaling laws to 2D. The scaling laws
in the setup phase can be derived using the Ampere-Maxwell
law, noting that the current perpendicular to the surface is
jy = |j| cos θ :

∂Ey

∂t
= nf ec

ε0
cos θ (10)

⇒ Epeak
y ∝ nf t cos θ, 	 ∝ nf t2 cos θ. (11)

To derive the scaling law for the saturation phase in 2D it
is necessary to account for the fact that the electrons have
less momentum perpendicular to the surface as the angle of
injection increases, and thus the sheath needs to do less work
to reflect them. In the saturation phase we have

	 = Tf ⊥ = γ⊥mec
2 ∝ cos θ (12)

Epeak
y λDf = Tf ⊥, λDf ∝ T

1/2
f ⊥ ∝ (cos θ )1/2

(13)
⇒ Epeak

y ∝ T
1/2
f ⊥ ∝ n

1/2
f (cos θ )1/2,

where we have assumed that the electrons are ultrarelativistic
so their gamma factor resulting from momentum perpendicular
to the surface γ⊥ ≈ (p⊥/mec) ∝ cos θ .

These scaling laws have been used to calculate sheath field
and potential profiles, labeled “theory” in the top plot in Fig. 4,
which were compared to those from the 2D FIDO simulations,
labeled “code” in the figure. The agreement was reasonable.
Later evolution of the sheath can be estimated by constructing
Ey and 	 from simulations with a reflective boundary at the
target rear surface, using the scaling laws, as is shown in Fig. 4
(bottom). It can be seen that the lateral extent of the sheath
would be very large (120 μm) compared to the beam width
(20 μm) after only 285 fs. A large (80 μm) sheath potential
would be seen even if recirculation was suppressed.

Using the short-time-scale 2D simulations the speed of the
expansion was found to be superluminal initially, with the
field expanding at a speed of 1.6c, 10 μm along the rear
surface, and to asymptotically approach c further along the
rear surface; recirculating currents or B fields cannot cause
the field to spread this rapidly, indirectly suggesting that they
are not responsible for the spreading. The lower plot in Fig. 4
directly shows that disabling recirculation had little effect on
the lateral-expansion speed of the front of the sheath, although
recirculation did increase the magnitude of Ey and 	 behind
the expanding front. Refluxing is not essential for large lateral
expansion of the sheath.
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FIG. 4. (Color online) Fast-electron number density just inside
and sheath field and potential just outside the target after 100 fs (top).
Profiles outside the target constructed from current inside after 285 fs
with (R) and without (NR) refluxing (bottom). The peak values
are as follows: n

peak
f = 2.0 × 1027 m−3, Epeak

y = 8.1 × 1012 V m−1,

and 	peak = 3.8 MeV (top); n
peak
f = 4.6 × 1027 m−3 with refluxing

and n
peak
f = 2.4 × 1027 m−3 without refluxing (bottom). Q/Qmax

represents the normalized value of a general physical quantity.

C. Sheath expansion model

The 1D and 2D sheath-field simulation results may be
brought together to propose a unique mechanism that supposes
that electrons generate the field on their first pass through
the target. The injected fast electron distribution goes as
exp −(θ/θ1/2)2, so although the average is θ1/2 = 28◦, the very
weak dependence of 	 on nf means that the few electrons
injected with much larger angles can generate a large sheath
field, causing it to spread far along the rear surface. This is
illustrated in Fig. 5, the sheath field spreads up the target as

θ

FIG. 5. (Color online) An illustration of the mechanism respon-
sible for the lateral spreading of the sheath electric field responsible
for TNSA. The sheath field spreads up the target with the increasing
intersection of the expanding cloud of fast electrons and the plane of
the rear.
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fast electrons arrive from larger and larger injection angles,
striking the rear surface and generating field Ey1 followed by
Ey2 and finally Ey3; recirculating currents enhance the sheath
field behind the expanding front. The speed of expansion vE

is calculated as follows: The electrons injected into the target
at a given time propagate through it along a half-cylindrical
front of expanding radius; although the number density of fast
electrons falls off rapidly as θ > θ0, we have shown that the
magnitude of the sheath field and its potential are insensitive
to this—therefore the sheath field is generated as this cylinder
intersects the rear of the target. vE is given by determining the
rate of change of the chord length formed by the intersection
of the cylinder and the rear surface:

vE = c

sin θ
> c, (14)

which is superluminal and consistent with the 2D simulation
data, predicting a speed of 1.4c, 10 μm along the rear surface.
It should be noted that once the current of first-pass fast
electrons drops below the level required to form the sheath in a
reasonable time, refluxing electrons dominate the propagation
of the sheath and the speed slows to <c.

