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Transmission and reflection in the stadium billiard: Time-dependent asymmetric transport
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The survival probability of the open stadium billiard with one hole on its boundary is well known to decay
asymptotically as a power law. We investigate the transmission and reflection survival probabilities for the case
of two holes placed asymmetrically. Classically, these distributions are shown to lose their algebraic decay tails
depending on the choice of injecting hole, therefore exhibiting asymmetric transport. The mechanism behind this

is explained while exact expressions are given and confirmed numerically. We propose a model for experimental
observation of this effect using semiconductor nanostructures and comment on the relevant quantum time scales.
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I. INTRODUCTION

Billiards [1] are systems in which a particle alternates
between motion in a straight line and specular reflections
from the walls of its container, while open billiards contain
one or more holes through which particles may escape.
Billiards demonstrate a broad variety of behaviors including
regular, chaotic, and mixed phase space dynamics, depending
on the geometry, while allowing for mathematical treatment
of their properties. Billiard models have been increasingly
important in both theoretical and experimental physics, for
example, as models in statistical mechanics such as the
Boltzmann hypothesis [2], number theory, and the Riemann
hypothesis [3] and in room acoustics [4], atom optics, where
ultracold atoms reflect from laser beams [5], optics in dielectric
microresonators [6], and in quantum chaos when solving the
Helmholtz equation with Dirichlet or Neumann boundary
conditions [7]. Open billiards are also a useful model for
understanding the close correspondence between classical and
quantum mechanics [8].

Quantum open billiards were experimentally realized first
in flat microwave resonators in the early 1990s [9,10] and
later in semiconductor nanostructures such as quantum dots
[11,12]. Experiments perturbing these systems with small
magnetic fields exhibit principal quantum interference effects
like weak localization, Altshuler-Aronov-Spivak oscillations,
and conductance fluctuations, all of which semiclassical theory
has arguably succeeded to explain using properties of the un-
derlying classical dynamics [12,13]. Similarly, in microwave
resonators, due to their clean, impurity-free geometry and
the tunable coupling strength to the various decay channels,
predicted phenomena such as resonance trapping have been
experimentally observed [14].

Here we investigate the classical transport of a popular
example for the above and other experiments, the stadium
billiard with two holes on its boundary placed asymmetrically
(see Fig. 1). Looking at the phase space of this open
system, we find that the predominantly chaotic character of
the corresponding closed system is nontrivially affected by
the positioning of the holes. In particular, we find that the
transmission and reflection probabilities, when particles are
injected from one of the two holes, are qualitatively different
at long times depending on the choice of the injecting hole,
therefore displaying time-dependent asymmetric transport. We
give detailed analytical expressions for these distributions and

1539-3755/2011/83(3)/036212(5)

036212-1

PACS number(s): 05.45.—a, 03.65.Sq, 05.60.Cd, 73.21.La

confirm them numerically. Although investigations through
random matrix theory (RMT) regarding the variety of sym-
metric or asymmetric openings in chaotic systems have been
performed [15], to the best of our knowledge there has been no
analogous analytic prediction or experimental observation of
such an asymmetry in the transport. Hence, we conclude with
a discussion of a possible experimental model with regards to
the relevant quantum time scales.

II. THE STADIUM AND ESCAPE THROUGH ONE HOLE

The transport problem is closely related to the escape
problem for which we also make new observations. The
uniform (Liouville) distribution projected onto the billiard
boundary has the form (2|3 Q|)~'dx dsin 8 (where |d Q| is the
perimeter of the billiard while x and 6 are defined in Fig. 1) and
is the most natural choice for an initial distribution of particles.
Given such a distribution, the probability P(¢) that a particle
survives (i.e., does not escape through k small holes H; € 3 Q)
in a strongly chaotic billiard up to time ¢ decays exponentially
~e~ 7" at long times with the exponent to leading order given
by [16]
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where (1) = \75|QQ|1|) is the mean free path for two-dimensional
(2D) billiards, h; = |H;| is the length of each hole, |Q| the
area, and v the speed of the particles.

