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Poincaré analysis of wave motion in ultrarelativistic electron-ion plasmas
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Based on a relativistic Maxwell-fluid description, the existence of ultrarelativistic laser-induced periodic waves
in an electron-ion plasma is investigated. Within a one-dimensional propagation geometry nonlinear coupling of
the electromagnetic and electrostatic components occurs that makes the fourth-order problem nonintegrable. A
Hamiltonian description is derived, and the manifolds of periodic solutions are studied by Poincaré section plots.
The influence of ion motion is investigated in different intensity regimes. For ultrarelativistic laser intensities
the phase-space structures change significantly compared to the weakly relativistic case. Ion motion becomes
very important such that finally electron-ion plasmas in the far-ultrarelativistic regime behave similarly to
electron-positron plasmas. The characteristic new types of periodic solutions of the system are identified and
discussed.
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I. INTRODUCTION

In parallel to the progress in laser technology, during
the last decade research in relativistic plasma dynamics has
been progressing significantly. Many new phenomena appear
in the ultrarelativistic laser-plasma-interaction regime [1,2].
Intensities of 1019 Watt/cm2 are now available in terawatt
tabletop laser systems based on chirped-pulse amplification.
In that regime, e.g., for circular polarization and wavelength
λ = 1μm, the squared amplitude of the normalized laser vector
potential (see below) may be of order 10 and higher. The
relativistic γ factor for electrons then becomes much larger
than 1, and clearly ultrarelativistic effects start dominating the
nonlinear plasma dynamics.

Originally, the relativistic laser-plasma regime was ana-
lyzed in the classical paper by Akhiezer and Polovin [3], and
later by Dawson and Kaw [4,5]. It was shown that the laser can
generate longitudinal plasma waves due to the Lorentz force
q �v × �B, where q is the charge and �v the velocity of the particle
in the strong magnetic wave field �B. Relativistic coupling
between transverse and longitudinal oscillations occurs. An in-
teresting phenomenon in the new field of relativistic optics [2]
is the completely different particle motion in relativistic waves
compared to the well-known quiver motion in nonrelativistic
oscillations. In linearly polarized laser light “figure-eight”
orbits [6] appear as new solutions of the single-particle orbits in
the average rest frame (where the average momentum is zero).
The systematic understanding of periodic plasma motion in
weakly relativistic waves persistently grew. The analysis is by
far not trivial because of the nonlinear nature of the problem.
Nonintegrability complicates the understanding of the com-
plex dynamics. Not only regular but also chaotic solutions
occur. Since the basic equations are in general not integrable,
only in some limiting cases can analytical work be done.
Akhiezer and Polovin [3] found exact solutions in the form
of elliptic functions when no electromagnetic wave is present.
For normalized phase velocities (see below) β ≡ v/c � 1 a
second kind of solution has been identified analytically, first
by Akhiezer and Polovin for β → ∞, then in more general
form for β � 1 by Kaw and Dawson [5], Max and Perkins [7],
and Chian and Clemmow [8]. These solutions are linearly
polarized and almost transverse. They have a small parallel

momentum, which has twice the frequency of the transverse
momentum. In the average drift (rest) frame, the fluid elements
perform a motion along an eightlike trajectory in the plane
spanned by propagation and polarization direction. Analytical
results for this motion have been derived in the cases of
β ≈ 1 and β → ∞ for weakly relativistic and ultrarelativistic
waves [5,7–11]. Another possible periodic solution describes
a circular trajectory, which also has already been noted by
Akhiezer and Polovin [3]. It has been studied in more detail
by Clemmow et al. [12,13], Bisai et al. [14], and Pesch and
Kull [11]. For these solutions the parallel and the longitudinal
momenta are of the same order of magnitude and have the same
frequency. The solutions exist below and above the critical
plasma density; the plasma density region is different from
that for the figure-eight motion. Above the critical density
circular trajectories are purely electrostatic, below the critical
density an additional electromagnetic component is present. In
addition to purely numerical solutions approximate analytical
methods [15–18] also have been applied to discuss the various
forms of the solutions.

