
PHYSICAL REVIEW E 83, 036114 (2011)

Enhancing neural-network performance via assortativity
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The performance of attractor neural networks has been shown to depend crucially on the heterogeneity
of the underlying topology. We take this analysis a step further by examining the effect of degree-degree
correlations—assortativity—on neural-network behavior. We make use of a method recently put forward for
studying correlated networks and dynamics thereon, both analytically and computationally, which is independent
of how the topology may have evolved. We show how the robustness to noise is greatly enhanced in assortative
(positively correlated) neural networks, especially if it is the hub neurons that store the information.
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I. BACKGROUND

For a dozen years or so now, the study of complex systems
has been heavily influenced by results from network science,
which one might regard as the fusion of graph theory with
statistical physics [1,2]. Phenomena as diverse as epidemics
[3], cellular function [4], power-grid failures [5], or Internet
routing [6], among many others [7], depend crucially on the
structure of the underlying network of interactions. One of the
earliest systems to have been described as a network was the
brain, which is made up of a great many neurons connected
to each other by synapses [8–11]. Mathematically, the first
neural networks combined the Ising model [12] with the Hebb
learning rule [13] to reproduce, very successfully, the storage
and retrieval of information [14–16]. Neurons were simplified
to binary variables (like Ising spins) representing firing or
nonfiring cells. By considering the trivial fully connected
topology, exact solutions could be reached, which at the time
seemed more important than attempting to introduce biological
realism. Subsequent work has tended to focus on considering
richer dynamics for cells rather than on the way in which
these are interconnected [17–19]. However, the topology of
the brain—whether at the level of neurons and synapses,
cortical areas, or functional connections—is obviously far
from trivial [20–25].

The number of neighbors a given node in a network has is
called its degree, and much attention is paid to degree distri-
butions since they tend to be highly heterogeneous for most
real networks. In fact, they are often approximately scale-free
(i.e., described by power laws) [1,2,26,27]. By including this
topological feature in a Hopfield-like neural-network model,
Torres et al. [28] found that degree heterogeneity increases the
system’s performance at high levels of noise, since the hubs
(high degree nodes) are able to retain information at levels well
above the usual critical noise. To prove this analytically, the
authors considered the configurational ensemble of networks
(the set of random networks with a given degree distribution
but no degree-degree correlations) and showed that Monte
Carlo (MC) simulations were in good agreement with mean-
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field analysis, despite the approximation inherent to the latter
technique when the network is not fully connected. A similar
approach can also be used to show how heterogeneity may be
advantageous for the performance of certain tasks in models
with a richer dynamics [29]. It is worth mentioning that this
influence of the degree distribution on dynamical behavior is
found in many other settings, such as the more general situation
of systems of coupled oscillators [30].

Another property of empirical networks that is quite
ubiquitous is the existence of correlations between the degrees
of nodes and those of their neighbors [31,32]. If the average
degree-degree correlation is positive the network is said to
be assortative, while it is called disassortative if negatively
correlated. Most heterogeneous networks are disassortative
[1], which seems to be because this is in some sense their
equilibrium (maximum entropy) state given the constraints
imposed by the degree distribution [33]. However, there are
probably often mechanisms at work which drive systems from
equilibrium by inducing different correlations, as appears to
be the case for most social networks, in which nodes (people)
of a certain type tend to group together. This feature, known as
assortativity or mixing by degree, is also relevant for processes
taking place on networks. For instance, assortative networks
have lower percolation thresholds and are more robust to
targeted attack [32], while disassortative ones make for more
stable ecosystems and are, at least according to the usual
definition, more synchronizable [34].

The approach usually taken when studying correlated
networks computationally is to generate a network from
the configuration ensemble and then introduce correlations
(positive or negative) by some stochastic rewiring process [35].
A drawback of this method, however, is that results may well
then depend on the details of this mechanism: there is no
guarantee that one is correctly sampling the phase space of
networks with given correlations. For analytical work, some
kind of hidden variables from which the correlations originate
are often considered [36–39], an assumption which can also
be used to generate correlated networks computationally [38].
This can be a very powerful method for solving specific
network models. However, it may not be appropriate if
one wishes to consider all possible networks with given
degree-degree correlations, independently of how these may
have arisen. Here we get round this problem by making
use of a method recently suggested by Johnson et al. [33],
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whereby the ensemble of all networks with given correlations
can be considered theoretically without recurring to hidden
variables. Furthermore, we show how this approach can be
used computationally to generate random networks that are
representative of the ensemble of interest (i.e., they are model
independent). In this way, we study the effect of correlations
on a simple neural network model and find that assortativity
increases performance in the face of noise – particularly if it
is the hubs that are mainly responsible for storing information
(and it is worth mentioning that there is experimental evidence
suggestive of a main functional role played by hub neurons in
the brain [40,41]). The good agreement between the mean-field
analysis and our MC simulations bears witness both to the
robustness of the results as regards neural systems and to
the viability of using this method for studying dynamics on
correlated networks.