IV. REAR-SURFACE MAGNETIC FIELD

An alternative explanation for the lateral expansion of the
sheath field, ∂Ey/∂t = −jy/ε0, is that E × B drifts enhance
the spreading of the electrons along the rear surface [23].
However, the rear-surface B field can be shown to be of
marginal significance despite the fact that large magnetic fields
(2000 T) were generated in the 2D simulations. First, we can
give a simple order of magnitude explanation for this B field.

Assuming that the magnetic field is generated from ∇ × E
as the sheath field front moves by at speed ≈c, then if the
front has a scale length L, the B field is generated over time
τ = L/c, therefore,

∂B
∂t

= −∇ × E,
B

τ
≈ E

L
⇒ B ≈ E

c
, (15)

B = |B|, and E = |E|. Figure 4 shows that the maximum value
of the sheath E field was of the order of 1012 V m−1 over a wide
region on the rear of the target. From this the above scaling
predicts B ≈ 3000 T, which is comparable to the 2000 T seen.

In the 2D scaling laws described in Sec. III B and in the
sheath-expansion model in Sec. III C, the ∇ × B term was
neglected in the Ampere-Maxwell equation:

1

c2

∂ E
∂t

= −μ0j + ∇ × B (16)

To quantify the relative importance of the two terms on the
right-hand side to the generation of E we define the ratio α.

α = μ0jy

|∇ × B| ≈ 1. (17)

Note that to derive this it was assumed that jy = nf ec, B =
Ey/c, and varied on a length scale L = c/ωpf. Both terms in
the Ampere-Maxwell equation are important in the generation
of the sheath field.
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FIG. 6. (Color online) The sheath-field profile along the rear
surface with the magnetic field turned on (B—solid lines) and off
(no B—dashed lines) after 250 fs (red) and 500 fs (blue).

Although the ∇ × B term does therefore modify the rate
of generation of Ey at the sheath-field expansion front, it
does not dramatically modify the speed of propagation of
this front (both sheath-field generation terms only become
active when the fast-electron beam from the injection point
reaches a given point on the rear) or the magnitude of the
saturated sheath; neglecting it was justified in the sheath model.
This is demonstrated in Fig. 6, which shows the results of a
2D simulation identical to those presented in Sec. III B but with
the magnetic field set to zero for the duration of the simulation.
We see that the sheath field was modified, moving slightly
slower, but that the overall dynamics was not dramatically
altered.

Although we have discussed the effect of the rear-surface
B field on the propagation of the sheath E field, we have yet
to elucidate its effect on the trajectory of the fast electrons. In
order to do this, representative particles were tracked in the
2D simulation with the rear surface included. The tracks for
1-MeV particles injected after 50 fs (chosen to give the B field
time to form) are shown in Fig. 7. This figure demonstrates that
although there is evidence of the 1-MeV electrons gyrating in
the sheath B field, they do not perform E × B drifts along the
target’s edge. The simple approximation that the E and B fields
are constant over the region 0 < y ′ < λDf would lead us to
expect this. This field configuration yields a trajectory where
the electron enters the region, performs a half gyration, and
leaves the region, reentering the (relatively) field-free target.
In the absence of sufficiently large fields in the target or B-field
gradients, drifts are not significant.
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m
) Target edge

FIG. 7. (Color online) Particle tracks for 1-MeV electrons in-
jected at various angles. The tracks display each particle’s motion in
the time interval 50–100 fs.
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V. MEASURING THE PROPERTIES OF THE
FAST-ELECTRON BEAM

In this paper a model has been developed for the generation
of the sheath field at the rear surface of the solid target.
Centrally important to this model is that fact that the electric
field is not strongly dependent on the number of incoming
fast electrons. Despite this, careful probing of the sheath
has the potential to aid in the characterization of the fast-
electron beam’s properties. Such measurements have rarely
been enlisted for this purpose, whereas measurements of the
fast electron’s number density and the background temperature
are regularly employed. These measurements, in particular that
of the temperature, are affected by the presence of the sheath
at the rear surface, the electric field of which reflects the fast
electrons and causes them to reflux transversely down the
target; the fact that the sheath spreads very rapidly transversely
along the target means that the rear surface acts like a perfectly
reflecting boundary. The utility of measuring these various
quantities will be discussed in this section.

