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Origin of the scaling law in human mobility: Hierarchy of traffic systems
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Uncovering the mechanism leading to the scaling law in human trajectories is of fundamental importance in
understanding many spatiotemporal phenomena. We propose a hierarchical geographical model to mimic the real
traffic system, upon which a random walker will generate a power-law-like travel displacement distribution with
tunable exponent, and display a scaling behavior in the probability density of having traveled a certain distance
at a certain time. The simulation results, analytical results, and empirical observations reported in D. Brockmann
et al. [Nature (London) 439, 462 (2006)] agree very well with each other.
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I. INTRODUCTION

Studies on the non-Poisson statistics of human behaviors
have recently attracted much attention [1–3]. Besides the
interevent or waiting time distribution, the spatial movements
of humans also exhibit non-Poisson statistics. Brockmann et al.
[4] investigated the bank note dispersal as a proxy for human
movements, and revealed a power-law distribution of hu-
man travel displacements. Gonzalez et al. [5] studied the
human travel patterns by measuring the distance of mobile
phone users’ movements in different stations, and observed
a similar scaling law. From the GPS data, Jiang et al. [6]
observed a Lévy flight behavior of human mobility in a
large-scale street network. The mobility patterns of many
animals also show power-law-like displacement distributions
[7]. Some interpretations, such as optimal search strategy [8],
olfactory-driven foraging [9], and deterministic walks [10],
have already been raised, however, they are based on the prey
processes and thus cannot be used to explain the observed
scaling law in human trajectories. We propose a model
to mimic the human travel pattern, where the hierarchical
organization of human traffic systems is taken into account.
Agreeing very well with the empirical observations, our model
can reproduce the power-law displacement distributions, as
well as the scaling behavior in probability density of having
traveled a certain distance at a certain time.

II. MODEL

In human traffic systems, a district (e.g., a province or
a state) usually has a core city, like its capital, around
which there are several big cities as the secondary centers
(e.g., municipalities), each of which is rounded by some
counties; and towns and villages surround each county. A
hierarchical traffic system is built accordingly. Imagine people
traveling from a town a subordinating to the central city
A, to another town b subordinating to the central city B.
There is usually no direct way connecting a and b, and
the typical route is a → A → B → b, which may be much
longer than the geographical distance between a and b. Such
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a hierarchical organization and the resulting scale invariance
in road networks have already been demonstrated [11].

In our model, we call all the units cities, which are
organized in N layers. Denote K the number of first-layer
cities, and M the ratio of the next-layer cities to the current-
layer cities. KMN−1 cities, including K first-layer cities,
K(M − 1) second-layer cities, . . . , KMn−2(M − 1) nth-layer
(n � 2) cities, . . . , and KMN−2(M − 1) N th-layer cities, are
randomly distributed in an S × S continuous square. Each of
the nth-layer (1 < n � N ) cities is connected to its nearest
higher-layer city, and two nth-layer cities are connected if
they are connected to the same higher-layer city. The first
layer corresponds to the top layer, in which the cities are fully
connected with each other. A system with N = 3, M = 5, and
K = 2 is illustrated in Fig. 1, where 50 cities (2 first-layer
cities, 8 second-layer cities, and 40 third-layer cities) are
distributed on a square. Each of the third-layer cities is
connected to its nearest second-layer city or first-layer city,
and each of the second-layer cities is connected to its nearest
first-layer city, and two first-layer (the top layer) cities are
also connected. Two cities in the same layer are connected if
they connect to the same higher-layer city. For example, all
the second-layer cities that connect to the first-layer city B

are fully connected to each other, as shown in Fig. 1(c), as
well as the third-layer cities shown in Fig. 1(b). Notice that a
third-layer city is allowed to connect directly to a first-layer
city if this first-layer city is the third-layer city’s nearest
higher-layer city. For instance, there are five third-layer cities
connecting to the first-layer city A in Fig. 1(a), and thus the
organization is not exactly hierarchical. Using this algorithm,
we can create a quasihierarchical geographical system on the
square two-dimensional square field, which is close to the
organization in real-world traffic systems.

