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Controlling birhythmicity in a self-sustained oscillator by time-delayed feedback
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Time-delayed feedback is a practical method for controlling various nonlinear dynamical systems. We consider
its influence on the dynamics of a multicycle van der Pol oscillator that is birhythmic in nature. It has been shown
that depending on the strength of delay the bifurcation space can be divided into two subspaces for which
the dynamical response of the system is generically distinct. We observe an interesting collapse and revival of
birhythmicity with the variation of the delay time. Depending on the parameter space the system also exhibits a
transition between birhythmicity and monorhythmic behavior. Our analysis of amplitude equation corroborates
with the results obtained by numerical simulation of the dynamics.
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I. INTRODUCTION

Limit cycle oscillations are ubiquitous in natural phenom-
ena and are universally encountered in a variety of nonlinear
dissipative dynamical systems. Examples are abundant, with
periods ranging from cardiac rhythms of seconds, glycolysis
over minutes, and circadian oscillations over 24 hours, while
epidemiological oscillations extend even over years. A limit
cycle oscillator, by nature, is self-sustained and possesses a
mechanism to damp itself when grows too large and a source
of energy to pump when it becomes too small. Although natural
dynamical systems are mostly characterized by only one stable
limit cycle, the coexistence of two stable limit cycles or
attractors separated by an unstable one is not unknown. This is
referred to as birhythmicity characterized by two different am-
plitudes and frequencies depending upon the initial condition.
Such birhythmic behavior can be observed in biological sys-
tems, as, for example, in a glycolytic oscillator [1,2], enzymatic
reactions, and some biochemical reactions [3–6]. The focus of
this study is to explore how to control the nonlinear dynamics
of birhythmicity. The prototypical example chosen for this
purpose is a variant of well-known van der Pol oscillator
proposed by Kaiser [7–9] to model enzyme reactions in some
biosystems.

To put the discussion in an appropriate perspective we
begin with a note that a multicycle nonlinear oscillator is
characterized by its multistability. Appropriate control of
multistability by destroying some of the coexisting attractors
while preserving the others offers an opportunity to con-
trol dynamical systems [10,11]. A method for controlling
bistability by annihilation of an individual attractor was first
suggested by Pisarchik and Goswami [12]. Extension of
the work to control multistability [13] also followed. This
has been proved to be useful for applications in optical
physics. For example, in lasers, the multistability plays a
key role in limiting its performance characteristics. Recently,
the control of multistability in nonautonomous systems with
coexisting attractors has been realized in semiconductors
and fiber lasers with modulated pump parameters [14,15].
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A convenient method of control is based on use of ap-
propriate time delay on the dynamical system since time
delay is important in many natural systems due to the finite
speed of propagation of signals, finite processing times in
synapses, and specific reaction time in elementary steps of
a chemical reaction. An early attempt in this direction was
made by Ott et al. who employed input signals constructed
from the difference between the current and past states
[16]. Another simple, efficient and noninvasive scheme of
time delayed feedback control is due to Pyragas [17,18]
since the method does not require detailed information of
the system to be controlled. Pyragas control was used in
Refs. [19,20]. The method of time-delayed feedback and its
variants have also been used to control chaos and stabilize
unstable oscillations or steady states in spatially homogeneous
as well as inhomogeneous systems [21–25]. The control
of bistability by changing both the feedback strength and
delay time was applied in a semiconductor laser [26]. The
object of this paper is to understand the dynamic response
of a birhythmic system toward a delayed feedback. We are
particularly interested in the time-delayed feedback of the
form F (t) = K[s(t − τ ) − s(t)] on a multicycle van der Pol
oscillator, where s(t) is the signal coming from the system,
K is the feedback strength, and τ is the delay time. We show
that the amplitude equation for this oscillator assumes the
normal form of a codimension-two saddle-node bifurcation.
The delay time acts as an imperfection parameter that can be
tuned to control the bifurcation scenarios. Depending upon
the strength of delay it is possible to divide the bifurcation
parameter space corresponding to differential response of
the system toward delayed feedback. This may result in the
transition from birhythmicity to monorhythmic behavior and
collapse of birhythmicity on a steady state and its subsequent
revival.