II. PRELIMINARY CONSIDERATIONS

A. Model neurons on networks

The attractor neural network model put forward by Hopfield
[15] consists of N binary neurons, each with an activity given
by the dynamic variable si = ±1. Every Monte Carlo time
Step (MCS), each neuron is updated according to the stochas-
tic transition probability P (si → ±1) = 1

2 [1 ± tanh (hi/T )]
(parallel dynamics), where the field hi is the combined effect
on i of all its neighbors, hi = ∑

j ŵij sj , and T is a noise
parameter we shall call temperature but which represents
any kind of random fluctuations in the environment. This
is the same as the Ising model for magnetic systems, and
the transition rule can be derived from a simple interaction
energy such that aligned variables s (spins) contribute less
energy than if they were to take opposite values. However, this
system can store P given configurations (memory patterns)
ξν
i = ±1 by having the interaction strengths (synaptic weights)

set according to the Hebb rule [13]: ŵij ∝ ∑P
ν=1 ξν

i ξ ν
j . In this

way, each pattern becomes an attractor of the dynamics, and
the system will evolve toward whichever one is closest to the
initial state it is placed in. This mechanism is called associative
memory and is nowadays used routinely for tasks such as
image identification. What is more, it has been established that
something similar to the Hebb rule is implemented in nature
via the processes of long-term potentiation and depression at
the synapses [42], and this phenomenon is indeed required for
learning [43].

To take into account the topology of the network, we shall
consider the weights to be of the form ŵij = ω̂ij âij , where
the element âij of the adjacency matrix represents the number
of directed edges (usually interpreted as synapses in a neural
network) from node j to node i, while ω̂ stores the patterns,
as before:

ω̂ij = 1

〈k〉
P∑

ν=1

ξν
i ξ ν

j .

For the sake of coherence with previous work, we shall assume
â to be symmetric (i.e., the network is undirected), so each node
is characterized by a single degree ki = ∑

j âij . However, all
results are easily extended to directed networks—in which

nodes have both an in degree, kin
i = ∑

j âij , and an out degree,
kout
i = ∑

j âj i—by bearing in mind it is only a neuron’s
presynaptic neighbors that influence its behavior. The mean
degree of the network is 〈k〉, where the angles stand for an
average over nodes: 〈·〉 ≡ N−1 ∑

i(·) [44].

B. Network ensembles

When one wishes to consider a set of networks which are
randomly wired while respecting certain constraints, that is,
an ensemble, it is usually useful to define the expected value
of the adjacency matrix, E(â) ≡ ε̂ [45]. The element ε̂ij of
this matrix is the mean value of âij obtained by averaging
over the ensemble. For instance, in the Erdős-Rényi (ER)
ensemble all elements (outside the diagonal) take the value
ε̂ER
ij = 〈k〉/N , which is the probability that a given pair of

nodes are connected by an edge. For studying networks with a
given degree sequence, (k1, . . . ,kN ), it is common to assume
the configuration ensemble, defined as

εconf
ij = kikj

〈k〉N .

This expression can usually be applied also when the constraint
is a given degree distribution, p(k), by integrating over p(ki)
and p(kj ) where appropriate. One way of deriving ε̂conf is
to assume one has ki dangling half-edges at each node i;
we then randomly choose pairs of half-edges and join them
together until the network is wired up. Each time we do this,
the probability that we join i to j is kikj /(〈k〉N )2, and we must
perform the operation 〈k〉N times. Bianconi showed that this is
also the solution for Barabási-Albert–evolved networks [47].
However, we should bear in mind that this result is strictly valid
only for networks constructed in certain particular ways, such
as in these examples. It is often implicitly assumed that were
we to average over all random networks with a given degree
distribution, the mean adjacency matrix obtained would be
ε̂conf . As we shall see, however, this is not necessarily the
case [33].