We consider the simplest case where a random walker
is consequently jumping from the current occupied city to
a random neighbor (two cities are said to be neighboring
if they are connected) at each time step. The displacement
L of the walker in one step is defined as the corresponding
geometric distance. Figure 1(a) shows a typical trajectory of a
walker moving from a lower-layer city to a higher-layer city
in eight consecutive time steps, in which the length of each
arrow corresponds to the displacement of the movement in
each time step. In the real world, a central city is generally
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FIG. 1. (Color online) (a) Illustration of an eight-step travel in
a three-layer system (N = 3, M = 5 and K = 2), where orange
(with oblique lines), green (light gray), and blue (dark gray) nodes
respectively denote the first-, second-, and third-layer cities. For
clarity, we do not plot the connections between cities in the same
layer, except the one between the two first-layer cities, A and B.
(b) All the connections in the domain of a second-layer city and its
surrounded third-layer cities. (c) All the connections in the domain
of the first-layer city B and its surrounded second-layer cities.

more attractive than a small town, which is represented by a
layer-dependent weight, wn = rN−n, where n denotes the layer
and r � 1 is a free parameter. The probability that the walker
will move to a neighboring city is proportional to its weight,
namely, �i = wi/

∑
wj , where �i is the probability that the

walker moves to the ith neighboring city, and
∑

wj is the total
weight of all the neighboring cities. Clearly, a larger r indicates
higher heterogeneity. The essential physics of this model is a
weighted random-walk process [12] in a geographical network
where edges are of different geometric lengths. For a random
walker in a connected symmetry (undirected) network, in
the long time limit, each edge has the same chance to be
visited (this proposition holds even for a very heterogeneous
network, since for an arbitrary node, the number of times
being visited is proportional to its degree while the probability
that a specific adjacent edge of this node is consecutively
visited is inversely proportional to the degree. Details can be
found in Ref. [13]). Therefore when r = 1, the displacement
distribution of a random walker is equivalent to the distribution
of edges’ geometric lengths.

III. SIMULATION

Figure 2(a) shows the trajectory for r = 2.0 in a five-layer
system, where the occurrences of long-range travels are
clearly observed. As shown in Fig. 2(b), the displacement
distribution is heavy tailed and can be well fitted by a power
law with an exponential cutoff, as P (L) = cL−βe−λL. The
fitting parameters, β and λ, are obtained by using the maximum
likelihood estimation [14]. When r increases from 1.0 to 2.0,
the power-law exponent, β, monotonously decreases from
3.11 to 1.63, covering the range of empirical observations
[4–6]. As shown in Fig. 3, smaller M makes the travels
between lower-layer and higher-layer cities more frequent,
and thus enhances the long displacements. This effect is more

FIG. 2. (Color online) (a) The trajectory of a walker in 5000
consecutive steps. (b) Displacement distribution P (L), averaged by
1000 independent runs, each of which lasts 105 time steps. The
parameters are N = 5, M = 9, K = 9, and S = 100. In (a), r = 2.0.
The red (light gray) solid lines denote the fitting functions, f (L) =
0.070L−3.11e−0.0L for r = 1.0, and f (L) = 0.038L−1.63e−0.015L for
r = 2.0.

remarkable when r > 1, because in the case of a larger r ,
the travels to higher-layer cities are more frequent. As shown
in Fig. 4, in contrast to the observable effects of r and M ,
the displacement distribution P (L) is not sensitive to the
parameters N and K .

IV. ANALYSIS

Let us consider the situation that m cities are randomly
distributed in an S × S square. If the geometric distance of
two cities in the square is D, to eliminate the effect of square
size we define the rate of distance as d = D/S. Ignoring the
boundary effects of the square (i.e., in the case of d � 1),
the normalized probability density of the distance from a
city to its nearest city (these two cities are not necessarily
connected) is

�(d) ≈ (m − 1) × 2πd(1 − πd2)m−2, (1)

FIG. 3. (Color online) Displacement distribution P (L) for dif-
ferent M , obtained by 1000 independent runs, each of which lasts
105 time steps. Panels (a) and (b) respectively correspond to the
cases of r = 1.0 and r = 2.0. The parameters are N = 5, K = 9, and
S = 100. The red (light gray) dashed lines denote the power laws
with the corresponding exponents.
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FIG. 4. (Color online) Displacement distribution P (L) for dif-
ferent N with (a) r = 1.0 and (b) r = 2.0, and for different K

with (c) r = 1.0 and (d) r = 2.0. Other parameters are M = 9 and
S = 100. All the data points are averaged by 1000 independent runs,
each of which lasts 105 time steps. The red (light gray) dashed lines
denote the power laws with the corresponding exponents.