The paper is organized as follows: In the next sec-
tion we explore the influence of time-delayed feedback
on the multicycle van der Pol oscillator. The ampli-
tude equations are derived, and the existence and stabil-
ity of the dynamical attractors have been analyzed. Our
theoretical analysis is verified by numerical simulation
of the dynamical equation. The paper is concluded in
Sec. III.
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II. DYNAMICS OF A SELF-SUSTAINED BIRHYTHMIC
OSCILLATOR UNDER DELAYED FEEDBACK

A. The multicycle van der Pol oscillator

We begin with a variant of a classical van der Pol
oscillator with a damping term that is a nonlinear function
of polynomial of higher order described by the following
equation:

ẍ − μ(1 − x2 + αx4 − βx6)ẋ + x = 0. (2.1)

Here the overdot denotes the derivative with respect to time
and μ, α, β are positive parameters that can modulate the non-
linearity of the system. This simple equation is a specific form
of Lienard’s equation given by ẍ + f (x)ẋ + g(x) = 0, which
has been interpreted [27] mechanically as an equation of a
particle with unit mass subjected to a nonlinear damping force
−f (x)ẋ and a nonlinear restoring force −g(x). Equation (2.1)
was also considered earlier [7–9] to simulate certain specific
processes in biophysical systems. When employed to model
biochemical systems [28], namely, the enzymatic-substrate
reactions, x in Eq. (2.1) is considered to be proportional
to the population of enzyme molecules in the excited polar
state. The parameters α and β measure the degree of tendency
of the system to a ferroelectric instability, and μ is a parameter
that effectively refers to strength of nonlinear damping. We
refer to Ref. [28] for more details. The oscillator described by
Eq. (2.1) exhibits self-sustained oscillations possessing more
than one limit cycle, which is the condition for occurrence of
birhythmicity.

Following Kadji et al. [28], we briefly summarize the nature
of dynamical attractors of the multicycle van der Pol oscillator
described by Eq. (2.1). The periodic solutions of Eq. (2.1) can
be approximated by

x(t) = A cos ωt. (2.2)

The approximate analytic estimates of amplitude A and
frequency ω can be readily obtained [28]. It has been found
that the amplitude A is independent of parameter μ, which
enters only in the frequency ω. The amplitude equation is
given by

5β

64
A6 − α

8
A4 + 1

4
A2 − 1 = 0, (2.3)

which appears generic for codimension-two saddle-node
bifurcation. Depending on the value of the parameters α

and β the oscillator possesses one or three limit cycles.
Equation (2.3) can give rise to one or three positive real
roots that correspond, respectively, to one stable limit cycle
or three limit cycle solutions (of which two are stable and one
is unstable). The unstable limit cycle represents the separatrix
between the basins of attractions of the two stable limit
cycles. Figure 1 describes the bifurcation lines that enclose
the region (white) of birhythmicity in the two-parameter
domain (α,β). The two bifurcation lines meet at a cusp point
along with the generation of saddle-node bifurcations for the
outer or larger amplitude limit cycle and the inner or smaller

0.000 0.002 0.004 0.006 0.008

0.08

0.10

0.12

0.14

0.16

0.18

p
1

p
2

FIG. 1. Parameter domain for the existence of a single limit cycle
(area denoted by gray region) and the three limit cycles (area denoted
by the white region without the dotted line in absence of delayed
feedback). The dotted line denotes the bifurcation line showing the
two parameter zones corresponding to the points p1 (0.005,0.144)
and p2 (0.001,0.1) for two distinct dynamical scenarios in presence
of delayed feedback corresponding to Figs. 4 and 5, respectively.

amplitude limit cycle [29–31]. In the single-limit cycle zone
below the lower bifurcation line, it is found that the limit
cycle is of smaller amplitude compared to the single-limit
cycle with larger amplitude in the region above the upper
bifurcation line. The analytic prediction thus corresponds
to the stable limit cycles and their corresponding basins of
attractionm which can be deduced from a direct numerical
integration of Eq. (2.1) using the fourth-order Runge-Kutta
algorithm.