The stadium billiard is a chaotic system where the defo-
cusing mechanism guarantees a positive Lyapunov exponent
A (exponential separation rate of nearby trajectories) almost
everywhere [17], the exception being a zero-measure family
of marginally unstable periodic orbits between the parallel
straight segments called “bouncing ball” orbits. They have
been shown to lead to an intermittent, quasiregular behavior
which effectively causes the closed stadium to display some
weaker chaotic properties such as an algebraic decay of
correlations [18]. Quantum mechanically they cause scarring
[19], the system is not quantum uniquely ergodic [20], an
h-dependent “island of stability” appears to surround them
[21], and deviations from RMT predictions are observed
(especially in the Aj statistics) if not treated appropriately
(see [22,23)).
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FIG. 1. (Color online) Stadium billiard with two holes H; and H,.
The billiard map is parameterized using arc length 0 < x < 4a + 2nr
and velocity parallel to the boundary vsin€ with 6 € (—7,%). The
hole on the straight segment is such that —a < h] < h} < a.
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A small hole of size i placed on the billiard’s boundary
opens the system and the stadium’s survival probability
P(t) becomes a useful statistical observable. Due to the
intermittency introduced by the bouncing ball orbits, P(t) is
found to experience a crossover from the above exponential
decay (1) at short times to an algebraic decay ~C/t at later
times [24]. If the hole is placed on one of the straight segments,
as in Fig. 1, the constant C can be calculated to give [25]

+0 (;) ()

with parameters as defined in Fig. 1. We emphasize that this
calculation is possible because the stadium’s classical phase
space is split by the hole into separate regions occupied by
“fully chaotic” and “sticky” orbits, which are responsible for
the exponential and algebraic decays, respectively. As an orbit
approaches the sticky region in phase space, which surrounds
the bouncing ball orbits, it will inevitably escape through H,
quickly after it obtains an incidence angle |6] < arctan(i’—;).
This is a key point that will be discussed further in the two
hole case.

We also remark that due to the splitting of the phase space,
there is no justification for an intermediate purely exponential
decay, as proposed generically for intermittent systems by
Altmann and Tél (see Eq. (25) in [26]), but rather a coexistence
of exponential and algebraic decay given by

c_ (BIn3+4)((a+hy)*+ (a—hi)?
4(4a + 2mr)v

irregular, for

eV + %, for t > f,

r<t,

P(t) = 3)

where we have neglected terms of order =2 and f < 32‘1”

can be found as described in [25]. The “irregular” short-time
behavior is a result of geometry dependent short orbits which
become less important if the hole is small. We note that the
coefficient of the exponential term in (2) is 1 since for small
holes and times greater than &1 /A, mixing causes the system
to forget its initial state and therefore the probability decays as
a Poisson process.
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III. THE TWO HOLE CASE: ASYMMETRIC TRANSPORT

Consider now the case of the stadium with two holes
as shown in Fig. 1. In Fig. 2 we plot in the top panel
a picture of the phase space, showing in different colors
the different sets of initial conditions which eventually exit
through each hole. The bottom panel shows the time scales
of escape as noted in the caption. We notice that the phase
space is again separated, as described above, and that the
sticky, long-surviving orbits escape only through the hole
on the straight segment H;. Restricting the initial density
of particles to one of the holes defines the transport prob-
lem and establishes the schematic setup of quantum dots
and microwave cavities, where particles/waves are injected
through one of the holes and allowed to escape through either,
thus creating a direct link with experiment. Looking at the
spatial distribution of the final (escape) coordinates (x,0)
(see Fig. 3) we also notice that long surviving orbits entering
and subsequently exiting through H;, unlike in the other
possible entry/exit combinations, accumulate on the edges of
the hole x; = hi F 8, (8 <« 1) and have small angles 6 ;. Note
that (x;,07) — (hi,0%) as the time of escape ¢; — co. This
further confirms the splitting of the phase space, but also that
the classical spatial distribution of exiting particles has a well
defined time-dependent character, which only exists in the
situation described and plotted in Fig. 3.