A. Temperature and density measurements

The injection angle of the fast-electron beam is often
inferred from number density (usually from radiation emitted
by the fast electrons at the rear surface, or within a tracer layer
inside the target) or temperature measurements at the rear
surface [4,5]. These measurements can be strongly affected
by refluxing. Figure 8 shows the spatial distribution of the
fast-electron number density nf , 1 ps into the interaction,
from the 2D simulations with the reflective boundary at the
rear surface (such a boundary was found to be sufficient for
determining the conditions inside the target). The upper plot in
Fig. 8 shows that the fast electrons were widely spread in the
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FIG. 8. (Color online) Logarithm of the fast-electron number
density after 1 ps (top). Relative change in fast-electron number
density and background electron temperature (Q/Qmax) along the rear
of the target after 1 ps (bottom). The maximum number density and
temperature on the rear surface were 4.6 × 1027 m−3 and 690 eV with
recirculation and 3.8 × 1027 m−3 and 530 eV without recirculation.

target owing to recirculation. However, the lineout at the rear
surface shows that nf was strongly peaked over 20 μm there,
giving a good indication of the lateral extent of the beam. The
rate of Ohmic heating is given by

∂Te

∂t
∝ T −3/2

e . (18)

This rapidly saturates as the background temperature Te

increases, so the temperature profile was much broader than the
fast-electron number density profile. We expect larger injection
angle measurements when diagnosing Te than nf : This is con-
sistent with the experimental result of Lancaster et al. [4]. As
stated previously, FIDO has the ability to suppress recirculation.
When this was done the temperature profile narrowed (as did
that of nf , although not as markedly) so that it may be used to
give a good half-angle divergence measurement: 30◦ without
refluxing and 70◦ with refluxing compared to the 28◦ divergent
beam injected (calculated using the profiles in Fig. 8 giving
temperature half widths of 10 and 40 μm). This is consistent
with the observations of Lancaster et al. [6]. A limitation of
density and temperature measurements is that it is difficult to
use them to infer anything other than the average properties of
the beam. However, in principle they may be combined with
probing of the sheath to yield more information about the fast
electron’s distribution function.

B. Using the sheath field to measure the angular divergence
(and average energy)

We have seen that the saturated sheath field has peak
value E

peak
y and scale length λDf given by E

peak
y λDf = Tf .

Therefore, it should be possible, by measuring these two
quantities (using proton probing, as used recently by several
authors [22,25]) to determine the number of fast electrons
and their average energy at a point on the rear surface and
thus to reconstruct their angular distribution in both number
and energy. In fact, this is the reverse of the process in
discussed in Sec. III B, where scaling laws for E

peak
y were

used to reconstruct its profile from nf ; therefore it is possible
to reconstruct nf and Tf from E

peak
y and the scale length λDf

by using the following formulas:

Tf = Epeak
y λDf , ne = ε0

(
E

peak
y

)2

Tf e2
. (19)

The advantage of using the sheath to probe nf over direct
measurement (as discussed in the previous section) is that
E

peak
y ∝ n

1/2
f . Thus the sheath is sensitive to relatively low

beam densities and can yield a measurement of the number of
fast electrons injected at large angles over a broad region of
the target. If there are many electrons injected at large angles,
the beam may not self-collimate, with serious consequences
for fast ignition.

As a proof of principle, simulations identical to those in
Sec. III B where the sheath field was resolved in 2D but where
the injection function was modified were performed. The
resulting sheath fields were used to reconstruct the electron’s
average energy and number density along the target’s rear
surface. The reconstructions were made using E

peak
y and 	—in
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FIG. 9. (Color online) Comparison between the lateral sheath-
field profile for injected distributions with average half angles of 30◦

and 60◦ after 100 fs (top) and between the sheaths for an injected
Gaussian m = 2 and super-Gaussian m = 50 (middle). The densities
reconstructed for each case (dashed lines) compared to that from the
simulation (solid lines) after 100 fs (bottom).

principle λDf could have been used instead. The injection
function was modified to

finj(p,θ )∗ ∝ exp

[
−

(
θ

θ1/2

)m]
. (20)

The following cases were simulated:

MW30: m = 2 θ1/2 = 30◦;

MW60: m = 2 θ1/2 = 60◦;

SG30: m = 50 θ1/2 = 30◦.