It was demonstrated [19–21] that the systematic analysis
of coupled transverse-longitudinal oscillations benefits from
the methods that generally have been developed for nonlinear
systems. As is known from other fields of nonlinear dynamics,
Poincaré surface plots are very useful tools for characterizing
the bifurcation scenarios in Hamiltonian systems. This is
of particular importance in the presence of several control
parameters. For example, phase velocity of the wave, plasma
density, or laser amplitude may serve as control parameters,
which together make the complex nonlinear problem rather
confusing and rather unmanageable when no advanced non-
linear dynamics methods are being applied. As a particular
result that has been obtained from studies of Poincaré surface
plots we mention the disappearance of circular solutions for
small plasma densities and the appearance of new types of
solutions in the weakly relativistic regime within windows of
plasma density [22].

Nonrelativistic models for high-frequency plasma waves
treat ions as immobile without noticeable changes compared
to an exact treatment with mobile ions. The reason is the small
mass ratio εi = me/mi (determined from the rest masses for
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FIG. 1. (Color online) Poincaré surface plot
of ȧ versus a (for φ = φmin) and φ̇ versus φ

(for a = 0,ȧ > 0), for H = 10 and β = 2 with
mobile ions. Labeled are the fixed point a and
the island chains b,c, corresponding to periodic
wave motions.

electrons me and ions mi). The ratio is largest for protons,
i.e., εi ≈ 1/1836 � 1. However, it is well known that masses
increase with increasing Lorentz factor γ caused by the
quiver velocities of the particles. Since generally the electron
quiver velocity is faster than that of ions, the electron γ

factor γe increases faster than the ion γ factor γi . Therefore,
for very large quiver velocities (or large laser amplitudes)
meγe/miγi → 1. In the latter case, ions (protons) should
effectively behave like positrons when compared to electrons.
Obviously, ion motion should no longer be neglected [23,24].
It is this effect that will be investigated in the present paper
with respect to the existence of ultrarelativistic plasma waves.

To identify solutions and to understand the bifurcation
scenario, i.e., the appearance of new solutions when changing
the control parameter H (energy), we will make use of
Poincaré surface section plots. As we shall show, the basic
equations identify trajectories in a four-dimensional phase
space of which we will render projections in order to
identify the relevant structures. The trajectories are calculated
from coupled oscillator equations by standard Runge-Kutta-
methods. One of the oscillators will serve as a clock, while
plotting the coordinates of the other one. The numerical
methods used in the present work are described, e.g., in
Refs. [25–27]. By this method it is easy to identify periodic
solutions.

The manuscript is organized as follows. Section II summa-
rizes results for stationary linearly polarized wave solutions
from models with immobile ions. Section III discusses
electron-ion plasmas with mobile ions and their influences on
the dynamics in different energy regimes. The ultrarelativistic
results for electron-ion plasmas will be compared with the
phenomena in electron-positron plasmas in Sec. IV. For
completeness, wave solutions in electron-positron-ion plasmas
are also discussed. The paper is concluded by a short summary
and discussion.

II. HAMILTONIAN SYSTEM FOR PLASMA WAVES WITH
IMMOBILE IONS

Analytically, the problem of relativistic waves in plas-
mas is mostly treated within Maxwell-fluid models in a
one-dimensional propagation geometry. Due to relativistic

nonlinearities longitudinal electrostatic and transversal elec-
tromagnetic oscillations are coupled. The typical approach to
derive coupled wave solutions is to look for stationary solutions
in a frame of reference ξ = x − vt moving with the normalized
phase velocity β = v/c > 1 where c is the vacuum speed of
light. In Appendix A we have formulated the equations of
motion for the normalized laser vector potential a and the
normalized scalar potential φ appearing due to the plasma
reaction. We shall discuss now the nonlinear dynamics that is
hidden in these equations.

For immobile ions, the equations of motion are

d2a

dξ 2
= −a

β

β2 − 1

1

Re

, (1)

d2φ

dξ 2
= −β

β2 − 1

(
ψe

Re

− 1

β

)
. (2)

For the definition of ψe ≡ ψe(φ) and Re ≡ Re(a,φ) see
Appendix A. Equations (1) and (2) follow from Eqs. (A26)
and (A27) for χ = 0 in the limit εi → 0. More details of the
limit εi → 0 are summarized in Appendix B. Equations (1) and
(2) describe coupled longitudinal, transverse oscillations for
a linearly polarized vector potential. For a ≡ 0, they describe
nonlinear longitudinal waves; the opposite limit φ ≡ 0 is not
possible because of linear polarization. This is in contrast to
the circularly polarized case; see Akhiezer and Polovin [3].
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FIG. 2. (Color online) Vector potential a (red dash-dotted line)
and scalar potential φ (blue solid line) for the solutions labeled a
(left) and b (right) in Fig. 1.
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FIG. 3. (Color online) Poincaré surface plot
of ȧ versus a (for φ = φmin) and φ̇ versus φ (for
a = 0,ȧ > 0), for H = 600 and β = 2. Labeled
are fixed points a,e, corresponding to periodic
wave motions.