B. Control of birhythmicity using delayed feedback:
Amplitude equation

A time delayed feedback is known to be an efficient
tool [17–22,28–32] for continuous-time control of dynamical
systems. The dynamical behavior of various physical and
biological systems under the influence of delayed feedback
can be modeled by including terms with delayed arguments
in the equations of motion. Application of delayed feedback
results in the following equation:

ẍ + x = μ(1 − x2 + αx4 − βx6)ẋ + K(ẋτ − ẋ). (2.4)

Here ẋτ denotes the delayed variable ẋ(t − τ ), K is the
strength of the delayed feedback, and τ is the delay time
(τ > 0). The time delay τ is considered to be our control
parameter. The approximate amplitude and frequency of
the system described by Eq. (2.4) can be found by using
harmonic balance method. For this purpose let us assume the
approximate solution of the above equation as

x(t) = A cos �t, (2.5)

where A is the amplitude and � is the frequency
of the oscillator with delayed feedback. We then
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arrive at

[−A�2 + A − KA� sin �τ ] cos �t

= −μA�

[
1 − 1

4
A2 + α

8
A4 − 5β

64
A6

]
sin �t

−KA�(cos �τ − 1) sin �t

+ higher harmonic terms. (2.6)

Ignoring the higher harmonic terms (the neglect of the higher
harmonics may be justified [33] by regarding them as addi-
tional input in the form of forcing terms to linear equation ẍ +
x = 0. The periodic response of the system to a forcing term
characterizing the nth harmonic is proportional to cos(n�t)/
(n2�2 − 1), which rapidly diminishes with increase of n; we
derive the following equations for frequency and amplitude:

�2 − 1 + K� sin �τ = 0 (2.7)

and

μ

(
1 − A2

4
+ αA4

8
− 5βA6

64

)
+ K(cos �τ − 1) = 0. (2.8)

In the absence of delayed feedback, i.e., K = 0 or τ = 0,
the amplitude equation [Eq. (2.8)] is reduced to Eq. (2.3),
and furthermore � = 1 corresponds to the frequency in the
harmonic limit. The three roots refer to the amplitudes of
three limit cycles. The focal theme of the present section is
to study the effect of delayed feedback on the existence and
stability of the limit cycles.

This stability test is better checked using the energy
balance method, which, we shall see, is another way of getting
a hint of amplitude of the limit cycles. For this we return
to (2.4) and note that for μ = 0 and K = 0 the harmonic
solution is given by

x(t) = A cos(t + φ), (2.9)

where φ is the initial phase. For convenience, we may settle
at φ = 0 and A > 0. The solution describes a circular orbit
in the phase plane with a period T � 2π . In the harmonic
limit we see that � for the aforesaid feedback is close to 1,
and hence for μ �= 0 and μ → 0, in the presence of delayed
feedback one may still approximate

x(t) � A cos t, ẋ(t) � −A sin t, and T � 2π, (2.10)

where � � 1. The terms on the right-hand side of Eq. (2.4)
give an estimate for the change in the energy 	E over
the period 0 � t � T if one treats [μ(1 − x2 + αx4 −
βx6)ẋ + K(ẋτ − ẋ)] as an external force so that we write

	E = E(T ) − E(0)

=
∫ T

0
[μ(1 − x2 + αx4 − βx6)ẋ + K(ẋτ − ẋ)]ẋ dt.

(2.11)

It is obvious that for a limit cycle periodic solution 	E should
be zero. Hence using the expressions (2.10) in (2.11) and
integrating Eq. (2.11) we arrive at the following expression:

	E = μ
A2

2

(
1 − A2

4
+ αA4

8
− 5βA6

64

)
2π

+K(cos τ − 1)
A2

2
2π = 0. (2.12)

This yields

f (A2) = μ

[
1 − A2

4
+ αA4

8
− 5βA6

64

]
+ K(cos τ − 1) = 0,

(2.13)

which is identical to the amplitude Eq. (2.8). In absence
of delayed feedback the amplitude equation described by
Eq. (2.13) reduces to the previously obtained expression (2.3).
Equation (2.13) suggests that time delay τ can be tuned
appropriately to control the saddle-node bifurcation condition.
We have chosen the parameter region where three limit cycles
coexist, that is, the region of birhythmicity. Based on the
analytic estimate from the amplitude equation, Eq. (2.13), the
number of positive roots that decides the presence and absence
of limit cycles can be obtained. Furthermore the stability of
the limit cycles can be checked by taking the derivative of
amplitude equation with respect to A. Stability implies[

d

dA
	E(A)

]
Limit cycle

< 0. (2.14)

It is thus apparent that the delayed feedback as an external
force on the system can efficiently govern the dynamics of
limit cycle oscillations.