where (m − 1) is the normalization factor of the distribution.
From ∂P (d)/∂d|d=d∗ = 0, the maximum likelihood distance
is d∗ = [(2m − 3)π ]−1/2, corresponding to

�(d∗) = (m − 1)

√
4π

2m − 3

(
1 − 1

2m − 3

)m−2

. (2)

For a very large m, d∗ ≈ (2πm)−1/2 and (1 − πd2
∗ )1/πd2

∗ ≈ e,
therefore

�(d∗) ≈ d−1
∗ e−1/2. (3)

Approximately, all the (n + 1)th-layer cities connected
with a higher-layer (i.e., from first-layer to nth-layer) city
are distributed inside a circle, and thus the length of an edge
between an (n + 1)th-layer city to its nearest higher-layer
city can be roughly estimated as the average distance from
a random point in a unit circle to its center (since we only
care about the relative ratio, the radius of the circle plays no
role), namely d ′ = ∫ ∫

x2+y2�1

√
x2 + y2dxdy = 0.667.

Analogously, the length of an edge between two
(n + 1)th-layer cities can be estimated as d ′′ =∫ ∫ ∫ ∫

x2
1 +y2

1 �1,x2
2 +y2

2 �1

√
(x1 − x2)2 + (y1 − y2)2dx1dy1dx2dy2

= 0.905. That is to say, d ′′ = σd ′ where σ ≈ 1.36 is a
constant. The total number of the cities from the first layer
to the nth layer is KMn−1, thus the corresponding maximum
likelihood length from an (n + 1)th-layer city to its nearest
higher-layer city is d∗,n+1 = (2πKMn−1)−1/2 (in this case,
m = KMn−1). We therefore have

− ln(Mn−1)

lnr
= ln

(
2πKd2

∗,n+1

)
lnr

, (4)

rN−n = rN−1
(
2πKd2

∗,n+1

)lnMr
. (5)

Denote by un the probability that the walker stays in the
nth layer during the walking process, the equilibrium condition
reads

(q+ + q−)un = q+un−1 + q−un+1, 1 < n < N, (6)

where q+ and q− denote the probability that the walker moves
to the next lower and higher layer, respectively. Since there
are KMn−1(M − 1) (n + 1)th-layer cities and in total KMn−1

cities from first layer to nth layer, an nth-layer city averagely
connects to (M − 1) (n + 1)th-layer cities. And there are
KMn−3(M − 1) (n − 1)th-layer cities among KMn−2 cities
from first layer to (n − 1)th layer, an nth-layer city averagely
connects to a M−1

M
(n − 1)th-layer city. Therefore

q+ ≈ M − 1

(M − 1) + (M − 2)r + (1 − 1
M

)r2
,

(7)

q− ≈ (1 − 1
M

)r2

(M − 1) + (M − 2)r + (1 − 1
M

)r2
.

Considering the self-similar structure, we have

un/un+1 ≈ un−1/un, 1 < n < N. (8)

Combining Eqs. (6) and (8), the ratio is un/un+1 = q−/q+ ≈
r2/M , namely un ∼ r−2n.

Denote by vn+1 the probability that the walker moves along
edges connecting (n + 1)th- and nth-layer cities during the
walking process, then according to Eq. (6), vn+1 = q−un+1 +
q+un = 2q+un. Then the occurrence probability is

P (d∗,n+1) ∼ �(d∗,n+1)vn+1 ∼ d−1
∗,n+1e

−1/2un. (9)

From Eqs. (5), (9), and (10), we obtain

P (d∗) ∼ d−(3−4lnMr)
∗ . (10)

Denote by wn+1 the probability that the walker moves along
edges connecting two (n + 1)th-layer cities, and by l∗,n+1

the maximum likelihood length of such edges corresponding
to d∗,n+1, namely l∗,n+1 = σd∗,n+1, then wn+1 = (1 − q+ −
q−)un+1 ∼ (M−2)r

M−1 q+ Mun

r2 ∼ q+un ∼ vn+1. Analogously, the
occurrence probability is

P (l∗) ∼ l−(3−4lnMr)
∗ . (11)

FIG. 5. (a) β vs r when M = 9, and (b) β vs M when r = 2.0.
Circles are simulation results and solid lines denote the analytical
solution β = 3 − 4lnMr . Other parameters are N = 5, S = 100, and
K = 9.
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+

FIG. 6. (Color online) The probability W (d,t) of having traveled
a distance d at time t . The parameters are N = 5, M = 9, K = 9, S =
100, and r = 2.0. This plot is obtained by averaging 1000 independent
runs, each of which lasts 104 time steps. The black dashed line, as a
guide of eyes, is of slope 1.