C. Correlated networks

In the configuration ensemble, the expected value of
the mean degree of the neighbors of a given node is
knn,i = k−1

i

∑
j ε̂conf

ij kj = 〈k2〉/〈k〉, which is independent of
ki . However, as mentioned above, real networks often display
degree-degree correlations, with the result that knn,i = knn(ki).
If knn(k) increases with k, the network is said to be assortative,
whereas it is disassortative if it decreases with k (see Fig. 1).
This is from the more general nomenclature (borrowed form
sociology) in which sets are assortative if elements of a certain
type group together or assort. In the case of degree-degree
correlated networks, positive assortativity means that edges
are more than randomly likely to occur between nodes of
a similar degree. A popular measure of this phenomenon
is Pearson’s coefficient applied to the edges [1,2,32]: r =
([klk

′
l] − [kl]2)/([k2

l ] − [kl]2), where kl and k′
l are the degrees

of each of the two nodes belonging to edge l, and [·] ≡
(〈k〉N )−1 ∑

l(·) is an average over edges.
The ensemble of all networks with a given degree sequence

(k1, . . . ,kN ) contains a subset for all members of which
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FIG. 1. (Color online) Mean-nearest-neighbor functions knn(k)
for scale-free networks with β = −0.5 (disassortative), 0.0 (neutral),
and 0.5 assortative, generated according to the algorithm described
in Sec. III B. (Inset) Degree distribution (the same in all three cases).
Other parameters are γ = 2.5, 〈k〉 = 12.5, N = 104.

knn(k) is constant (the configuration ensemble) but also
subsets displaying other functions knn(k). We can identify
each one of these subsets (regions of phase space) with an
expected adjacency matrix ε̂ which simultaneously satisfies
the following conditions: (i)

∑
j kj ε̂ij = kiknn(ki), ∀i [by

definition of knn(k)] and (ii)
∑

j ε̂ij = ki , ∀i (for consistency).
An ansatz which fulfills these requirements is any matrix of
the form

ε̂ij = kikj

〈k〉N +
∫

dν
f (ν)

N

[
(kikj )ν

〈kν〉 − kν
i − kν

j + 〈kν〉
]
, (1)

where ν ∈ R and the function f (ν) is in general arbitrary [33].
(If the network were directed, then ki = kin

i and kj = kout
j in

this expression.) This ansatz yields

knn(k) = 〈k2〉
〈k〉 +

∫
dνf (ν)σν+1

[
kν−1

〈kν〉 − 1

k

]
(2)

(the first term being the result for the configuration ensemble),
where σb+1 ≡ 〈kb+1〉 − 〈k〉〈kb〉. To prove the uniqueness of
a matrix ε̂ obtained in this way [i.e., that it is the only
one compatible with a given knn(k)] assume that there exists
another valid matrix ε̂′ 
= ε̂. Writing ε̂′

ij − ε̂ij ≡ h(ki,kj ) =
hij , then Condition (i) implies that

∑
j kjhij = 0, ∀i, while

Condition (ii) means that
∑

j hij = 0, ∀i. It follows that
hij = 0, ∀i,j . This means that ε̂ is not just one possible
way of obtaining correlations according to knn(k); rather,
there is a two-way mapping between ε̂ and knn(k): Every
network with this particular function knn(k) and no other
ones are contained in the ensemble defined by ε̂. Thanks
to this, if we are able to consider random networks drawn
according to this matrix (whether we do this analytically or
computationally; see Sec. III B), we can be confident that we
are correctly taking account of the whole ensemble of interest.
In other words, whatever the reasons behind the existence of
degree-degree correlations in a given network, we can study
the effects of these with only information on p(k) and knn(k)
by obtaining the associated matrix ε̂. This is not to say, of

course, that all topological properties are captured in this
way: A particular network may have other features, such as
higher-order correlations and modularity, the consideration of
which would require concentrating on a subpartition of those
with the same p(k) and knn(k). But this is not our purpose here.