Within a Lagrangian formulation, Eqs. (1) and (2) follow
from the Lagrange density

L = (β2 − 1)
ȧ2

2
+ φ̇2

2
− β

β2 − 1
(Re − β) + φ

β2 − 1
≡ L0.

(3)

Introducing the canonical momenta

pa ≡ ∂L

∂ȧ
= (β2 − 1)ȧ, pφ ≡ ∂L

∂φ̇
= φ̇, (4)

we obtain the Hamiltonian

H ≡ paȧ + pφφ̇ − L = p2
a

2(β2 − 1)
+ p2

φ

2
+ β

β2 − 1
(Re − β)

− φ

β2 − 1
≡ H0 ≡ T + V0 (5)

for laser intensities and phase velocities β where the ion motion
is negligible [22,28]. The dot indicates the derivative with
respect to ξ . The canonical equations

ȧ = ∂H

∂pa

, φ̇ = ∂H

∂pφ

, ṗa = −∂H

∂a
, ṗφ = −∂H

∂φ
(6)

are equivalent to (1) and (2). The Hamiltonian formulation
is very useful for studying coupled electromagnetic wave
solutions. From the canonical equations we conclude H =
const. because

dH

dξ
= ∂H

∂a
ȧ + ∂H

∂φ
φ̇ + ∂H

∂pa

ṗa + ∂H

∂pφ

ṗφ = 0. (7)

The system (1) and (2) is equivalent to the description of
Akhiezer and Polovin [3] obtained when studying relativistic
plasma motion in coupled longitudinal and transversal elec-
tromagnetic waves. Many articles on relativistic plasma wave
phenomena used a set of equations equivalent to (1) and (2).
However, the range of applicability is limited to a parameter
regime where ion motion can be neglected. Certainly for
laser amplitudes a ∼ 1/εi ions can gain relativistic momenta
and should be included as mobile species into the model.
Since much effort is devoted to pushing laser intensities into
and beyond such regimes it seems important to develop an
understanding of wave phenomena in plasmas where the ion
response may be relativistic. However, one should note that

the electrons already become strongly relativistic for a ∼ 1.
Therefore already for 1 < a � 1/εi the electron inertia in-
creases, and the lower mobility of ions becomes less important.

It is possible to calculate the motion of a plasma fluid
element by expressing the momenta pα in terms of the
potentials. In general the motion of a fluid element consists
of an average drift in propagation direction of the wave and a
superposed motion in the frame where the average momenta
are zero. A systematic discussion of plasma motion in linearly
polarized periodic waves assuming an electron plasma with
immobile ions can be found in Refs. [3,11,22] and will not be
repeated here.

III. INFLUENCE OF MOBILE IONS ON STATIONARY
WAVE SOLUTIONS

We will now generalize to a plasma consisting of electrons
and mobile ions. For demonstration we use the largest value
of εi , i.e., εi = 1/1836. The equations of motion follow from
Appendix A for χ = 0 in the form

∂2a

∂ξ 2
= −a

β

β2 − 1

(
1

Re

+ εi

1

Ri

)
, (8)

∂2φ

∂ξ 2
= −β

β2 − 1

(
ψe

Re

− ψi

Ri

)
. (9)

They can be derived from the Lagrangian

L = β2 − 1

2
ȧ2 + φ̇2

2
+ β

1 − β2

(
Re − β + Ri − β

εi

)
. (10)

Introducing canonical momenta in the same way as above, we
find the Hamiltonian

H = p2
a

2(β2 − 1)
+ p2

φ

2
+ β

β2 − 1

(
Re − β + Ri − β

εi

)
. (11)

Compared to the immobile ion approximation, we have a
perturbed Hamiltonian

H = H0 + �H,

H0 = T + V0, (12)

�H = β

β2 − 1

(
Ri − β

εi

+ φ

β

)
.
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FIG. 4. (Color online) Vector potential a (red dash-dotted line)
and scalar potential φ (blue solid line) for the solution e in Fig. 3

Clearly (see Appendix B)

�H → 0 for εi → 0. (13)

But for fixed εi � 1

�H � V0 only for max(a) → 0. (14)

On the other hand, when the laser amplitude a becomes larger,
even for small εi the “perturbation” �H cannot be neglected
anymore compared to the zeroth-order Hamiltonian.

