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Time-delay chaotic systems have some very interesting properties, and their parameter estimation has received
increasing interest in the recent years. It is well known that parameter estimation of a chaotic system is a nonlinear,
multivariable, and multimodal optimization problem for which global optimization techniques are required in
order to avoid local minima. In this work, a seeker-optimization-algorithm (SOA)-based method is proposed to
address this issue. In the SOA, search direction is based on the empirical gradients by evaluating the response
to the position changes, and step length is based on uncertainty reasoning by using a simple fuzzy rule. The
performance of the algorithm is evaluated on two typical test systems. Moreover, two state-of-the-art algorithms
(i.e., particle swarm optimization and differential evolution) are also considered for comparison. The simulation
results show that the proposed algorithm is better than or at least as good as the other two algorithms and can
effectively solve the parameter estimation problem of time-delay chaotic systems.
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I. INTRODUCTION

The problem of parameter estimation in chaotic systems is
treated as an important issue in nonlinear science and has
attracted ever-growing attention of researchers in the past
decades [1–21]. Due to the complexity and the unstable dy-
namic behavior of chaotic systems, it is not easy to determine
their parameters, and parameter estimation of chaotic systems
is well known as a nonlinear, multivariable, and multimodal
optimization problem for which global optimization tech-
niques are required in order to avoid local minima [22–28].

In many real systems, such as chemical processes, bio-
logical systems, rolling mill systems, and economic systems,
time delay is commonly encountered. Since Mackay et al.
[29] first found chaos in a time-delay system, control and
synchronization of time-delay chaotic systems has become
an active area of research [27,28,30–35]. Time-delay chaotic
systems can produce chaotic attractors with an arbitrarily
large number of positive Lyapunov exponents, which is a very
interesting property because it can improve the level of security
in secure communication. To achieve the goal of control and
synchronization of time-delay chaotic system, the parameters
and time-delay constant should be estimated when they are
unknown [27,28]. Because the conventional gradient-based
methods may easily get stuck in local minima, recently some
intelligent optimization techniques have been proposed for
the application of parameter estimation of time-delay chaotic
systems, including particle swarm optimization (PSO) [27]
and differential evolution (DE) [28]. Although DE and PSO
have received much interest from the evolutionary computation
(EC) community, it does not mean that there are not any
limitations to them. Several studies have shown that the
DE is prone to not only premature convergence but also
stagnation [36] and that a successful location of the global
optimum depends on choosing the correct control parameters
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[37]. Meanwhile, the performance of PSO also depends on
its parameters [38] and may be influenced by premature
convergence and stagnation problems [36,39].

Human beings are the highest-ranking animals in nature.
Optimization tasks are often encountered in many areas of
human life [40], and the search for a solution to a problem is
one of the basic behaviors to all mankind [41]. In the course
of evolution, human beings have accumulated a great wealth
of experience to optimally solve their practical problems.
Why not learn from human beings (i.e., ourselves)? The
seeker optimization algorithm (SOA) used in this paper is
just such a paradigm, which takes optimization processes as a
search by a human team for an optimal solution and focuses
directly on human group searching behaviors to be simulated
for real-parameter optimization. As a new population-based
heuristic search algorithm, SOA, also called a human group
optimizer (HGO), has been applied to function optimization
[42], proton exchange membrane fuel cell model optimization
[43], optimal reactive power dispatch [44,45], digital IIR filter
design [46], etc. In our previous works [42–46], some concepts
in SOA may be confusing and were left to be further elaborated.
Moreover, Our previous works did not explicitly analyze the
impact of the main parameters of the SOA on the optimization
performance. In this paper, some concepts in SOA are further
clarified, especially the relationship between population and
subpopulation and the inter-subpopulation learning strategy. In
addition, this paper presents the in-depth analysis on the impact
of the main parameters of the SOA on the parameter-estimation
performance. Then the SOA is applied to parameter estimation
of time-delay chaotic systems on two typical time-delay
chaotic systems. Unlike Refs. [27,28], where the PSO and
DE were used for the same tasks but not compared with
other methods, this paper presents a comparison of SOA
with both PSO [27] and DE [28]. The simulation results
show that SOA has better, or at least equally good, perfor-
mance than the other algorithms and becomes a promising
candidate for parameter estimation of time-delay chaotic
systems.
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In the last years, the covariance matrix adaptation evolution
strategy (CMA-ES) [47] has also attracted a certain amount of
attention of researchers. The CMA-ES is a class of continuous
evolutionary algorithm (EA) with the selection, recombina-
tion, and mutation operators. It generates new population
members by sampling from a probability distribution that is
constructed during the optimization process. On a contrary,
the SOA is a class of swarm intelligence algorithms without
the traditional evolutionary operators. Because the CMA-ES
is a different algorithm from the SOA and has also not been
applied to parameter estimation of time-delay chaotic systems,
we do not consider it in the Sec. IV.

