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Newtonian and special-relativistic predictions for the trajectories of a low-speed scattering system
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Newtonian and special-relativistic predictions, based on the same model parameters and initial conditions
for the trajectory of a low-speed scattering system are compared. When the scattering is chaotic, the two
predictions for the trajectory can rapidly diverge completely, not only quantitatively but also qualitatively, due
to an exponentially growing separation taking place in the scattering region. In contrast, when the scattering is
nonchaotic, the breakdown of agreement between predictions takes a very long time, since the difference between
the predictions grows only linearly. More importantly, in the case of low-speed chaotic scattering, the rapid loss of
agreement between the Newtonian and special-relativistic trajectory predictions implies that special-relativistic
mechanics must be used, instead of the standard practice of using Newtonian mechanics, to correctly describe
the scattering dynamics.
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I. INTRODUCTION

The standard practice [1,2] in the field of nonlinear
dynamics and chaos when applied to physics and engineering
problems is to use Newtonian mechanics, instead of special-
relativistic mechanics, to study the trajectories of a slow-
moving dynamical system (slow meaning that the speed of
the system is much smaller than the speed of light c) provided
that gravity does not play a dynamical role. The reason for
the standard practice is the conventional belief [3–5] that,
in general, if the speed of the dynamical system is low,
trajectories predicted by special-relativistic mechanics are
well approximated by trajectories calculated with Newtonian
mechanics using the same model parameters and initial
conditions.

However, it was recently shown numerically for simple
models of nondissipative [6,7] and dissipative [8,9] spatially
bounded dynamical systems that, although the speed of the
system is low, the Newtonian trajectory rapidly diverges from
the special-relativistic counterpart if (i) the two trajectories are
chaotic in the nondissipative case or (ii) the two trajectories
are chaotic or transiently chaotic in the dissipative case. In
contrast, the disagreement occurs very slowly if the trajectories
are nonchaotic. Other studies on the relativistic dynamics of
nonlinear systems have been done previously, but comparison
with the Newtonian dynamics at low speed was not made.
For example, following the work by Zaslavskii [10], which
showed that a charged particle exposed to a broadband electric
field in a static magnetic field acts like an electrically kicked
harmonic oscillator where the existence of a stochastic web
allows the particle to diffuse into the high-energy region,
other authors [11,12] have studied in detail the corresponding
relativistic dynamics. Later Horwitz and Ashkenazy reported
additional work on the relativistic kicked oscillator using
the proper covariant Lorentz force [13] and taking also
into account the effect of radiation on the stochastic web
[14]. Matrasulov and coworkers considered the transport
properties in the relativistic periodically kicked rotor [15]
and the diffusive ionization of a relativistic hydrogen-like
atom [16].

In this paper, we extend the comparison of Newtonian
and special-relativistic trajectories to the case of low-speed
scattering (spatially unbounded) system that can exhibit
chaotic or irregular behavior. For reviews of nonrelativistic
classical chaotic scattering see, for example, Refs. [17–21]. As
a working example we consider here a model first introduced
by Beeker and Eckelt [22] to study chaotic scattering in
a periodically driven Hamiltonian system of one degree of
freedom from the Newtonian perspective, using the associated
exact two-dimensional map.

The organization of the paper is as follows. In Sec. II, we
will present the details of the scattering system and derive
an exact two-dimensional map for the special-relativistic
dynamics. Typical results for scattering trajectories are pre-
sented and discussed in Sec. III. Finally, in Sec. IV, we
summarize our conclusions and discuss the meaning and
potential consequences of our findings.

II. SCATTERING SYSTEM AND MAPS

The scattering system that we have chosen to study consists
of a particle of rest mass m0 moving in the one-dimensional
potential well [22]

V (x) = −V0

β
(1 + x2)−β/2, (1)

which is periodically turned on only for an instant of time.
The potential well is characterized by two parameters V0

and β, where V0/β determines the depth of the well and β

determines its asymptotic behavior. The special-relativistic
equations of motion for the periodically driven particle are
given by

dx

dt
= p

m0

√
1 + [p/(m0c)]2

, (2)

dp

dt
= −dV

dx
δT (t) = −V0x(1 + x2)−(β+2)/2δT (t), (3)
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where δT (t) is a periodic series of delta functions, with period
T, given by

δT (t) = T

∞∑

j=−∞
δ(jT − t). (4)

It is easily seen from Eq. (2) that low particle momentum,
p � m0c, implies low particle speed, v � c.