In order to study the variety of possible solutions of Eqs. (8)
and (9) at fixed values of H , corresponding to the energy
of the coupled electromagnetic, electrostatic oscillation, and
β, we render Poincaré section plots of the four-dimensional
phase space. Equations (8) and (9) are nonlinearly coupled
oscillators, which can be solved by standard Runge-Kutta
algorithms. In produce phase-space projections we will use one
oscillator as a clock while plotting the other one every time the
clock ticks. Using a as a clock, ticking every time when a = 0
and ȧ > 0 we will plot φ versus φ̇. When using φ as a clock we
will plot a versus ȧ every time when φ̇ = 0 and φ̈ > 0. With
the help of these projections it is easy to identify periodic
solutions as they correspond to fixed points or island chains.
The latter show characteristic amplitude modulations [14]. The
initial conditions for all trajectories are such that we require
a = 0,φ̇ = 0 at ξ = 0.

Figure 1 shows Poincaré section plots for β = 2 and
H = 10. We labeled three periodic solutions a–c in the plots.
Solution a is the famous figure-eight solution, having an
electromagnetic field oscillating with twice the frequency of
the electrostatic field. The island chains b and c correspond to
higher-order amplitude-modulated solutions. It is interesting to
note that one obtains qualitatively the same types of solutions
as the ones appearing in the Akhiezer-Polovin model [22]. Of
course, a detailed quantitative comparison of the phase-space
structures reveals small changes. But the conclusion is that for
the chosen parameter regime the ion motion is still negligible.

Typical forms for the vector and scalar potentials for β = 2
and H = 10 are shown in Fig. 2, revealing that the solutions
predicted by the Poincaré plots are truly periodic. The left
diagram depicts the potentials for the figure-eight solution a
while the right diagram shows the potentials for a solution of
type b. From here we can read off the typical magnitudes,
showing that the maximum amplitudes of a are of the order of
10. Hence we have already ultrarelativistic electron motion but
almost nonrelativistic ions. The immobile ion approximation
is still quite good at these magnitudes of a and φ, as can be
concluded from a comparison with previous studies [22].

Next, we further increase the energy H . With increasing
energies more and more formerly closed Kolmogorov-Arnold-
Moser (KAM) surfaces break up and form island chains. For
H = 600, the phase-space topology has changed significantly;
very pronounced new fixed points appear. Figure 3 demon-
strates the becoming of a new fixed point, labeled e. The
new fixed points e correspond to fields shown in Fig. 4. The
solutions a and φ are of the same magnitude and share a
frequency. Although electrons are strongly relativistic, ions
are still weakly relativistic. The according plasma motion is
a circular trajectory in the average drift frame. Besides the
creation of the new fixed points, we observe an increase in the
amount of island chains.

Let us discuss whether the change in phase-space topology,
and thereby the appearance of new solutions e, should be
attributed to ion motion. For that we carried out Poincaré
plots for the same values β = 2 and H = 600, however, using
the Hamiltonian (5) for fixed ions. Figure 5 shows that the
solution e does not appear in the case of immobile ions.

A sense of caution is, however, appropriate here. As long
as the energy is not too large, and depending on the choice

FIG. 5. (Color online) Poincaré surface plot
of ȧ versus a (for φ = φmin) and φ̇ versus φ

(for a = 0,ȧ > 0), for H = 600 and β = 2. The
ion motion has been neglected here. Notice the
different structure of the phase space compared
to Fig. 3.
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FIG. 6. (Color online) Poincaré surface plot
of ȧ versus a (for φ = φmin) and φ̇ versus φ

(for a = 0,ȧ > 0), for H = 2000 and β = 2 with
mobile ions.

of the other control parameter β, solutions of type e can also
be observed in systems consisting of electrons with a fixed
ion background. Regimes for solutions e were detected in
Refs. [11,14,22]. For example, a phase-space structure similar
to the one shown in Fig. 3 can be found at β = 2.5 and
H = 100 for a system with immobile ions. In the latter case
the separatrix that is formed around the islands containing a
and e is a closed KAM surface [29]. Then the ion motion
leads to a stochastization of the separatrix and the vanishing
of hyperbolic fixed points along the separatrix.