The case with m = 50 represents a step function in θ , as
used in Ref. [26]. The top and middle plots in Fig. 9 show that
the sheath field does reflect the differences in the distribution
function in each case. The top plot shows that the sheath
is stronger over a wider range of x when the average half
angle is increased, i.e., when the beam is more spread out.
When the distribution function had a sharp cutoff in angle, the
speed of the lateral spreading was greatly reduced, as shown
in the middle plot. This was owing to the number density
of fast electrons quickly falling so low that the sheath setup
time became longer than 100 fs; recall that the setup time is
τs = 1/ωpf ∝ n

−1/2
f . The bottom plot in Fig. 9 shows that the

number density of electrons can be reconstructed to within
an average error of a factor of 2 using Eqs. (19). Finally
note that the measurements of the sheath allow the (spatially
resolved) average energy of the electrons to be measured; a
full discussion of this is left as further work.

VI. DISCUSSION

A. Measuring the properties of the injected beam

Characterization of the fast-electron beam plays a vital part
in understanding ultrahigh-intensity laser-solid interactions.
Currently this is often done by making temperature or density
measurements that are in general not sensitive to the detailed
structure of the fast electron’s distribution function and that
may not even yield accurate measurements of the average
injection angle owing to refluxing currents heating the target
over a large volume. The sheath field causes ion acceleration
(as will be discussed in more detail in the next section);
however, anomalously large ion-emission regions have been
observed that, if assumed to be indicative of the beam size,
give an estimate of the injection angle that is inconsistent with
the results of temperature and density probing. In this paper
the discrepancy in the angular divergence between various
diagnostics has been shown to be as expected—we would
expect density measurements to yield the smallest value,
temperature measurements a larger value, and ion-spot size
the largest. We have demonstrated that this can be overcome if
specially shaped targets are shot, as was done experimentally
by Lancaster et al., reducing volumetric Ohmic heating
caused by refluxing, and if the sheath field is interpreted
correctly.

The elucidation of the ion-static sheath field provided here
suggests a way that several important parameters of this
distribution can be measured. By diagnosing the peak electric
field and its scale length using proton probing, in the absence
of refluxing, the number density and average energy of the fast
electrons can be spatially resolved, potentially constraining
their injected distribution. Note that the sheath actually
reveals the distribution of fast electrons along the rear of the
target, thus modification to the beam’s distribution occurring
inside the target (for example, by collimating B fields) needs
to be taken into consideration.

That spatially and temporally resolved proton probing of
the sheath is possible has been demonstrated recently by the
deployment of such a diagnostic by Quinn et al. [22] The great
advantages of such a diagnostic are as follows: that it has a very
large dynamic range, probing current densities that are very
small fractions of the maximum value, i.e., 10−6, and because
the sheath’s potential only depends on its energy, decoupling
measurements of the beam’s energy from its density (for
comparison, diagnosing the temperature measures the energy
density of the beam). Measuring the energy of the beam is also
crucial to determining the viability of fast ignition.

There are two caveats in the use of such a probing technique;
the first is that the sheath field probed must be the ion-static
sheath, as will be discussed in the next section. One must
measure the sheath before ions are accelerated. Second, the
fast-electron Debye length can be very small (the minimum
value was 0.2 μm in the simulations described in this paper).
The plateau has a much longer scale length; consequently it is
important to be sure which part of the sheath is being probed
to correctly interpret its measurement, particularly because
the plateau does not necessarily yield information about the
fast-electron beam inside the target.

An attempt to measure the superluminal expansion of the
sheath field would provide a definitive experimental test of the

036404-8



SUPERLUMINAL SHEATH-FIELD EXPANSION AND FAST- . . . PHYSICAL REVIEW E 83, 036404 (2011)

sheath model presented here and so its use in characterizing
the fast electron’s distribution function. Several experiments
have observed ion-emission regions large enough that the
expansion speed must be ≈c; however, the region over which
superluminal expansion should occur can often be too small to
measure. This is the case in several experiments where lateral
expansion at ≈c has been observed [10,22]. Equation (14) can
be rearranged to yield

vE = c

(
1 + L2

x2

)1/2

, (21)

where x is the transverse distance along the rear surface. For a
given target thickness we might expect to observe superluminal
expansion when L/x > 1. For 10-μm targets this only occurs
within the first 10 μm from the laser axis. To see superluminal
speeds, thicker targets need to be used.