In many empirical networks, knn(k) has the form knn(k) =
A + Bkβ , with A,B > 0 [2,31], the mixing being assortative
if β is positive and disassortative when negative. Such a case
is fitted by Eq. (2) if

f (ν) = C

[
σ2

σβ+2
δ(ν − β − 1) − δ(ν − 1)

]
, (3)

with C a positive constant, since this choice yields

knn(k) = 〈k2〉
〈k〉 + Cσ2

[
kβ

〈kβ+1〉 − 1

〈k〉
]

. (4)

Johnson et al. [33] obtained the entropy of ensembles of
networks with scale-free degree distributions [p(k) ∼ k−γ ]
and correlations given by Eq. (4), and found that the most
likely configurations (those maximizing the entropy) generally
correspond to correlated networks. In particular, the expected
mixing, all other things being equal, is usually a certain
degree of disassortativity, which explains the predominance
of these networks in the real world. They also showed that the
maximum entropy is usually obtained for values of C close
to 1. Here, we shall use this result to justify concentrating
on correlated networks with C = 1, so the only parameter we
need to take into account is β. It is worth mentioning that
Pastor-Satorras et al. originally suggested using this exponent
as a way of quantifying correlations [31], since this seems to
be the most relevant magnitude. Because β does not depend
directly on p(k) (as r does), and can be defined for networks of
any size (whereas r , in very heterogeneous networks, always
goes to zero for large N due to its normalization [48]), we shall
henceforth use β as our assortativity parameter.

So, after plugging Eq. (3) into Eq. (1), we find that the
ensemble of networks exhibiting correlations given by Eq. (4)
(and C = 1) is defined by the mean adjacency matrix

ε̂ij = 1

N
[ki + kj − 〈k〉]

+ σ2

σβ+2

1

N

[
(kikj )β+1

〈kβ+1〉 − k
β+1
i − k

β+1
j + 〈kβ+1〉

]
. (5)

III. ANALYSIS AND RESULTS

A. Mean field

Let us consider the single-pattern case (P = 1, ξi = ξ 1
i ).

Substituting the adjacency matrix â for its expected value ε̂

[as given by Eq. (5)] in the expression for the local field at i,
which amounts to a mean-field approximation, we have

hi = 1

〈k〉ξi

{[
(ki − 〈k〉) + σ2

σβ+2

(〈kβ+1〉 − k
β+1
i

)]
μ0

+〈k〉μ1 + σ2

σβ+2

(
k

β

i − 〈kβ+1〉)μβ+1

}
,
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where we have defined

μα ≡
〈
kα
i ξisi

〉
〈kα〉

for α = 0, 1, β + 1. These order parameters measure the extent
to which the system is able to recall information in spite
of noise [29]. For the first order we have μ0 = m ≡ 〈ξisi〉,
the standard overlap measure in neural networks (analogous
to magnetization in magnetic systems), which takes account
of memory performance. However, μ1, for instance, weighs
the sum with the degree of each node, with the result that
it measures information per synapse instead of per neuron.
Although the overlap m is often assumed to represent, in some
sense, the mean firing rate of neurological experiments, it
is possible that μ1 is more closely related to the empirical
measure, since the total electric potential in an area of tissue
is likely to depend on the number of synapses transmitting
action potentials. In any case, a comparison between the two
order parameters is a good way of assessing to what extent
the performance of neurons depends on their degree: Larger-
degree model neurons can, in general, store information at
higher temperatures than can ones with smaller degree [28].

Substituting si for its expected value according to the
transition probability, si → tanh(hi/T ), we have, for any α,

〈
kα
i ξisi

〉 = 〈
kα
i ξi tanh(hi/T )

〉
;

or, equivalently, the following 3D map of closed coupled
equations for the macroscopic overlap observables μ0, μ1 and
μβ+1 – which describes, in this mean-field approximation, the
dynamics of the system as follows:

μ0(t + 1) =
∫

p(k) tanh[F (t)/(〈k〉T )]dk

μ1(t + 1) = 1

〈k〉
∫

p(k)k tanh[F (t)/(〈k〉T )]dk (6)

μβ+1(t + 1) = 1

〈kβ+1〉
∫

p(k)kβ+1 tanh[F (t)/(〈k〉T )]dk,

with

F (t) ≡ (kμ0(t) + 〈k〉μ1(t) − 〈k〉μ0(t))

+ σ2

σβ+2
[kβ+1(μβ+1(t) − μ0(t))

+〈kβ+1〉(μ0(t) − μβ+1(t))].

This can be easily computed for any degree distribution p(k).
Note that taking β = 0 (the uncorrelated case) the system
collapses to the 2D map obtained in Ref. [28], while it becomes
the typical 1D case for a homogeneous p(k), say, a fully
connected network [15]. It is, in principle, possible to do a
similar mean-field analysis for any number P of patterns, but
the map would then be 3P dimensional, making the problem
substantially more complex.