The rest of this paper is organized as follows: Section II
presents the mathematical formulation of parameter estimation
of time-delay chaotic systems. In Sec. III, SOA is described
in detail. In Sec. IV, SOA is evaluated on two typical systems
with comparisons of other algorithms. Then, in Sec. V, further
analysis on the parameters of SOA is conducted. Finally, the
conclusion is drawn in Sec. VI, clearly different from the
CMA-ES.

II. PROBLEM FORMULATION

The problem formulation of parameter estimation for time-
delay chaotic systems is presented in this section. Consider the
following time-delay chaotic system:

Ẏ = F [Y (t),Y (t − τ ),Y 0,x], (1)

where Y (t) = [y1(t),y2(t), . . . ,yn(t)]T is the n-dimensional
state vector with the initial state Y 0 and x = (x1,x2, . . . ,xD)T

denotes the D-dimensional parameter vector of the chaotic
system.

For the purpose of parameter estimation, let the system
structure be assigned, and the estimated system can be
described as follows:

˙̃Y = F [Ỹ (t),Ỹ (t − τ̃ ),Y 0,x̃], (2)

where Ỹ is the n-dimensional state vector and x̃ =
(x̃1,x̃2, . . . ,x̃D)T is the estimated parameter vector. The time
delay τ̃ is treated as a component of the estimated parameter
vector.

In this case, the parameters of the estimated system are
successively adjusted by an optimization method until the
error between the state vectors of the original system and
the estimated system is minimized (shown in Fig. 1). In other
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FIG. 1. Block diagram of the parameter-estimation process for
time-delay chaotic systems.

words, the task is formulated as a minimization optimization
problem [27,28]:

min J(x̃) =
N∑

t=1

‖ Y (t) − Ỹ (t) ‖2 , (3)

where N is the number of samples used for the calculation of
objective function and Y (t) and Ỹ (t) (t = 1,2, . . . ,N ) denote
the state vectors of the original system and the estimated
system at time t , respectively.

III. SEEKER OPTIMIZATION ALGORITHM

In this section, the main material about the SOA from
Refs. [42–46] is included in order to make the introduction of
the SOA method more self-contained. SOA operates on a set
of potential solutions called a search population (i.e., human
group or swarm). The individual (i.e., a potential solution)
of this population is called a seeker (i.e., person or agent).
In order to add a social component for social sharing of
information, a neighborhood is defined for each seeker. In the
present simulations, for example, the population is randomly
categorized into K = 3 subpopulations (every subpopulation
has the same size), and all seekers in the same subpopulation
constitute a neighborhood. A relationship chart representing
population and subpopulations is also presented as Fig. 2.

A. Implementation of SOA

Assume that the optimization problems to be solved are
minimization problems. The main steps of SOA are shown
as Fig. 3. A search direction �di(t) = [di1,di2, . . . ,diD] and
a step length vector �αi(t) = [αi1,αi2, . . . ,αiD] are computed
(see Sec. III B and III C) for the ith seeker at time step t , where
αij (t) � 0, dij ∈ {−1,0,1}, i = 1,2, . . . ,s, j = 1,2, . . . ,D,

FIG. 2. The relationship between population and subpopulation.
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FIG. 3. The main steps of the SOA.

and s is the population size. Then, the j th element of the
ith seeker’s position is updated by

xij (t + 1) = xij (t) + dijαij . (4)

Since the subpopulations are searching using their own
information, they are easy to converge to a local optimum. To
avoid this situation, an inter-subpopulation learning strategy
(illustrated by Fig. 4) is used; that is, the worst two positions
of each subpopulation are combined with the best position of
each of the other two subpopulations by the following binomial
crossover operator:

xknj,worst =
{
xlj,best if Rj � 0.5,

xknj,worst else, (5)

where j = 1,2, . . . ,D, Rj is a uniformly random real number
within [0,1], xknj,worst is denoted as the j th element of the
nth worst position in the kth subpopulation, xlj,best is the
j th element of the best position in the lth subpopulation,
and the indices k, n, l are constrained by the combination
(k,n,l) ∈ {(1,1,2),(1,2,3),(2,1,1),(2,2,3),(3,1,1),(3,2,2)}. In
this way, the good information obtained by each subpopulation
is exchanged among the subpopulations and then the diversity
of the population is increased.