To illustrate the scheme we now determine the roots of
amplitude equation by finding the zeros of the function f (A2)
for the parameter values α = 0.144 and β = 0.005, μ = 0.1
and with a weak feedback strength K = 0.1. This corresponds
to the point p1 of Fig. 1 in the bifurcation diagram. The number
of roots signifies the presence or absence of the number of
limit cycles of the system. The plots f (A2) versus A2 exhibit
typically bistable, monostable, and steady-state characteristics
of oscillation with the variation of time delay τ as shown in
Fig. 2(a). For τ = 0.0 we observe three roots, of which two are
stable corresponding to two limit cycles or birhythmicity, the
other being the unstable one. With an increase of τ the curve is
gradually pushed downward so that it crosses the zero line only
once, showing a single root indicating one stable limit cycle or
monorhythmic behavior. Further increase of τ beyond a critical
time delay (τ = 0.527π ) precludes the possibility of any real
root implying the loss of self-sustained oscillatory character.
The oscillation is again recovered with the further increase
of τ with the appearance of first monorhythmic followed by
birhythmic behavior. The time delay changes the dynamics of
the system in a periodic fashion. This can be better understood
by plotting the function f (A2) versus τ for some fixed values
of A2. It is shown in Fig. 2(b).

To what extent is the dynamics as discussed above pa-
rameter specific? To answer this question we now examine
further another dynamical scenario for the parameter values
α = 0.1 and β = 0.001 as depicted in Fig. 3. This corresponds
to the point p2 shown in the bifurcation diagram (Fig. 1).
For τ = 0.0, i.e., for the system without delayed feedback we
observe as usual the bistable behavior of f (A2) versus A2

curve, implying birhythmicity and an unstable limit cycle as
shown in Fig. 3(a). With gradual increase of τ the inner cycle
becomes smaller in amplitude and ultimately vanishes for a
critical τ , and the system becomes monorhythmic in nature.
Again with further increase of τ the inner cycle reappears,
and birhythmicity is recovered. Since the f (A2) versus A2
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FIG. 2. (a) Plot of f (A2) versus square of amplitude (A2) for the
values of parameters μ = 0.1, K = 0.1, α = 0.144, and β = 0.005 at
different time delay (τ ) ranging from 0 to 2π . f (A2) versus A2 curve
moves downward for τ values for 0.0π (three roots), 0.3π (one root),
0.6π (no root), or 1.0π (no root) and then moves upward 1.3π (no
root), 1.5π (no root), 1.8π (one root), or 2.0π (three roots). (b) Plot
of f (A2) versus τ for some fixed values of A2 with other parameters
remaining the same.

curves for several τ values from 0 to 2π appearing in Fig. 3(a)
are too closely spaced we have zoomed the square block of
the left-lower corner of the figure and shown (enlarged) in
Fig. 3(b). It is found from Figs. 3(a) and 3(b) that delay time
can hardly affect the outer stable and the unstable limit cycles.
We have further demonstrated the periodic change of the
dynamics of the system in Fig. 3(c) in which f (A2) is plotted
as a function τ for three fixed values of A2. Thus it follows
that depending on the parameter space the delayed feedback
can be suitably tuned to control the nature of the attactors.
While investigating the nature of stability of the limit cycles
from Eq. (2.14) we found that for the parameter zone with
α = 0.144, β = 0.005 (corresponding to the point p1 of Fig. 1)
stable limit cycles exist for A1 = 2.63 and A3 = 4.83, while
a limit cycle having amplitude A2 = 3.96 is unstable. The
unstable limit cycle separates the basin of two stable attractors.
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FIG. 3. (a) Plot of f (A2) versus square of amplitude (A2) for the
values of parameters μ = 0.1, K = 0.1, α = 0.1, and β = 0.001 at
different time delay (τ ) ranging from 0 to 2π . (b) The square box of the
left-lower corner of Fig. 3(a) is shown (enlarged) in Fig. 3(b). (c) Plot
of f (A2) versus τ for some fixed values of A2 for the parameter set
mentioned above.