Hyperbolic fixed points represent (deformed) figure-eight
motions [22]. With increasing H the volume contained by the
central island containing the fixed-point a becomes smaller,
while the volumes of the islands around the fixed points e
grow. At higher intensities the ion motion becomes strongly
relativistic (εiφ > 1). We observe that with increasing energy
the islands around the fixed point a shrink, while the islands
around solution e grow. The process continues with increasing
values of H , until only the islands of e are left, separated
by a stochastic separatrix. Figure 6 shows Poincaré section
plots for β = 2 and H = 2000. Compared to Fig. 3 the fixed
point corresponding to solution a does not exist anymore.
Solutions of type e and higher-order amplitude modulated
solutions are still existent. This is a generic result. Strongly
ultrarelativistic plasmas do not show the figure-eight solu-
tion anymore. The manifold of solutions becomes relatively
simple. In addition to the higher-order amplitude modulated
solutions that occupy little phase space, the circular motion
and the surrounding island are the dominating surviving
structures.

IV. SIMILARITY TO ELECTRON-POSITRON PLASMAS

A. Effective masses

When H becomes large and the typical amplitude a

approaches 1/εi , electrons quivering in the strongly ultra-
relativistic waves effectively become heavy. The quantitative
differences in effective masses between electrons and ions are
expected to diminish. In the present section we quantify that
scenario for relativistic plasma waves.

Electron and ion motion within the relativistic waves
follows from the solutions (A16) and (A17) for the parallel
component together with pα⊥ = qαA⊥ for the perpendicular

component. The velocities are varying, depending on the
position in the wave. Then also the relativistic γ factor changes
with ξ . We obtain the relativistic γ factor via expression (A25).
Typical examples for γe and γi at large wave energies are shown
in Fig. 7.

Because of the variations with ξ , we should average γ

over one oscillation period for obtaining an averaged
γ factor. After multiplication with the corresponding rest
mass, the averaged effective masses can be calculated. We
have evaluated the averaged effective masses for a series of
waves. Depending on the Hamiltonian H the graphs shown in
Fig. 8 appear. The effective electron-to-ion mass ratio is altered
by relativistic effects in such a way that the ratio increases
with higher intensities. For H → ∞ the effective mass ratio
me〈γe〉/mi〈γi〉 → 1. However, for large H quantum effects,
ignored in the present formulation, will enter into the picture.
Quantum effects become important when the photons being
generated due to Compton scattering have energies of the order
of the electron energy γemec

2. The frequency of the photon
being generated by an electron oscillating with frequency ω is
ωn = γ 3

e ω. From here we may estimate that for γe � O(103)
(when using wavelength λ = 1μm) quantum effects come
into play, and the purely classical treatment breaks down. At
λ = 1μm the condition for quantum effects may be translated
into the condition a � O(103) for the amplitude a. These
estimates show that at least up to H � O(2 × 103) the present
classical treatment will apply. That is exactly the range that we
investigated above. Of course, radiation damping that already
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FIG. 7. (Color online) The relativistic γ factors γe and γi calcu-
lated from (A25) for a specific wave solution with β = 2,H = 2000.
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FIG. 8. (Color online) Averaged effective masses m〈γ 〉=̂mα〈γα〉
of electrons (α = e) and ions (protons) (α = i) as functions of H for
β = 2.

might set in at lower values is not taken into account within
the Hamiltonian formulation.

B. Electron-positron plasma

The results for ultrarelativistic electron-ion plasmas suggest
that for high intensities the electron-ion system behaves
qualitatively like a electron-positron plasma. The analogy to
an electron-positron plasma with respect to the topology of
the phase space will be worked out in the following to support
this expectation. Pair plasmas have attracted special attention
mainly because of the enormous astrophysical applications
[30].