The practical reason for using periodically driven systems
as dynamical models is that the associated equations of motion
can be easily converted into discrete maps, where the numerical
computations become much easier and accurate. In our case the
derivation of the special-relativistic map is as follows. Across
the nth kick, that is, from time t = nT − (just before the nth
kick) to t = nT + (just after the nth kick), the position does not
change:

x(nT +) = x(nT −). (5)

However, the momentum changes as a result of the kick:

dp

dt
= −V0x(nT −)[1 + x2(nT −)]−(β+2)/2δT (t). (6)

Integrating Eq. (6) from t = nT − to t = nT + yields

p(nT +)=p(nT −) − V0T x(nT −)[1 + x2(nT −)]−(β+2)/2. (7)

In between the nth kick and (n + 1)-th kick, that is, from
t = nT + (just after the nth kick) to t = (n + 1)T − (just before
the (n + 1)-th kick), the momentum does not change:

p((n + 1)T −) = p(nT +) (8)

since the particle evolves freely. The position changes accord-
ing to

dx

dt
= p(nT +)

m0

√
1 + [p(nT +)/(m0c)]2

. (9)

Integrating Eq. (9) from t = nT + to t = (n + 1)T − gives

x[(n + 1)T −] = x(nT +) + Tp(nT +)

m0

√
1 + [p(nT +)/(m0c)]2

.

(10)

Using Eqs. (5), (8), (7), and (10) can finally be written as

pn+1 = pn − V0T xn

(
1 + x2

n

)−(β+2)/2
, (11)

xn+1 = xn + Tpn+1

m0

√
1 + [pn+1/(m0c)]2

. (12)

The special-relativistic expressions given by Eqs. (11) and
(12) map the position and momentum of the particle from just
before the nth kick to just before the (n + 1)-th kick.

The corresponding Newtonian equations of motion for the
particle are given by Eqs. (2) and (3) without the square-root
term in Eq. (2). A similar derivation to that performed above
leads to the associated Newtonian map [22]:

pn+1 = pn − V0T xn

(
1 + x2

n

)−(β+2)/2
, (13)

xn+1 = xn + T

m0
pn+1. (14)

Beeker and Eckelt [22] chose m0 = 1 and T = 1 for the
rest mass of the particle and the kicking period, respectively,

in their study of the Newtonian map [Eqs. (13) and (14)]. They
found that for 0 < V0 < 4 the scattering is nonchaotic, meaning
that the scattering function varies smoothly or regularly.
However, for values of the potential parameters V0 = 8 and
β = 4, they found that the scattering is chaotic. In this
case, the scattering function (see Fig. 2 in Ref. [22]) varies
irregularly in certain intervals, and the irregular and regular
intervals intertwine down to all scales. Moreover, for these
potential parameter values, the chaotic scattering is Ref. [22]
“fully developed” [23], in the sense that all periodic orbits are
unstable and there are no Kolmogorov-Arnold-Moser islands
in the scattering region.

III. RESULTS

Following Beeker and Eckelt [22], we also use m0 = 1
and T = 1 for the rest mass of the particle and the kicking
period in our calculations. In addition, we take 105 as the
value for the speed of light c and β = 4. Recall that, from the
Newtonian perspective, the scattering is [22] nonchaotic for
V0 = 2, but chaotic for V0 = 8. We found that the scattering is
also correspondingly nonchaotic and chaotic when the special-
relativistic dynamics at low speed is considered.

In this section we present and discuss typical results
obtained from our calculations when comparing the low-speed
scattering trajectories predicted by the special-relativistic map
[Eqs. (11) and (12)] and the Newtonian map [Eqs. (13) and
(14)] using the same initial conditions, and considering cases
where the scattering is nonchaotic (V0 = 2 and β = 4) and
chaotic (V0 = 8 and β = 4).

Figure 1 shows the potential well and the corresponding
force for V0 = 8 and β = 4. The force decays rapidly to its
asymptotic zero value. The behavior of the force is similar for
V0 = 2 and β = 4. We have verified that the trajectories we
have studied are numerically accurate by comparing double
and quadruple-precision calculations. In all cases, the initial
position of the particle was well outside the scattering region.