B. Search direction

The gradient has played an important role in the history
of search methods [48]. The search space may be viewed
as a gradient field [49], and a so-called empirical gradient
(EG) can be determined by evaluating the response to the
position change, especially when the objective function is not
be available in a differentiable form at all [50]. The gradient
can be defined as follows:

�∇J (�x) =
(

∂J

∂x1
,
∂J

∂x2
, . . . ,

∂J

∂xD

)T

, (6)

where J (·) denotes the objective function in the D-dimensional
search space. Since most practical applications involve objec-
tive functions which cannot be available in a differentiable

FIG. 4. The inter-subpopulation learning strategy.

form or their derivatives cannot be easily computed [51,52],
a so-called EG [50] can be determined by evaluating the
response to the position change. Then the seeker can follow
an EG to guide his search. An EG is described as follows:

�∇J (�x)=
(
J ( �x ′) − J (�x)

x ′
1 − x1

,
J ( �x ′) − J (�x)

x ′
2 − x2

, . . . ,
J ( �x ′) − J (�x)

x ′
D − xD

)T

,

(7)

where �x ′ and �x are two different positions in search space.
Since the SOA does not involve the magnitude of the EG,

search direction can be determined only by the signum function
of a better position minus a worse position. For example, an
empirical search direction,

�d =
{

sgn( �x ′ − �x) if J ( �x ′) < J (�x),
sgn(�x − �x ′) else,

(8)

where the function sgn(·) is a signum function on each
dimension of the input vector. In SOA, every seeker selects
his search direction based on several EGs by evaluating the
current or historical positions of himself or his neighbors.
They are detailed as follows.

Swarms (including human beings) are a class of entities
found in nature which specialize in mutual cooperation among
them in executing their routine needs and roles [53]. There are
two extreme types of co-operative behaviors. One, egotistic,
is entirely proself and another, altruistic, is entirely progroup
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FIG. 5. The proportional selection rule of search directions [45].

[54]. Each seeker i, as a single sophisticated agent, is uniformly
egotistic, believing that he should go toward his historical best
position �pi,best(t) through cognitive learning [55]. Then, an
EG from �xi(t) to �pi,best(t) can be involved for the ith seeker
at time step t . Hence, each seeker i is associated with an
empirical direction called an egotistic direction �di,ego(t) =
[di1,ego,di2,ego, . . . ,diD,ego]:

�di,ego(t) = sgn[ �pi,best(t) − �xi(t)]. (9)

On the other hand, based on the altruistic behavior, the
seekers in a same neighborhood region co-operate explicitly,
communicate with each other, and adjust their behaviors in
response to others to achieve the desired goal [54]. That means
the seekers exhibit entirely progroup behavior through social
learning [55]. The population then exhibits a self-organized
aggregation behavior of which the positive feedback usually
takes the form of attraction toward a given signal source [56].
For a “black-box” problem in which the ideal global minimum
value is unknown, the neighbors’ historical best position
�gbest(t) or the neighbors’ current best position �lbest(t) is used as
the attraction signal source of the self-organized aggregation
behavior. Hence, each seeker i is associated with two optional
altruistic direction, that is, �di,alt1 (t) and �di,alt2 (t):

�di,alt1 (t) = sgn[�gbest(t) − �xi(t)], (10)

�di,alt2 (t) = sgn[�lbest(t) − �xi(t)]. (11)

Moreover, seekers enjoy the properties of proactiveness:
Seekers do not simply act in response to their environment;
they are able to exhibit goal-directed behavior [57]. In addition,
future behavior can be predicted and guided by past behavior
[58]. As a result, the seeker may be proactive to change his
search direction and exhibit goal-directed behavior according
to his past behavior. Hence, each seeker i is associated with an
empirical direction called a proactiveness direction �di,pro(t):

�di,pro(t) = sgn[�xi(t1) − �xi(t2)], (12)

where �xi(t1) and �xi(t2) are the best and the worst one of the set
{�xi(t),�xi(t − 1),�xi(t − 2)}.