Setting χ = 1 in the basic formulas (A26) and (A27) of
Appendix A, we obtain the equations of motion for an electron-
positron plasma

d2a

dξ 2
= −a

β

β2 − 1

(
1

Re

+ 1

Rp

)
, (15)

d2φ

dξ 2
= −β

β2 − 1

(
ψe

Re

− ψp

Rp

)
. (16)

They follow from the Lagrangian

L = β2 − 1

2
ȧ2 − φ̇2

2
+ β

β2 − 1
(Re − β + Rp − β). (17)

The corresponding Hamiltonian is

H = p2
a

2(β2 − 1)
+ p2

φ

2
− β

β2 − 1
(Re − β + Rp − β). (18)

Typical Poincaré section plots of ȧ versus a and φ̇ versus φ for
electron-positron plasma at low energies are shown in Fig. 9.
We recognize the strong similarity with Fig. 6. That means
that the expected similarity of an ultrarelativistic electron-ion
plasma with a relativistic electron-positron plasma is endorsed.

C. Bifurcation scenario

We can mimic the reported bifurcation scenario for ultra-
relativistic electron-ion plasmas up to the agreement in phase
space for large energies (when H is the control parameter)
by considering an electron-ion-positron plasma [31]. For that
purpose we discuss now the influence of positrons (with
control parameter 0 < χ � 1) on a relativistic wave solution.
Positrons carry the same amount of positive charge as we
considered for the ions, but they have the same mass as the
electrons. This implies that nonlinearities due to positrons
appear on the same scale as they do for electrons. The general
Hamiltonian corresponding to Eqs. (A26) and (A27) is

H = p2
a

2(β2 − 1)
+ p2

φ

2
+ β

β2 − 1

[
Re − β + χ (Rp − β)

+ (1 − χ )
Ri − β

εi

]
. (19)

That will be used for the following discussion.
The presence of positrons leads to a reduction of the

maximum value of φ at a fixed maximum value of a since the
positrons can react more strongly to the radiation pressure than
the heavier ions. This, for example, is known to influence the
possibility of having localized solutions in a system consisting
only of electrons and positrons [32].

To demonstrate that the positrons already have a pro-
nounced impact for low positron density, we present four
Poincaré plots in Fig. 10. The plasma is assumed to be neutral,
hence we adjust the ratio of positron to ion density. We show

FIG. 9. (Color online) Poincaré section plots
of ȧ versus a and φ̇ versus φ for electron-positron
plasmas with H = 10 and β = 2.
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FIG. 10. (Color online) Poincaré section plots of φ̇ versus φ for electron-positron-ion plasmas with H = 10 and β = 2. The four figures
refer to different ion density to positron density ratios of χ = 0, 0.08, 0.1, and χ = 0.2, respectively.

results for χ = 0, 0.08, 0.1 and χ = 0.2, respectively. The
plots are done for H = 10 and β = 2. Figure 9 adds the case
χ = 1. Ions are included in the calculations, but as the average
field intensities are very low, ion motion is not significant.

With increasing positron density we observe a transition
from a single fixed-point topology (Fig. 10, upper left frame,
no positrons present) to a system with two different fixed points
(Fig. 10, lower right frame, where 20% of all positive charge is
carried by positrons). The two remaining fixed points are (simi-
lar to the electron-ion system at higher intensities) separated by
a stochastic separatrix. In the intermediate regime 0.07 < χ <

0.2 we observe an interval where all three solutions are present
at the same time. Increasing the positron density even more
(thus replacing more heavy ions by lighter positrons) does not
seem to lead to further qualitative changes in the phase-space
structure; see Fig. 9. However, it is notable that even a small
amount of positrons can affect the behavior of the system. The
actual positron-to-ion density ratio needed to influence the
phase-space structure depends on the plasma density, which
is increasing with increasing phase velocity β. For β → 1 we
observe that already a positron density of 1% can lead to a
bifurcation similar to the one demonstrated in Fig. 10.

Summarizing, when comparing electron-ion plasmas (with
control parameter H ) with electron-ion-positron plasmas (with
control parameter χ ) we observe similar bifurcation scenarios.
The phase-space topologies are very much alike when we alter
the control parameters.

V. SUMMARY AND CONCLUSION

We studied the existence of stationary, linearly polarized,
coupled electrostatic and electromagnetic waves in ultrarela-
tivistic electron-ion plasmas. Making use of the Hamiltonian
nature of the problem, considering the potentials a and φ as
canonical variables, we discussed the phase-space topology
of the system in dependence of the control parameter H .
Rendering Poincaré section plots allows to study the influence
of ion mobility on the phase-space structure. We identified
periodic solutions in different energy regimes by discussing
fixed points.