According to Eqs. (10) and (11), we infer that the displacement
distribution of the whole walking process also obeys the
power-law distribution P (L) ∼ L−β with the exponent β =
3 − 4lnMr .

As shown in Fig. 5, the approximate analysis agrees well
with the simulation results. Notice that, when r is large, the
analytical solution of β is slightly larger than the simulation
result. As shown in Eqs. (10) and (11), our analysis only takes
into account the contributions of movements within a layer
or connecting two neighboring layers. However, the walker
can directly jump from an nth-layer city to an (n − 2)th-layer
city, or even a higher layer. Each of this kind of movement is
usually associated with one high-layer city and corresponding
to a longer displacement. Since the weight of an nth-layer city
is wn = rN−n, for a high-layer city (i.e., small n), larger r

corresponds to relatively larger weight as well as the higher
occurrence probability of the above-mentioned movements.
This is the reason why the exponent β of simulation is slightly
smaller than the analytical solution when r is large. There are
slight oscillations on P (L) when M is large, which is caused
by the discontinuation of the typical sizes of different layers in
the strictly hierarchical structure. The real-world traffic system
is not so strictly hierarchical, and thus the oscillations are not
expected.

Finally, we check whether our model can reproduce the
spatiotemporal statistics of real human mobility. Providing the
trajectory of a random walker, one can obtain the probability
W (d,t) of having traveled a distance d at time t . Here
d(t) is the distance between the walker’s locations at time

t0 and t0 + t . If the trajectory consists of (T + 1) discrete
locations at time steps 0,1, . . . ,T , then for a given t , there
are (T − t + 1) distances for the location pairs at time steps
(0,t),(1,t + 1), . . . ,(T − t,T ). All the distances d for different
t constitute the distribution W (d,t). The same technique has
been adopted in preparing Fig. 2(a) in Ref. [4]; please see
details there. As shown in Fig. 6, a scaling behavior d(t) ∼ tα

with α ≈ 1.0 is clearly observed, which agrees well with the
empirical result, α ≈ 0.95, reported in Ref. [4]. Notice that
there are two isolated regions, respectively, in the left bottom
and right top of Fig. 6. The left-bottom region corresponds
to the traveled distance in a few steps, while the right-top
region comes from the finite-size effect, namely the boundary
size limits the growth of d. In accordance with our results, the
values of W in the left-bottom and right-top regions of Fig. 2(a)
in [4] are also remarkably higher than other regions near the
blue line. Similar scaling behavior can also be observed for
r = 1.0, however, the exponent, α ≈ 0.5, is far less than the
empirical value. In addition, providing the travel displacement
distribution, this scaling behavior with α ≈ 1.0 cannot be
reproduced by a Lévy flight [4].

V. CONCLUSIONS AND DISCUSSIONS

Uncovering the human traveling pattern is of fundamental
importance in the understanding of various spatiotemporal
phenomena [4–6], and may find applications in the design
of traffic systems [15], the control of human infectious
disease [16] and mobile virus spreading [17], the military
service planning [18], the prediction of human mobility [19],
and so on. Although empirical results about the scaling law
of long-range human travels have been reported for years,
it lacks the understanding of the underlying mechanism.
Inspired by the observed hierarchical organization of disparate
networks [20], our model describes a random walk process in
hierarchical Euclidean networks. Although the assumption of
random walking process is the simplest one in the description
of human travels, our model can well reproduce the spa-
tiotemporal statistics of mobility and reveal the spatial effects
of hierarchical organization, implying the human traveling
behaviors are strongly affected by the geographical structure of
traffic systems. Our model not only provides a possible origin
for the emergence of scaling law in human mobility patterns,
but also contributes to the understanding of the correlations and
interactions between human activities and the organization of
social environment.
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