For the parameter set α = 0.1, β = 0.001 (corresponding to
the point p2 of Fig. 1) the outer stable limit cycle that remains
unaffected by delay has an amplitude A = 11.72.

In Table I we provide a summary of dynamical features for
the two distinct parameter zones (divided by the dotted line in
Fig. 1), both lying inside the birhythmic zone.
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FIG. 4. Control of attractors by delayed feedback. Numerical simulation: Time evolution profile for the parameter values α = 0.144, β =
0.005, μ = 0.1, and K = 0.1 for several values of time delay τ with two initial conditions. Dotted line is for the initial values x0 = 1.0,ẋ0 = 0.0,
and the solid line for x0 = 8.0, ẋ0 = 0.0. (a) τ = 0.0π , (b) τ = 0.2π , (c) τ = 0.4π , (d) τ = 1.0π , (e) τ = 1.6π , (f) τ = 1.8π , and (g) τ = 2.0π .
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FIG. 5. Control of attractors by delayed feedback: Numerical simulation: Time evolution profile for the parameter values α = 0.1, β =
0.001, μ = 0.1, and K = 0.1 for several values of time delay τ with two initial conditions: dotted line is for the initial values x0 = 1.0,ẋ0 = 0.0,
and the solid line for x0 = 8.0, ẋ0 = 0.0. (a) τ = 0.0π , (b) τ = 0.2π , (c) τ = 0.4π , (d) τ = 0.598π , (e) τ = 1.6π , and (f) τ = 1.8π .

C. Numerical simulations

In order to compare the analytic predictions on the control
of dynamical attractors with numerical simulations we have
carried out direct numerical integration of Eq. (2.4) for two sets
of parameter space (α = 0.144,β = 0.005 and α = 0.1,β =
0.001), using weak strength of feedback at K = 0.1 and for
μ = 0.1. We use the fourth-order Runge-Kutta method for

numerical integration with time step dt = 0.01. The results
are demonstrated in Figs. 4 and 5. The numerical observations
of Fig. 4 clearly indicate that when there is no delayed
feedback, i.e., τ = 0, two stable limit cycles coexist, resulting
in birhythmicity [Fig. 4(a)]. With increase of delay time τ

the birhythmic nature of oscillation tends to vanish generating
monorhythmicity [Figs. 4(b) and 4(c)]. Beyond a critical value
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FIG. 6. Control of attractors by delayed feedback. Numerical simulation: Time evolution profile for the parameter values α = 0.145,
β = 0.005, μ = 0.1, and K = 0.12 for several values of time delay τ with two initial conditions: dotted line is for the initial values
x0 = 1.0,ẋ0 = 0.0, and the solid line for x0 = 10.0,ẋ0 = 0.0. (a) τ = 0.0π , (b) τ = 0.16π , (c) τ = 0.5π , (d) τ = 1.48π , (e) τ = 1.8π , and
(f) τ = 2.0π .

of delay time (τ = 0.527π ) the self-sustained oscillation is
totally lost, and the system resides in the steady state [Fig. 4(d)
for τ = π ]. The monorhythmic and birhythmic oscillations,
however, reappear as shown in Figs. 4(e), 4(g) and 4(f) with
further increase in delay time.

The numerical simulation on Eq. (2.4) is further extended
to the other parameter regime defined by α = 0.1 and β =
0.001 for the same set of parameter values of K and μ.

The results on variation of delay time are shown in Fig. 5.
It is clear that the outer stable limit cycle is never de-
stroyed, and it remains robust against the variation of time
delay; but the amplitude of the smaller inner cycle starts
gradually diminishing before finally setting down on a sta-
tionary fixed point. However, further increase of τ results
in a revival of the limit cycle, signifying regeneration of
birhythmicity.
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TABLE I. A comparison between theoretical analysis and numerical simulation of the limit cycles in the presence of time delay in two
different sets of parameter regions for μ = 0.1, K = 0.1.