Finally, if there is a low-density gap between the cone tip
and the compressed DT core in fast ignition, the superluminal
sheath field spreading will be relevant. Such rapid field
dynamics will lead to strong sheath fields extended over
large areas of the cone tip, preventing the fast-electron beam
escaping the cone.

B. The consequences for ion acceleration

The sheath-field dynamics discussed in this paper is impor-
tant for understanding the TNSA ion-acceleration mechanism,
but care must be taken to note that the ion-accelerating sheath
is significantly modified as the ions are accelerated. The
sheath field moves from the ion-static phase to the plasma-
expansion phase, which exhibits quite different behavior, as
was described by Mora [27]. The development of the sheath
field before the ions move initiates ion acceleration, therefore,
the size of the ion-emitting region should correspond to the
lateral extent of the ion-static sheath, so we can apply the
sheath model here to some aspects of TNSA.

The rapid expansion of the sheath seen here indicates
a rapidly growing ion-acceleration region. In addition, the
primary importance of electrons on their first pass through the
target to the generation of the sheath meant that the sheath’s
extent was more dependent on the injection function than the
level of refluxing. Therefore, the size of the ion-emitting region
should be relatively independent of the amount of refluxing
and so it should not depend strongly on the thickness of the
target. What one cannot predict from the ion-static sheath
model is that the number of accelerated ions is proportional
to the number of fast electrons [27]. Therefore, the flux of
ions should fall rapidly with distance from the laser spot. In
addition, refluxing will make a large difference to the ion flux
by dramatically increasing the fast-electron flux far from the
injection region. Therefore, we expect that the main difference
in ion emission from thin targets, where refluxing is significant,

and thick targets, where it is not, should only be in the flux of
ions emitted, that being much lower in the latter case.

Understanding the insensitivity of the initiating sheath field
to nf means that we may tune the ion emission to suit the
desired practical application. If a large emission region is
required then defocusing the laser may be beneficial—the less
strongly beamed fast electron population will generate a larger
accelerating structure on the rear surface.

VII. CONCLUSIONS

In laser-solid interactions it is frequently the case that one
is interested in processes occurring at the rear of the target
or probing it to infer the conditions inside the target. In this
paper it was shown that an adequate treatment of the rear
surface and, in particular, including the sheath field was crucial
to interpreting measurements of the fast electrons beam’s
divergence and to understanding the sheath-field expansion
in ion acceleration. An adequate model for the sheath needs to
be considered when interpreting the majority of short-pulse
laser-plasma experiments and simulations. As a result of
resolving the sheath field generated by very low incident fast-
electron-beam densities, a simple Debye sheath model was
shown to be sufficient. From this we conclude the following:

(1) The sheath field’s initial expansion was controlled
by electrons on their first pass through the target, causing
superluminal lateral expansion of the field, as is consistent
with the rapid expansion seen in experiments.

(2) Almost all electrons incident on the rear -surface were
reflected owing to the large lateral extent of the sheath
caused by its rapid spreading. The background electron
temperature was shown to overestimate the divergence owing
to its broadening by this recirculation. Disabling recirculating
currents using specially shaped targets dramatically improved
the measurement.

(3) The weak dependence of the sheath potential on the
incoming number density of electrons means that care must be
taken when relating the size of the ion-emission region to the
beam properties inside the target, but with careful probing of
the sheath unique information can be gained about the details
of the fast-electron distribution function.

Correctly modeling the sheath field will be of fundamental
importance to many experiments not considered in detail in
this paper. Measurements of the electron’s energy distribution
depend on those electrons that escape the sheath field; in the
same way the energy of any positrons produced in laser-solid
interactions will be dramatically modified by the sheath.
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Cerrada, Laser Part. Beams 24, 217 (2006).