When considering the fully relativistic electron-ion
plasma (χ = 0,εi = 1/1836), in the limit of low energies
one recovers known periodic relativistic wave solutions,
such as figure-eight, circular motion, and higher-order
amplitude-modulated fields [3,11,22,28]. The immobile ion
approximation is good for low energies.

Increasing the energy so that the ions become weakly
relativistic, we observed a change in the structure of the phase
space. The ions start reacting to the radiation pressure and
decrease the maximum electrostatic potential one can obtain
at a fixed value of H . This mechanism influences the coupling
of a and φ and results in a reduction of the phase-space
volume around the fixed point (labeled a) associated with the
figure-eight plasma motion. At the same time new islands are
generated in the Poincaré plots with new elliptic fixed points
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(labeled e) corresponding to periodic solutions. This process
continues with increasing energy. The island containing
fixed point a keeps shrinking until only a stochastic volume
is left. We conclude that the ion dynamics strongly affect
the structure of the phase space. Ion motion must not be
neglected in the high-intensity regime. The inclusion of ion
mobility influences the manifold of stationary wave solutions
with linear polarization and changes the structure of the
phase space. The changes in the topology of the Poincaré
section plots indicate that the nature of the solutions changes
qualitatively, not only quantitatively. We have reported the
bifurcation from figure-eight to circular motion.

As an interesting perspective, the availability of high-power
lasers will permit researchers in the future to simulate in lab-
oratory experiments with conventional electron-ion plasmas
many aspects of the physics of astrophysical electron-positron
plasmas.
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APPENDIX A: DERIVATION OF THE EQUATIONS OF
MOTION

Here the one-dimensional (1D) relativistic Maxwell two-
fluid model is the starting point for considering high-frequency
wave motion of an electron-ion plasma in the hydrodynamical
approximation. The 1D propagation geometry for the waves
means that all quantities vary only along the direction of
propagation, let us say x. Vector quantities, of course, may have
components pointing in other directions than x. The plasma is
assumed to be cold, so kinetic effects are neglected. For later
interpretations, here we formulate the system with a slight
generalization to a three-species plasma consisting of electrons
(e), ions (i), and positrons (p) using the index α = e,i,p.
Dimensionless quantities are introduced in the usual way, i.e.,
lengths x, times t , velocities vα , momenta pα , vector A, and
scalar potential φ, and particle densities nα are normalized
by c/ωpe, ω

−1
pe , c,mec,mec/e,mec

2/e, and n0, respectively.
Here ωpe = (ne0e

2/ε0me)1/2 is the electron plasma frequency,
me the electron rest mass, e the (absolute value of the) electron
charge, and ne0 the unperturbed electron density. Charges qα

are normalized to −e, so qe = 1,qi = qp = −1; masses are
normalized by me. In order to ensure global charge neutrality
we introduce the proton-to-ion density ratio χ = n0p/n0i

such that n0e = (1 − χ )n0i + χn0p. Maxwell’s equations (in
SI units) will be expressed in the Coulomb gauge, which leads
to A ≡ A⊥ as a result of the 1D propagation model. A further
consequence of the 1D geometry is that pα⊥ = qαA⊥. The
hydrodynamic equations for the particle densities nα and the
(parallel) momentum pα , as well as the Maxwell equations
for the vector and scalar potentials A⊥ and φ, can be written
in dimensionless form as

∂2A⊥
∂x2

− ∂2A⊥
∂t2

=
∑

α

qαεα

nα

γα

pα⊥, (A1)

∂2φ

∂x2
=

∑
α

qαnα, (A2)

∂2φ

∂t∂x
+

∑
α

qαεα

nαpα

γα

= 0, (A3)

∂nα

∂t
+ εα

∂

∂x

(
nαpα

γα

)
= 0, (A4)

∂pα

∂t
= ∂

∂x

(
qαφ − γα

εα

)
, (A5)

where εα = me/mα . The normalized (rest) masses are
me = mp = 1 and mi = 1836 (when the ions are protons).
The relativistic γ factors are γα = √

1 + ε2
α(|A⊥|2 + p2

α) for
the different species α.