The first example is from the nonchaotic scattering case.
The Newtonian and special-relativistic trajectories, start-
ing from the same initial position, x0 = −20, and initial
momentum, p0 = 1.2497, are plotted in Fig. 2. The magnitude
of the special-relativistic momentum remains close to 1, which

FIG. 1. Scattering potential (solid line) of Eq. (1) and the
corresponding force (dotted line) for V0 = 8 and β = 4.

036201-2



NEWTONIAN AND SPECIAL-RELATIVISTIC . . . PHYSICAL REVIEW E 83, 036201 (2011)

FIG. 2. Newtonian and special-relativistic predictions for the
nonchaotic scattering case: position (top) and momentum (bottom).
Newtonian and special-relativistic values are plotted with squares and
diamonds, respectively.

is 10−5 c. Expression (2) thus implies that the speed of the
particle is 10−5 c; that is, the speed of the particle is only
0.001% the speed of light. As can be seen in Fig. 2, our
calculation shows that both theories predict that the particle
is transmitted, and the trajectory obtained from the special-
relativistic theory is well approximated by the Newtonian
trajectory, as conventionally expected for low-speed scattering.

The next example is, on the other hand, taken from the
chaotic scattering case. The initial position x0 is −20, and the
initial momentum p0 is 1.2497 for both the Newtonian and
special-relativistic trajectories. The magnitude of the special-
relativistic momentum remains close to 1, again meaning
that the speed of the particle is only 0.001% the speed of
light. The obtained results, shown in Fig. 3, demonstrate
that, contrary to the usual expectations, the special-relativistic
trajectory is well approximated by the Newtonian trajectory
only for a short period of time, even in this case where
the particle speed remains low. Actually, after 35 kicks,
the two trajectories look completely different. Moreover, it
should be remarked that in this example the predictions of
the two theories are not only quantitatively different but also
differ qualitatively: While the particle is reflected according
to special-relativistic mechanics, it is transmitted in the
same circumstances according to Newtonian mechanics. In

FIG. 3. Newtonian and special-relativistic predictions for the first
example of the chaotic scattering case: position (top) and momentum
(bottom). Newtonian and special-relativistic values are plotted with
squares and diamonds, respectively.

addition, Newtonian mechanics predicts that the particle
remains in the scattering region significantly longer—it exits
after 53 kicks—than in the special relativistic case, for which it
leaves the interaction region much earlier, after only 43 kicks.

The magnitude of the difference between the Newtonian
and special-relativistic predictions is plotted versus the kick
numbers in Figs. 4 and 5, for the nonchaotic and chaotic
scattering cases, respectively. For both cases, the asymptotic,
either incoming or outgoing, momentum difference is easily
understood. The asymptotic Newtonian momentum is con-
stant, and so is the asymptotic special-relativistic momentum
(see Figs. 2 and 3). Therefore, the asymptotic momentum
difference is also a constant (see Figs. 4 and 5). Notice that
the incoming asymptotic momentum difference is not shown
in Fig. 5 because it has a zero value.

For both cases, the asymptotic (again either incoming or
outgoing) difference in the positions is also easily understood.
The asymptotic position difference varies linearly with time
(see Figs. 4 and 5) since the asymptotic Newtonian position and
the asymptotic special-relativistic position both vary linearly
with time (see Figs. 2 and 3). The linear behavior of the
asymptotic position difference appears curved in Fig. 5, where
the natural log of the position difference is plotted versus kick.

However, Figs. 4 and 5 show that the intermediate time
variation of the position and momentum differences in the
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FIG. 4. Magnitude of the difference between the Newtonian and
special-relativistic predictions for the nonchaotic scattering case of
Fig. 2: position difference (top) and momentum difference (bottom).

scattering region are different for the two considered cases.
In the nonchaotic scattering case, the position and momentum
differences grow linearly with time (between kicks 14 and
19 in Fig. 4). In sharp contrast, in the irregular or chaotic
scattering case, the position and momentum differences grow
exponentially with time (between kicks 14 and 42 in Fig. 5).
This exponential growth of the difference between trajectories
leads to a complete disagreement of the two trajectory
predictions after 35 kicks, as shown in Fig. 3.