In order to quantify our above observations, we define

transmission and reflection survival probabilities by Pl.j (t) and
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FIG. 2. (Color online) Phase space of open stadium with two
holes. (Top) Initial conditions which will escape through hole H, are
shown in light yellow while those escaping through hole H, in dark
blue. (Bottom) Color grading of initial conditions going from purple
(dark), to orange, to white corresponding to short, medium, and long
escape times (a =2,r =1, h; = 0.5, h?’ = 0.25).
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FIG. 3. (Color online) 3D plot of the final (escape) coordinates
and time of escape (x;,0f,t;) for the case of entry and exit
through H;. The color scheme runs from light to dark blue, linearly,
with increasing exit times f;. Only in this case are the two dark
spikes observed (a = 2,r = 1, h; = 0.2, hf =0.1). T ~ 631.851s
explained in Fig. 4.

P! (1), respectively (i,j = 1,2), such that

P/(t)= P(x1,....xx ¢ Hlxo € Hi,xs € Hj), (4

where H = H, U H,, N'(xy,t) is the number of collisions with
the boundary up to time ¢ and x, denotes the position of
the particle at the nth collision. For example, P{(t) is the
probability that a particle injected from hole H; will survive
until time 7 given that it will escape through hole H,. It
follows from our construction that Pl1 (t) has an algebraic
decay tail while the other three possible distributions do not
and thus decay purely exponentially with an escape rate given
by y = Juth
(T)9 Q|

The algebraic tail of P/(¢) is due to particles injected near
the edges of hole H;, with small incident angles 6 but which
do not immediately reflect back into H;. This extra constraint
is described by |f| > arctan | h‘i;“’ | (£ depending on the sign
of 6), which gives Pl1 (¢) an algebraic tail O(z2), as expected
in integrable scattering problems. As in the one hole escape
problem, the phase space is split and fully chaotic orbits cannot
enter the sticky region and therefore do not contribute to the
algebraic tail of P/ (#). Furthermore, the imposed “preference”
of long surviving particles to escape through Hj, as indicated
by Figs. 2 and 3, is what denies P}(#) an algebraic tail. In the
reverse situation of particles injected through H», the splitting
of the phase space due to the position of Hj, renders the sticky
region surrounding the bouncing ball modes inaccessible.
Thus, both P, (¢) and P;(r) do not have algebraic tails. This
would not have been be the case if both H; and H, were placed
on a straight [27] or curved segment of the boundary.

In summary, the total survival probability P;(¢), where the
subscript i indicates the injecting hole, is given by

Pt
| (1) P20
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for t > f, where the 5@11 are time independent coefficients
controlling the + — oo reflection and transmission probabil-
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FIG. 4. Slightly offset plots comparing numerical simulations
(see key) with the analytic expressions (5) and (6) (solid curves)
as functions of time ¢ in ns. The simulations consist of 10° particles
with stadium parameters given by a =2 um, r =1 um, h; = 0.2

pm, and i = 0. 7 & 6.315 ns is the large solution of e™7" = ﬁ,
1

where p; ~ 0.5594 was calculated numerically.

ities. Notice that 5/.)1.1 + 54)12 =1 due to flux conservation and
©? = o) due to time-reversal symmetry. D is given by a
similar calculation to [25]:

r3In3 +4)((a + hy)* + (@ —h)? 1
TR +0(;>. (7)

D =

In Fig. 4, we plot the four conditional distributions P/ (t)
as functions of time ¢, and find an excellent agreement
with the analytical results summarized in Egs. (5)—(7). This
is the simplest possible example where a classically fully
chaotic billiard exhibits time-dependent asymmetric transport
when opened. This phenomenon we expect to be shared
by many other well studied chaotic or mixed open billiards
which display intermittency due to the presence of marginally
unstable periodic orbits such as the drive belt [18] and
mushroom [28,29] billiards. We note that the variety of options
with regards to hole positions and sizes and system parameters
offers ways of calibrating and controlling these classical
distributions to achieve faster or slower escape. This point
of view relates closely to that of Ref. [30]. Also, the exact
results obtained here encourage the possibility of experimental
observation of the quantum analog of asymmetric transport in
cavities with classically chaotic closed dynamics, which we
discuss next.