According to human rational judgment, the actual search
direction of the ith seeker, �di(t) = [di1,di2, . . . ,diD], is based
on a compromise among the aforementioned four empirical
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FIG. 6. The action part of the fuzzy reasoning [45].

FIG. 7. Convergence graphs of the estimated parameters by
various algorithms on time-delay logistic chaotic system.

directions, that is, �di,ego(t), �di,alt1 (t), �di,alt2 (t), and �di,pro(t). In
this study, the j th element of �di(t) is selected by applying the
following proportional selection rule (shown in Fig. 5):

dij =

⎧⎪⎨
⎪⎩

0 if rj � p
(0)
j ,

1 if p
(0)
j � rj � p

(0)
j + p

(1)
j ,

−1 if p
(0)
j + p

(1)
j � rj � 1,

(13)
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FIG. 8. Convergence graphs of various algorithms on time-
delay logistic chaotic system (objective function values vs function
evaluations).

where i = 1,2, . . . ,s, j = 1,2, . . . ,D, rj is a uniform ran-
dom number in [0, [1], and p

(m)
j (m ∈ {0,1,−1}) is defined

as follows: In the set {dij,ego,dij,alt1 ,dij,alt2 ,dij,pro}, which is
composed of the j th elements of �di,ego(t), �di,alt1 (t), �di,alt2 (t), and
�di,pro(t), let N (1) be the number of “1”, N (−1) be the number of

“−1”, and N (0) be the number of “0”, then p
(m)
j = N (m)

4 ,m =
0,1, − 1. For example, if dij,ego = 1, dij,alt1 = −1, dij,alt2 =
−1, dij,pro = 0, then N (1) = 1, N (−1) = 2, and N (0) = 1. So,
p

(1)
j = 1

4 , p
(−1)
j = 2

4 , and p
(0)
j = 1

4 .

C. Step length

In a continuous space, there often exists a neighborhood
region close to an extremum point. In this region, the fitness
values of the input variables are proportional to their distances
from the extremum point. It may be assumed that better points
are likely to be found in the neighborhood of families of good
points, and search should be intensified in regions containing
good solutions through focusing search [51]. Hence, from
the standpoint on human searching, it could be believed
that one may find the near optimal solutions in a narrower
neighborhood of the point with lower fitness value and,
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FIG. 9. Convergence graphs of various algorithms on time-delay
logistic chaotic system (objective function values vs time).

FIG. 10. Convergence graphs of the estimated parameters by
various algorithms on time-delay Mackey-Glass chaotic system.

contrariwise, in a wider neighborhood of the point with higher
fitness value.

Fuzzy systems arose from the desire to describe complex
systems with linguistic descriptions [59]. According to human
focusing searching discussed above, the uncertainty reasoning
of human searching could be described by natural linguistic
variables and a simple control rule as “If fitness value is small
(i.e., the conditional part), then step length is short (i.e., the
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FIG. 11. Convergence graphs of various algorithms on time-delay
Mackey-Glass chaotic system (objective function values vs function
evaluations).

action part).” The understanding and linguistic description of
human searching makes fuzzy system a good candidate for
simulating human focusing searching behavior.

Different optimization problems often have different ranges
of fitness values. To design a fuzzy system to be applicable
to a wide range of optimization problems, the fitness values
of all the seekers are descendingly sorted and turned into the
sequence numbers from 1 to s as the inputs of fuzzy reasoning.
The linear membership function is used in the conditional part
(fuzzification) since the universe of discourse is a given set
of numbers, that is, 1,2, . . . ,s. The expression is presented as
Eq. (14):

μi = μmax − (μmax − μmin)
s − Ii

s − 1
, (14)

where Ii is the sequence number of �xi(t) after sorting the
fitness values and μmax is the maximum membership degree
value which is equal to or a little less than 1.0. In this study,
μmax = 0.99.