In the nonchaotic scattering case, the continued slow
linear growth of the position difference after the intermediate
stage will eventually cause the two trajectory predictions to
disagree completely, but that will take place only after a very
long time.

The breakdown of agreement between the Newtonian and
special-relativistic trajectory predictions in the two cases above
can be further understood in the following way. Since p � m0c,
the factor 1/

√
1 + [pn+1/(m0c)]2 in Eq. (12) of the special-

relativistic map is approximately 1 − 1/2[pn+1/(m0c)]2, and
therefore the special-relativistic map is approximately

pn+1 = pn − V0T xn

(
1 + x2

n

)−(β+2)/2
, (15)

xn+1 = xn + T

m0
pn+1 − T

2m3
0c

2
p2

n+1. (16)

FIG. 5. Natural log of the magnitude of the difference between the
Newtonian and special-relativistic predictions versus kick for the first
example of the chaotic scattering case of Fig. 3: position difference
(top) and momentum difference (bottom).

The last term involving 1/c2 in Eq. (16) of the approximate
special-relativistic map above can be interpreted as a small
perturbation to the Newtonian map [Eqs. (13) and (14)]. For
both the nonchaotic and chaotic scattering cases, the tra-
jectories calculated using the approximate special-relativistic
map above are close to the ones calculated using the exact
special-relativistic map [Eqs. (11) and (12)]; Figs. 2 through 5
would not change if the approximate special-relativistic results
were used in the plots. The breakdown of agreement between
the Newtonian and special-relativistic trajectory predictions is
therefore essentially due to the small relativistic perturbation
to the Newtonian map.

We have performed calculations for other initial conditions
in the chaotic scattering case, and, in general, the trajec-
tory difference also grows exponentially in the intermediate
stage. However, for some particular initial conditions, the
intermediate exponential growth regime is not long enough
to cause a breakdown of agreement between the two trajectory
predictions. Figures 6 and 7 illustrate this scenario for the case
where the initial conditions are x0 = −20.494 518 684 484
and p0 = 1.2806. However, similar to what happened in the
nonchaotic scattering case, the linear growth of the position
difference, after the intermediate stage between kicks 14 and
20, eventually causes the two trajectory predictions to be
completely different.
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FIG. 6. Newtonian and special-relativistic predictions for the
second example of the chaotic scattering case: position (top) and
momentum (bottom). Newtonian and special-relativistic values are
plotted with squares and diamonds, respectively.

IV. SUMMARY AND CONCLUSIONS

We have shown that the Newtonian and special-relativistic
trajectory predictions from the same initial conditions for low-
speed scattering processes can rapidly disagree completely,
not only quantitatively but also qualitatively, in the case where
the scattering dynamics is chaotic or irregular. This rapid
breakdown of agreement is due to an exponential growth
of the difference between the two trajectories taking place
in the scattering or interaction region. If the exponential
growth stage is not long enough to lead to a complete
disagreement between the two trajectories, the subsequent
linear growth of the position difference will eventually do
so. In the nonchaotic scattering case, the trajectory difference
grows only linearly, and therefore the breakdown of agreement
between the two trajectory predictions does not occur rapidly
as usually happens in the case of chaotic scattering.

Our results may have far-reaching consequences. The rapid
breakdown of agreement between the Newtonian and special-
relativistic trajectories predicted for a low-speed scattering

FIG. 7. Natural log of the magnitude of the difference between
the Newtonian and special-relativistic predictions versus kick for the
second example of the chaotic scattering case of Fig. 6: position
difference (top) and momentum difference (bottom).

system offers a new possibility for testing special relativity.
Which of the two different trajectory predictions is empirically
correct? This issue is especially timely, since recent tests
[24–26] of the Lorentz invariance postulate of special rela-
tivity using ultrahigh-precision experiments and astrophysical
observations continue to show that Lorentz invariance is not
violated. Special relativistic mechanics is Lorentz invariant,
but Newtonian mechanics is not. Therefore the trajectory pre-
dicted by special relativistic mechanics should be empirically
correct. This means that, contrary to standard practice, special
relativistic mechanics must be used, instead of Newtonian
mechanics, to correctly study low-speed chaotic scattering.
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