Parameter Delay No. of roots Stability No. of limit cycles
(α,β) (τ ) (analytically) (analytically) (Numerically)

0.0 3 2 stable, 1 unstable 2 stable
0.2π 1 Sable 1 stable
0.4π 1 Stable 1 stable
0.527π No roots No roots No limit cycles

(0.144,0.005) π No roots No roots No limit cycles
1.6π 1 Stable 1 stable
1.8π 1 Stable 1 stable
2.0π 3 2 stable, 1 unstable 2 stable
0.0 3 2 stable, 1 unstable 2 stable
0.2π 3 2 stable, 1 unstable 2 stable
0.4π 3 2 stable, 1 unstable 2 stable

(0.1,0.001) 0.598π 1 Stable 1 stable
1.6π 3 2 stable, 1 unstable 2 stable
1.8π 3 2 stable, 1 unstable 2 stable
2.0π 3 2 stable, 1 unstable 2 stable

We now emphasize a conspicuous difference between the
amplitude equation without delay [Eq. (2.3)] and the amplitude
equation with delayed feedback [Eq. (2.13)]. The former is
independent of μ, which makes its presence felt in Eq. (2.13)
in the presence of K(and τ ). It is therefore worthwhile
understanding to what extent the dynamics depends on the
choice of K and μ. A simple consideration shows that a
change in the strength of feedback, K , gives rise to a small
shift of the dividing (dotted) line in Fig. 1 (for the sake
of clarity in the figure we have not shown explicitly this
shifted dividing line). That this small shift does not change
the generic nature of dynamical response has been ascertained
by carrying out a further numerical simulation of Eq. (2.4) for
the parameter values μ = 0.1 and K = 0.12 corresponding
to a point α = 0.145, β = 0.005. The results are shown in
Fig. 6. Qualitatively the same behavior as observed in Fig. 4 is
noted.

Summarizing the above analysis we may note that the
white region (without the gray region) in the codimension-
two bifurcation diagram (Fig. 1), which characterizes the
birhythmicity domain in the absence of any delayed feedback
breaks into two regions denoted by the dotted line when the
feedback is set to act on the dynamics. These two regions
as shown in Fig. 1 corresponding to points p1 and p2 are
typically distinct with respect to the response of the dynamical
system toward delayed feedback. In region where p1 lies, the
outer stable limit cycle with larger amplitude is suppressed
by delayed feedback, and instead an inner cycle with smaller
amplitude is obtained. A further increase in delay time τ gives
rise to a collapse of oscillation on the steady state and its
subsequent revival with larger amplitude of the stable outer
limit cycle. In the region where p2 resides, on the other hand,
the delayed feedback has little influence on the outer stable
limit cycle; with increase of delay time τ the inner stable
limit cycle gradually becomes smaller in amplitude and
collapses on the stationary state after a critical value of
τ , signifying the suppression of birhythmicity. For further

increase of delay τ the regeneration of mono and birhythmicity
occurs.

III. CONCLUSION

Using a multicycle van der Pol oscillator, we have shown
that the rhythmic properties of the oscillator can be efficiently
controlled by a time-delayed feedback. Our analysis reveals
that the amplitude equation assumes a generic normal form
for the saddle-node bifurcation, which can be controlled by
an appropriate time delay. In the harmonic approximation the
time-delayed feedback appears as a phase-shifted feedback.
We have shown how this feedback does modify the bifurcation
scenario in a generic way; specifically the bifurcations can be
tuned by time delay in such a way that one may realize in the
bifurcation diagram a dividing line that separates the space
into two subspaces depending on the dynamic response of
the system toward the feedback. This results in interesting
dynamical features, such as transition between a birhythmic
state and a steady state and a crossover from birhythmic
to monorhythmic behavior. Although the present study of
dynamical control of attractors by delayed feedback has
been carried out on a simple specific model that admits of
birhythmicity, we believe that some of the conclusions drawn
are expected to be useful for other multicycle oscillations
in general. Depending on the delay and its strength it is
possible to figure out different zones in the bifurcation diagram
for which the dynamical scenarios are generically distinct.
The strength of delay is likely to play a significant role in
modulating the position of the dividing line(s) between the
zones.
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