In the action part (defuzzification), the Bell membership
function μ(αij ) = e−α2

ij /(2δ2
j ) (i = 1,2, . . . ,s; j = 1,2, . . . ,D)

is used for the j th element of the ith seeker’s step length. For
the Bell function, the membership degree values of the input
variables beyond [−3δj ,3δj ] are less than 0.0111 [μ(±3δj ) =
0.0111], which can be neglected for a linguistic atom [60].
Thus, the minimum value μmin = 0.0111 is set. Moreover,
the parameter δj of the Bell membership function is the j th
element of the vector �δ = [δ1,δ2, . . . ,δD] which is given by

�δ = ωabs(�xbest − �xrand), (15)

where the function abs(·) returns an output vector such
that each element of the vector is the absolute value of
the corresponding element of the input vector. The ω is
a time-dependent weight used to decrease the step length
with time step increasing so as to gradually improve the
search precision. In this study, ω is linearly decreased from
ωmax = 0.9 to ωmin = 0.1 during a run. The �xbest and �xrand are
the best seeker and a randomly selected seeker in the same
subpopulation to which the ith seeker belongs, respectively.
Notice that �xrand is different from �xbest, and �δ is shared by all

TABLE I. The results of objective values for various algorithms
on time-delay logistic chaotic system over 30 runs.

Algorithms Best Worst Mean Std. h CI

PSO 2.3273 6.1792 4.1725 2.4259 0 [−2.3449, 0.2547]

DE 2.0647 6.8942 4.0519 1.5117 0 [−2.2188, 0.3698]

SOA 1.5584 5.1601 3.1274 1.2675

the seekers in the same subpopulation. Then the action part of
the fuzzy reasoning (shown in Fig. 6) gives the j th element
of the ith seeker’s step length �αi = [αi1,αi2, . . . ,αiD](i =
1,2, . . . ,s; j = 1,2, . . . ,D):

αij = δj

√
−log[r(μi,1)], (16)

where δj is the j th element of the vector �δ in Eq. (15), the
function log(·) returns the natural logarithm of its input, and
the function r(μi,1) returns a uniform random number within
the range of [μi ,1] which is used to introduce the randomness
for each element of �αi and improve local search capability.

IV. SIMULATION RESULTS

To evaluate the effectiveness and efficiency of the proposed
SOA-based parameter-estimation approach for time-delay
chaotic system, two typical chaotic systems are used as
the test systems which were employed by Refs. [27,28].
Moreover, the proposed SOA is compared with two state-of-
the-art algorithms, that is, PSO [27] and DE [28]. These two
algorithms were used to solve the same parameter-estimation
problems of a time-delay chaotic system by Refs. [27,28].
All the algorithms are implemented in MATLAB 7.0 and run
on a PC with Pentium 4 CPU 2.4G 512MB RAM. The
implementations of both PSO and DE follow the suggestions
from Refs. [27,28], respectively. The parameters of PSO are
set as follows: The population size is equal to 20, learning
rate c1 = c2 = 2, inertia weight linearly decreased from 0.9
to 0.4 with run time increasing, the maximum velocity vmax

is set at 20% of the dynamic range of the variable on each
dimension. The control parameters of DE algorithm are set
as follows: DE/rand-best/1/bin, the population size is 30,
mutation factor F and crossover rate CR are set to 0.6. The
main parameters involved in SOA include the population size s

TABLE II. The estimated parameters for various algorithms on
time-delay logistic chaotic system over 30 runs.

Algorithms τ γ λ

PSO Best 0.4997 25.9999 104.0000
Worst 0.5004 25.8301 103.6808
Mean 0.4998 25.9654 103.9469

DE Best 0.5003 26.0607 104.0114
Worst 0.4978 26.0000 104.0000
Mean 0.4996 25.9999 104.0001

SOA Best 0.5000 25.9962 104.0136
Worst 0.4999 26.1262 103.9873
Mean 0.4997 26.0286 104.0014
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TABLE III. The CPU time necessary to simulate 300 genera-
tions of various algorithms on time-delay logistic chaotic system
over 30 runs (for example, the shortest time needed by PSO is
3.2907 × 103 s).

Algorithms Shortest time Longest time Average time

PSO 3.2907 × 103 3.3653 × 103 3.3239 × 103

DE 5.0626 × 103 5.3011 × 103 5.1475 × 103

SOA 3.1786 × 103 3.3834 × 103 3.3153 × 103

and the parameters of membership function of fuzzy reasoning
[including the limits of membership degree value, that is, μmax

and μmin in Eq. (14) and the limits of ω, that is, ωmax and
ωmin in Eq. (15)]. In this paper, s = 20, μmax = 0.99, μmin =
0.0111, ωmax = 0.9, ωmin = 0.1 for both the test systems. Total
30 runs and the maximum generations of 300 are made for
all the algorithms. The following conclusions drawn from the
comparisons are valid at least for the corresponding versions of
the three algorithms with their above-selected parameters. In
the simulations, the original system first evolves freely with a
random initial state. After a period of transient process, a state
is selected as the initial state X0 for parameter estimation. Five
hundred states are used to calculate the objective function in
Eq. (3). Like Ref. [28], dde23 in MATLAB Toolbox is used to
obtain the state vectors X and X̃ at each time t .