At a critical temperature Tc, the system will undergo the
characteristic second-order phase transition from a phase
in which it exhibits memory (akin to ferromagnetism) to
one in which it does not (paramagnetism). To obtain this
critical temperature, we can expand the hyperbolic tangent

in Eqs. (6) around the trivial solution (μ0,μ1,μβ+1) � (0,0,0)
and, keeping only linear terms, write

μ0 = μ1/Tc,

μ1 = 1

〈k〉2Tc

[〈k〉2μ1 + σ2μβ+1],

μβ+1 = 1

Tc〈k〉〈kβ+1〉
[
σβ+2μ0 + σ2

σβ+2
(〈kβ+1〉2 − 〈k2(β+1)〉)μ0

+〈k〉〈kβ+1〉μ1 − σ2

σβ+2
(〈kβ+1〉2 −〈k2(β+1)〉)μβ+1

]
.

Defining

A ≡ σ2

〈k〉2
,

B ≡ σ2

σβ+2

〈k2(β+1)〉 − 〈kβ+1〉2

〈k〉〈kβ+1〉 ,

D ≡ σβ+2

〈k〉〈kβ+1〉 ,

Tc will be the solution to the third-order polynomial equation:

T 3
c − (B + 1)T 2

c + (B − A)Tc + A(B − D) = 0. (7)

Note that for neutral (i.e., uncorrelated) networks, β = 0, and
so A = B = D. We then have Tc = 〈k2〉/〈k〉2, as expected
[29].

B. Generating correlated networks

Given a degree distribution p(k), the ensemble of networks
compatible with this constraint and with degree-degree corre-
lations according to Eq. (4) (with some exponent β) is defined
by the mean adjacency matrix ε̂ of Eq. (5), as described in
Sec. II C and in Ref. [33]. Therefore, although there will
generally be an enormous number of possible networks in this
volume of phase space, we can sample them correctly simply
by generating them according to ε̂. To do this, first we have to
assign to each node a degree drawn from p(k). If the elements
of ε̂ were probabilities, it would suffice then to connect each
pair of nodes (i,j ) with probability ε̂ij to generate a valid
network. Strictly speaking, ε̂ is an expected value, which in
certain cases can be greater than 1. To get around this, we write
a probability matrix p̂ = ε̂/a with a some value such that all
elements of p̂ are smaller than 1. If we then take random
pairs of nodes (i,j ) and, with probability p̂ij , place an edge
between them, repeating the operation until 1

2 〈k〉N edges have
been placed, the expected value of edges joining i and j will
be ε̂ij . This method is like the hidden variable technique [38]
in that edges are placed with a predefined probability (which is
why the resulting ensemble is canonical). The difference lies
in the fact that in the method here described correlations only
depend on the degrees of nodes.

We are interested here in neural networks, in which a given
pair of nodes can be joined by several synapses, so we shall not
impose the restriction of so-called simple networks of allowing
only one edge at most per pair. We shall, however, consider
networks with a structural cutoff: ki <

√〈k〉N , ∀i [49]. This
ensures that, at least for β � 0, all elements of ε̂ are indeed
smaller than 1.
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Because we can expect effects due to degree-degree
correlations to be largest when p(k) is very broad, and since
most networks in nature and technology seem to exhibit
approximately power-law degree distributions [1,7,26,27],
we shall here test our general theoretical results against
simulations of scale-free networks: p(k) ∼ k−γ . This means
that a network (or the region of phase space to which it belongs)
is characterized by the set of parameters {〈k〉,N,γ,β}.

C. Assortativity and dynamics

In Fig. 2 we plot the stationary value of μ1 against the
temperature T , as obtained from simulations and Eqs. (6),
for disassortative, neutral, and assortative networks. The three
curves are similar at low temperatures, but as T increases
their behavior begins to differ substantially. The disassortative
network is the least robust to noise. However, the assortative
one is capable of retaining some information at temperatures
considerably higher than the critical value, Tc = 〈k2〉/〈k〉, of
neutral networks. A comparison between μ1 and μ0 (see
Fig. 3) shows that it is the high-degree nodes that are mainly
responsible for this difference in performance. This can be seen
more clearly in Fig. 4, which displays the difference μ1 − μ0

against T for the same networks. It seems that, because in
an assortative network a subgraph of hubs will have more
edges than in a disassortative one, it has a higher effective
critical temperature. Therefore, even when most of the nodes
are acting randomly, the set of nodes of sufficiently high degree
nevertheless displays associative memory.