[4] K. L. Lancaster et al., Phys. Rev. Lett. 98, 125002 (2007).
[5] J. S. Green et al., Phys. Rev. Lett. 100, 015003 (2008).
[6] K. L. Lancaster et al., Phys. Rev. E 80, 045401(R) (2009).
[7] M. Zepf et al., Phys. Plasmas 8, 2323 (2001).

036404-9

http://dx.doi.org/10.1063/1.870664
http://dx.doi.org/10.1063/1.1333697
http://dx.doi.org/10.1103/PhysRevLett.98.125002
http://dx.doi.org/10.1103/PhysRevLett.100.015003
http://dx.doi.org/10.1103/PhysRevE.80.045401
http://dx.doi.org/10.1063/1.1351824


RIDGERS, SHERLOCK, EVANS, ROBINSON, AND KINGHAM PHYSICAL REVIEW E 83, 036404 (2011)

[8] M. Zepf et al., Phys. Rev. Lett. 90, 064801 (2003).
[9] R. A. Snavely et al., Phys. Rev. Lett. 85, 2945 (2000).

[10] P. McKenna et al., Phys. Rev. Lett. 98, 145001 (2007).
[11] T. E. Cowan et al., Phys. Rev. Lett. 92, 204801 (2004).
[12] Romangnani et al., Phys. Rev. Lett. 95, 195001 (2005).
[13] M. Sherlock, Phys. Plasmas 16, 103101 (2009).
[14] A. Pukhov, Phys. Rev. Lett. 86, 3562 (2001).
[15] A. R. Bell et al., Plasma Phys. Controlled Fusion 39, 653 (1997).
[16] A. R. Bell et al., Plasma Phys. Controlled Fusion 48, R37 (2006).
[17] R. J. Kingham and A. R. Bell, J. Comp. Phys. 194, 1 (2004).
[18] P. Collela and P. R. Woodward, J. Comp. Phys. 54, 174 (1984).
[19] R. Evans, High Energy Density Phys. 2, 35 (2006).

[20] L. Spitzer and R. Harm, Phys. Rev. 89, 977 (1953).
[21] H. M. Milchberg, R. R. Freeman, S. C. Davey, and R. M. More,

Phys. Rev. Lett. 61, 2364 (1988).
[22] K. Quinn et al., Phys. Rev. Lett. 102, 194801 (2009).
[23] D. W. Forslund and J. U. Brackbill, Phys. Rev. Lett. 48, 1614

(1982).
[24] M. Passoni, V. T. Tikhonchuk, M. Lontano and

V. Yu. Bychenkov, Phys. Rev. E 69, 026411 (2004).
[25] L. Willingale et al., Phys. Plasmas 17, 043104 (2010).
[26] J. R. Davies, J. S. Green, and P. A. Norreys, Plasma Phys.

Controlled Fusion 48, 1181 (2006).
[27] P. Mora, Phys. Rev. Lett. 90, 185002 (2003).

036404-10

http://dx.doi.org/10.1103/PhysRevLett.90.064801
http://dx.doi.org/10.1103/PhysRevLett.85.2945
http://dx.doi.org/10.1103/PhysRevLett.98.145001
http://dx.doi.org/10.1103/PhysRevLett.92.204801
http://dx.doi.org/10.1103/PhysRevLett.95.195001
http://dx.doi.org/10.1063/1.3240341
http://dx.doi.org/10.1103/PhysRevLett.86.3562
http://dx.doi.org/10.1088/0741-3335/39/5/001
http://dx.doi.org/10.1088/0741-3335/48/3/R01
http://dx.doi.org/10.1016/j.jcp.2003.08.017
http://dx.doi.org/10.1016/0021-9991(84)90143-8
http://dx.doi.org/10.1016/j.hedp.2006.02.002
http://dx.doi.org/10.1103/PhysRev.89.977
http://dx.doi.org/10.1103/PhysRevLett.61.2364
http://dx.doi.org/10.1103/PhysRevLett.102.194801
http://dx.doi.org/10.1103/PhysRevLett.48.1614
http://dx.doi.org/10.1103/PhysRevLett.48.1614
http://dx.doi.org/10.1103/PhysRevE.69.026411
http://dx.doi.org/10.1063/1.3377787
http://dx.doi.org/10.1088/0741-3335/48/8/010
http://dx.doi.org/10.1088/0741-3335/48/8/010
http://dx.doi.org/10.1103/PhysRevLett.90.185002