A. Simulation on time-delay logistic chaotic system

The first test example is time-delay logistic chaotic system
described as

Ẏ (t) = −λY (t) + γ Y (t − τ )[1 − Y (t − τ )], (17)

where τ , γ , and λ are unknown parameters to be estimated. The
original system is assigned with the original parameters: τ =
0.5, γ = 104, and λ = 26, under which the system is chaotic.
The search ranges of three parameters are set as 0.2 � τ � 1,
100 � γ � 108, and 22 � λ � 30.

To compare the proposed method with other algorithms,
the concerned performance indexes including the “Best,”
“Worst,” “Mean,” and standard deviation (“Std.”) of the
objective function values are summarized in Table I. In order to
determine whether the results obtained by SOA are statistically
different from the results generated by other algorithms, the
two-sample t test [61,62] are conducted which performs a
t test of the null hypothesis that two independent random
samples have equal means and equal but unknown variances,
against the alternative that the means are not equal. An h value
of one indicates that the performances of the two algorithms
are statistically different with 95% certainty, whereas h value
of zero implies that the performances are not statistically
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FIG. 12. Convergence graphs of various algorithms on time-delay
Mackey-Glass chaotic system (objective function values vs time).

different. The CI is confidence interval on the difference of
sampled data means. (Here are the means of the final minimum
objective function values obtained by the two considered
algorithms over 30 runs.) The corresponding h and CI values
are presented in Table I, too. According to the respective Best
or Worst objective function values, the Best, Worst, and Mean
values of the estimated parameters by various algorithms are
listed in Table II. The total CPU time necessary to simulate
300 generations of each algorithm in a run is summarized in
Table III. The convergence graphs of the estimated parameters
by various algorithms are illustrated in Fig. 7. The average
convergence curves for objective function values vs number of
function evaluations and objective function values vs CPU time
are depicted for all the algorithms in Figs. 8 and 9, respectively.
Note that function evaluations correspond to each time the
objective function in Eq. (3) is evaluated in the iteration process
of the algorithm, and the maximum generations multiplied
by the population size is the maximum number of function
evaluations (please refer to Fig. 3 to understand it).

Table I indicates that SOA has the smallest Best, Mean,
Worst, and Std. values of objective function of all the other
listed algorithms. Although the h value for both SOA vs PSO
and SOA vs DE is equal to zero, the median values of the
corresponding CI are less than zero. Hence, the conclusions
can be drawn that SOA has, at least, equally good performance
as both DE and PSO do according to the h values. In addition,
according to its smallest Best, Mean, Worst, and Std. values,
as well as the median values of the corresponding CI less than
zeros, the SOA is better than the other two listed algorithms in
terms of global search capacity and local search precision.
From Table III, it can be seen that the computing time

TABLE IV. The results of objective values for various algorithms on time-delay Mackey-Glass chaotic system over 30 runs (For example,
the best objective function value over 30 runs of PSO is 1.3801 × 10−13).

Algorithms Best Worst Mean Std. h CI

PSO 1.38 × 10−13 6.68 × 10−9 1.30 × 10−9 2.20 × 10−9 0 [−2.77 × 10−9, 1.58 × 10−10]
DE 0 0 0 0
SOA 0 0 0 0
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TABLE V. The estimated parameters for various algorithms on time-delay Mackey-Glass chaotic system over 30 runs.