Transforming to a frame of reference moving with the
normalized phase velocity β = v/c � 1 of an electromagnetic
wave, by introducing ξ = x − βt one gets

(1 − β2)
∂2A⊥
∂ξ 2

− ∂2A⊥
∂t2

+ 2β
∂2A⊥
∂ξ∂t

=
∑

α

qαεα

nα

γα

pα⊥,

(A6)

∂2φ

∂ξ 2
=

∑
α

qαnα, (A7)

∂

∂ξ

(
∂

∂t
− β

∂

∂ξ

)
φ +

∑
α

qαεα

nαpα

γα

= 0, (A8)

∂nα

∂t
+ ∂

∂ξ

(
εα

nαpα

γα

− βnα

)
= 0, (A9)

∂pα

∂t
− β

∂pα

∂ξ
= ∂

∂ξ

(
qαφ − γα

εα

)
. (A10)

The linear dispersion relation suggests β → 1 when the plasma
density approaches zero, whereas β → ∞ occurs when one
approaches the critical density. In the new frame of reference
we will discuss stationary solutions. Then all quantities depend
only on ξ and not explicitly on t (effectively meaning ∂/∂t =
0). We therefore start from

(1 − β2)
∂2A⊥
∂ξ 2

=
∑

α

qαεα

nα

γα

pα⊥, (A11)

∂2φ

∂ξ 2
=

∑
α

qαnα, (A12)

−β
∂2φ

∂ξ 2
+

∑
α

qαεα

nαpα

γα

= 0, (A13)

∂

∂ξ

(
εα

nαpα

γα

− βnα

)
= 0, (A14)

∂

∂ξ

(
βpα + qαφ − γα

εα

)
= 0. (A15)

It is possible to express nα,pα , and γα as functions of A⊥
and φ. Integrating Eqs. (A14) and (A15), one gets

εα

nαpα

γα

= Cα1 + βnα (A16)

and

qαφ − γα

εα

+ βpα = −Cα2. (A17)
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We determine Cα1 by postulating in Eq. (A16) for a uniform
plasma pα = 0 at ne = 1,ni = (1 − χ ),np = χ . This results
in Ce1 = −β,Ci1 = −β(1 − χ ), and Cp1 = −βχ .

Next, inserting

γα =
√

1 + ε2
α(|A⊥|2 + p2

α) (A18)

into Eq. (A17) we obtain a quadratic equation for pα ,

1 + ε2
α

(|A⊥|2 + p2
α

) = ε2
α(qαφ + βpα + Cα2)2. (A19)

We determine Cα2 in such a way that φ = 0, where pα = 0
and |A⊥| = a0. With this calibration we get

Cα2 =
√

1

ε2
α

+ a2
0 . (A20)

Defining

ψα = εα(qαφ + Cα2), (A21)

Rα = [
ψ2

α − (1 − β2)
(
1 + ε2

αa2
)]1/2

, (A22)

we find

pα = βψα − Rα

εα(1 − β2)
, (A23)

nα = Cα1(ψα − βRα)

Rα(β2 − 1)
, (A24)

γα = ψα − βRα

1 − β2
. (A25)

When focusing on linearly polarized waves, we introduce
A⊥ = aêz. We end up with the following two coupled

differential equations for the (normalized) potentials a

and φ:

d2a

dξ 2
= −a

β

β2 − 1

[
1

Re

+ χ

Rp

+ εi

1 − χ

Ri

]
, (A26)

d2φ

dξ 2
= −β

β2 − 1

[
ψe

Re

− χ
ψp

Rp

− (1 − χ )
ψi

Ri

]
. (A27)

Equations (A26) and (A27) describe the nonlinear relativistic
coupling between transverse and longitudinal oscillations.
They are very similar to the basic equations for the dynamics
of relativistic solitons [33,34] The system (A26) and (A27)
constitutes the starting point for the present investigation; it
can be derived from an Hamiltonian as is discussed in the
main part of the paper.

APPENDIX B: THE IMMOBILE ION APPROXIMATION

In the limit εi → 0 the following limits can be calculated
for finite a:

ψi → 1, Ri → β, Ci2 → 1

εi

, (B1)

ψi

Ri

→ 1

β
,

Ri − β

εi

→ −φ

β
. (B2)

They are useful for the reduction of the problem with full ion
dynamics to the model with immobile ions.

It is interesting to note that the same limiting values are
obtained for finite εi , e.g., εi = 1/1836 in the limit a → 0.
This shows that in the weakly relativistic limit the immobile
ion approximation is applicable. However, for large laser
amplitudes a � 1, the ion motion has to be taken into account
even for εi = 1/1836.
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