IV. CORRESPONDENCE IN QUANTUM DOTS

At low temperatures (~15 mK), electronic transport
through the gate electrodes (openings) of a 2D electron gas
(quantum dot) in a high quality sample is ballistic [11,12]. For
typical semiconductor nanostructure parameters, the time scale
Tiail at Which the above observed algebraic tail becomes visible
(see Figs. 3 and 4) is of the order of a nanosecond (assuming an
electron speed v &~ 10° ms™!). This is slightly larger than the
predicted Ehrenfest time 7z = A~ In(1 /%) for chaotic systems
[8] (the time scale at which quantum interference effects
become apparent ~0.3 ns) and thus at first instance suggests
that direct observation of a quantum difference in transmission
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and reflection survival probabilities is unlikely in existing
devices. However, since the nature of chaos lies in orbital
instability, the Ehrenfest time varies with the fluctuations of the
Lyapunov exponent, which are further intensified by leaks in
the system [31]. In the case studied here, however, the effect of
hole H, is crucial since for the sticky, near-bouncing ball subset
of the phase space, the finite-time local Lyaponov exponent is
zero [32], therefore leading to a much longer validity and
persistence of the classical description. In fact, this region
could be thought of as an %;-dependent fictitious island of
stability in which loss of quantum-to-classical correspondence
is much slower, resembling that in mixed systems, such that
7 o i~V [33], where B is a scaling parameter characteristic
of the system’s local phase space structure. Furthermore, we
find that by varying the size and hole positions of the dot (while
remaining in the ballistic regime) it is possible to calibrate and
reduce Ty, by a whole order of magnitude. A good way to do
this is by elongating the stadium slightly such that a/r =~ 5
and by placing H; at the very edge of the straight segment.

Suppose we apply a time-dependent voltage V (¢) across the
gates of the stadium heterostructure such that the incoming
current Iii“(t) through hole H; is proportional to V(¢). Then
the charge exiting through each hole will follow the driving
current with a lag time t which is distributed according to (5)
or (6) appropriately. This can be modeled by

00 J
L(1) = (1)) f Iii“(r—r)wdr, (8)
0 dt

where i and j indicate the injecting and exiting holes,
respectively. The observed, net current through the system
is thus given by I"'(r) = I/"(¢) + I,(t) + L(t). Because the

probability density dlgl(r) is slightly skewed to the right,
relative to the other densities, the two observables 1]°'(r) and
[¥(r) will differ by

[o¢] m
Ioh [ arii —v) [Pl () — Py(v)]dr. 9)
0 dt
For experimental observation we propose using a square wave
signal V(t) = Vy[1 + sign(sinwt)] such that w > 7 /7, as
to accentuate the power-law contribution of Pl(t) Quantum
interference effects such as universal conductance fluctuations
may be statistically removed since the skewness of P‘ (T) is
to leading order geometry dependent through the constant
D in (7). In experiments, of course, one should make sure
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that the excess density of charged particles within the dot is
always low enough as to avoid a buildup of an internal electric
field which would effectively destroy the fictitious island of
stability (sticky region) enclosing the bouncing ball orbits. For
microwave billiards this is not an issue.

V. DISCUSSIONS AND CONCLUSIONS

To conclude, we have investigated the classical dynamics of
the chaotic stadium billiard with two holes placed asymmet-
rically. We have found that the transmission and reflection
survival distributions can have algebraic and exponential
decays observed in the same classically ergodic geometry
depending on the choice of injecting hole. We have identified
the reason for this being the hole’s asymmetric positioning on
the straight segment of the billiard, which essentially splits
the classical phase space of the system, rendering the sticky
region surrounding the bouncing ball orbits inaccessible to
chaotic orbits. As a result, the transmission and reflection
survival distributions are qualitatively different. Moreover,
when injecting from the hole on the curved segment both
transmission and reflection distributions decay with a pure
exponential. We expect that this observation along with the
analytic expressions obtained and confirmed numerically can
be appreciated by the (quantum) chaos community. We further
propose that observation of this classical result in semicon-
ductor nanostructures (quantum dots) or microwave cavities
can improve our understanding of classical to quantum corre-
spondence in transport problems in relation with the different
quantum time scales introduced by the classical phenomenon
of stickiness. Finally, we expect that the asymmetric transport
scenario exhibited here as well as the mechanism described
may apply in a similar way to more general open dynamical
systems with mixed phase space [34], permitting dynamical
trapping of trajectories by suitably placed holes. This shows
that long-studied systems such as the stadium billiard continue
to provide us with interesting new phenomena to study.
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