Algorithms τ a b

PSO Best 17 − 3.85 × 10−13 0.1 − 4.19 × 10−14 0.2 − 1.50 × 10−14

Worst 17 + 1.82 × 10−11 0.1 + 3.62 × 10−11 0.2 + 9.39 × 10−12

Mean 17 + 3.79 × 10−12 0.1 + 1.92 × 10−12 0.2 + 3.45 × 10−12

DE Best 17 0.1 0.2
Worst 17 0.1 0.2
Mean 17 0.1 0.2

SOA Best 17 0.1 0.2
Worst 17 0.1 0.2
Mean 17 0.1 0.2

of SOA is less than that of other algorithms. Furthermore,
Figs. 8 and 9 show that SOA has faster convergence speed
and needs not only less CPU time but also fewer function
evaluations to achieve the corresponding precision levels
of both PSO and DE. In Fig. 7, the estimated parameters
(i.e., τ , γ , and λ) by the three algorithms at every function
evaluation are depicted. Generally, if the convergence graphs
of the estimated parameters have a serious vibration but a
large objective function value, it means that the considered
algorithm has a good exploration ability but a bad exploitation
ability; contrarily, if the convergence graphs of the estimated
parameters have a little or no vibration but a large objective
function value, it means that the considered algorithm may get
trapped in a local optimum (i.e., premature convergence) or
search stagnation. On the one hand, the SOA has a smaller
objective function value than both PSO and DE according to
Table I. On the other hand, according to Fig. 7, the convergence
graphs of the estimated parameters by the SOA has a more
serious vibration than that of DE and a less vibration than
that of PSO. Hence, it can be seen that the SOA has a better
trade-off between exploration and exploitation.

B. Simulation on time-delay Mackey-Glass chaotic system

To further evaluate the proposed method, the time-
delay Mackey-Glass chaotic system is used, which is
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FIG. 13. Convergence graphs with various population sizes.

described as

Ẏ (t) = −aY (t) + bY (t − τ )

1 + [Y (t − τ )]10
, (18)

where τ ,a and b are unknown parameters to be estimated. The
original system is assigned with the original parameters: τ =
17, a = 0.1, and b = 0.2 under which the system is chaotic.
The search ranges of three parameters are set as 12 � τ � 20,
0.05 � a � 1, and 0.05 � b � 1.

The corresponding simulation results over all 30 runs are
summarized in Tables IV–V. The convergence graphs of the
estimated parameters by various algorithms are illustrated in
Fig. 10. The average convergence curves for objective function
values vs number of function evaluations and objective
function values vs CPU time are depicted for all the algorithms
in Figs. 11 and 12, respectively.

From Tables IV and V, it can be seen that both SOA and
DE can successfully find the true parameters and achieve the
precise objective function value J = 0 in all the 30 runs.
Because of their same results, it is not necessary to perform
the t tests on SOA vs DE. Although the h value for SOA
vs PSO equals zero, the median value of the corresponding
CI,−2.61 × 10−9, is less than zero. In particular, PSO always
cannot exactly find the true parameters in every run with an
objective function value larger than zero. In Table VI and
Figs. 11 and 12, it is shown that SOA also has faster
convergence speed and needs less time to achieve the objective
function value of zero than the other methods. Moreover,
Fig. 10 also shows that the parameters estimated by SOA
converge to a steady state of the optimal solutions (i.e., the
original parameters of the original test system) with a faster
speed than that of the other algorithms. In the simulations, PSO
cannot achieve the objective function value of zero within the
maximum generations of 300 at every run, DE on average
needs 5642 function evaluations and consumes CPU time of

TABLE VI. Computing time (s) for various algorithms on time-
delay Mackey-Glass chaotic system over 30 runs.

Algorithms Shortest time Longest time Average time

PSO 203.71 230.17 220.18
DE 343.33 371.05 354.40
SOA 193.74 222.29 203.98
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FIG. 14. Convergence graphs with various μmax.

2.5634 × 102 s to obtain a mean objective function value of
zero, but SOA needs only 4078 evaluations and 1.0015 × 102 s.
Hence, the used version of PSO is obviously inferior to both DE
and SOA because it cannot find the precise optimal solutions.
Moreover, compared with DE, SOA needs less computation
cost to find the precise optimal solutions with a better global
convergence performance.

V. ANALYSIS ON THE PARAMETERS OF SOA

The main parameters in SOA include the population size s,
the number of subpopulations K , and the parameters of
membership function of fuzzy reasoning [including the limits
of membership degree value, that is, μmax and μmin in Eq. (14)
and time-dependent weight ω in Eq. (15)]. In this section,
on the one hand, we presented the qualitative analysis on the
effects of these parameters on the algorithm’s performance.
On the other hand, the quantitative study was provided on the
time-delay Mackey-Glass chaotic system.

A. Population size

Generally, small population size shall partly decrease the
diversity of the population, and big population size shall,
on the contrary, increase the diversity of the population.
However, a population size that is too big may deteriorate
the algorithm performance because, in this case, many seekers
may have not enough chance to learn from the global historical
best seeker, which may result in a weak global convergence
ability. Table VII presented the simulation results of SOA with
different population size s on the time-delay Mackey-Glass
chaotic system. From Table VII, it can be seen that a population

TABLE VII. The results of objective values for SOA with various
population size over 30 runs.

s 10 15 20 30 40 50 60

Best 1.2326 × 10−32 0 0 0 0 0 0
Worst 6.0184 × 10−4 3.1131 × 10−20 0 0 0 0 0
Mean 7.8570 × 10−5 3.8913 × 10−21 0 0 0 0 0
Std. 1.9271 × 10−4 1.1006 × 10−20 0 0 0 0 0
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size that is too small will deteriorate the performance of SOA.
When population size is smaller than 15, the SOA is apt to get
trapped in local minima. On the contrary, Fig. 13 also shows
that the convergence speed may slow down when increasing
population size to a certain value that is too big.

B. The limits of membership degree

From Eqs. (14) and (16), search step decreases with
increasing μmax and μmin, and step length equals to zero
when μmax = 1.0. Decreasing search step may result in good
search precision, and increasing search step may speed up the
convergence rate. However, a search step that is too small
may result in slow convergence rate, and even premature
convergence. On the contrary, a search step that is too big
may result in the dissatisfactory convergence precision and
even stagnation problem. Hence, both μmax and μmin may
have a certain impact on the performance of SOA. Since
the membership degree values of the input variables beyond
[−3δ,3δ] are less than 0.0111 [μ(±3δ) = 0.0111], and the
minimum value μmin = 0.0111 is assigned. In order to keep
a certain search ability of the best seeker, the maximum
membership degree value is set to a little less than 1.0.
Figures 14 and 15 present the simulation results of SOA with
different μmax and μmin, respectively. From the figures, it can
be seen that the performance of SOA is not drastically sensitive
to the change of the μmax and μmin values. Moreover, SOA can
find the optimal solution in each run with the objective function
value of zero. Of course, a suitable set of μmax and μmin still
can obtain a faster convergence speed.

TABLE VIII. The results of objective values for SOA with various
subpopulation number over 30 runs.

K 1 2 3 4 5

Best 0 0 0 0 3.6181 × 10−23

Worst 1.0184 × 10−31 0 0 6.1629 × 10−32 2.0895 × 10−6

Mean 6.1630 × 10−32 0 0 5.6027 × 10−33 5.2998 × 10−7

Std. 2.9242 × 10−32 0 0 1.8582 × 10−32 8.3284 × 10−7
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C. The limits of time-dependent weight

The ω in Eq. (15) is a time-dependently declined parameter
used to decrease the step length with time step increasing so
as to gradually improve the search precision. Like the mem-
bership degree in Sec. V B, this parameter throws the same
influence on the performance of the SOA by tuning the step
length. Figures 16 and 17 present the simulation results of SOA
with different ωmax and ωmin, respectively. However, from the
figures, it can be seen that SOA can find the optimal solution
in each run and the performance of SOA is not drastically
sensitive to the change of the ω limits.

D. The number of subpopulations

In Sec. III, the number of subpopulations K is set as K = 3.
In fact, this is also a key parameter of the algorithm and its
effect should be discussed. When the whole population size
is fixed, the greater the number of subpopulations, the smaller
is the subpopulation size. Under this condition, although the
large subpopulation number may increase the diversity of
the population, the small subpopulation size results in the
case in which the subpopulation does not have an intensive
search and the whole population does not have a good global
convergence ability. Table VIII presents the simulation results
of SOA with different K . From the table, it can be seen that
the performance of the SOA will be deteriorated with the
increase of the K value.

VI. CONCLUSIONS

SOA is a novel heuristic stochastic optimization algorithm
based on simulating human behaviors. The algorithm has the
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additional advantage of being easy to understand and simple
to implement so that it can be used for a wide variety of
optimization tasks. In this paper, a SOA-based approach
for parameter estimation of time-delay chaotic systems is
proposed, and the validity of SOA is studied. The sim-
ulation results show that SOA has better performance in
balancing global search ability and convergence speed than
other algorithms. So it is believed that the proposed SOA
approach is capable of efficiently and effectively estimating
the parameters of time-delay chaotic systems and will become
a promising candidate for parameter-estimation problems. The
future work is to apply the approach to dynamical chaotic sys-
tems, uncertain chaotic systems, and noise-perturbed chaotic
systems.
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