The phase diagram if Fig. 5 shows the critical temperature,
Tc, as obtained from Eq. (7). In addition to the effect reported
in Ref. [28] whereby the Tc of scale-free networks grows
with degree heterogeneity (decreasing γ ), it also increases
very significantly with positive degree-degree correlations
(increasing β).
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FIG. 2. (Color online) Stable stationary value of the weighted
overlap μ1 against temperature T for scale-free networks with
correlations according to knn ∼ kβ for β = −0.5 (disassortative), 0.0
(neutral), and 0.5 (assortative). Symbols from MC simulations, with
error bars representing standard deviations, and lines from Eqs. (6).
Other network parameters as in Fig. 1. (Inset) μ1 against T for
the assortative case (β = 0.5) and different system sizes: N = 104,
3 × 104 and 5 × 104.
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μ
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FIG. 3. (Color online) Stable stationary values of order parame-
ters μ0, μ1, and μβ+1 against temperature T , for assortative networks
according to β = 0.5. Symbols from MC simulations, with error
bars representing standard deviations, and lines from Eqs. (6). Other
parameters as in Fig. 1.

At large values of N , the critical temperature scales as Tc ∼
Nb, with b � 0 a constant. However, because the moments of
k appearing in the coefficients of Eq. (7) can have different
asymptotic behavior depending on the values of γ and β, the
scaling exponent b differs from one region to another in the
space of these parameters. These are the seven regions shown
in Fig. 6, along with the scaling behavior exhibited by each
one. This can be seen explicitly in Fig. 7, where Tc, as obtained
from MC simulations, is plotted against N for cases in each
of the regions with γ < 3. In each case, the scaling is as given
by Eq. (7) and shown in Fig. 6. For the four regions with
γ < 3, from lowest to highest assortativity, we have scaling
exponents which are dependent on only γ (region I), only
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FIG. 4. (Color online) Difference between the stationary values
μ1 and μ0 for networks with β = −0.5 (disassortative), 0.0 (neutral),
and 0.5 (assortative), against temperature. Symbols from MC sim-
ulations, with error bars representing standard deviations, and lines
from Eqs. (6). Line shows the expected level of fluctuations due to
noise, ∼N− 1

2 . Other parameters as in Fig. 1.
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FIG. 5. (Color online) Phase diagrams for scale-free networks
with γ = 2.5, 3, and 3.5. Lines show the critical temperature Tc

marking the second-order transition from a memory (ferromagnetic)
phase to a memoryless (paramagnetic) one, against the assortativity
β, as given by Eq. (7). Other parameters as in Fig. 1.

β (region II), both γ , and β (region III) and, perhaps most
interestingly, neither of the two (region IV), with Tc scaling, in
the latter case, as

√
N . As for the more homogeneous γ > 3

part, regions V and VI have a diverging critical temperature
despite the fact that the second moment of p(k) is finite, simply
as a result of assortativity.

The case in which more than one pattern are stored
(P > 1) can be explored numerically. Assuming there are P

uncorrelated patterns, we have an order parameter μν
1 for each

pattern ν. A global measure of the degree to which there is
memory can be captured by the parameter ζ , where

ζ 2 ≡ 1

1 + P/N

P∑
ν=1

(
μν

1

)2
.

Notice that the normalization factor is due to the fact that
if one pattern is condensed, i.e., |μ1| � 1, the others have

 2

 2.5

 3

 3.5

 4

-1 -0.5  0  0.5  1

γ

β

(0) finite Tc

(I) Tc∝ N(3-γ)/4

(IV)Tc∝ N1/2

Tc∝ N-β/2

(II)
(III)Tc∝ N(3+β-γ)/2

(V)

Tc∝
N(3+2β-γ)/2

(VI)Tc∝ Nβ/2

β+2
β+3

2β+3

FIG. 6. Parameter space β-γ partitioned into the regions in which
b(β,γ ) has the same functional form, where b is the scaling exponent
of the critical temperature: Tc ∼ Nb. Exponents obtained by taking
the large N limit in Eq. (7).

 1

 10

102 103 104 105

T
c

N

β=-0.8
β=-0.35

β=0
β=0.9

N(-γ+3)/4

N(-β)/2

N(-γ+β+3)/2

N1/2

FIG. 7. (Color online) Examples of how Tc scales with N for
networks belonging to regions I, II, III, and IV of Fig. 6 (β = −0.8,
−0.35, 0.0, and 0.9, respectively). Symbols from MC simulations,
with error bars representing standard deviations, and slopes from
Eq. (7). All parameters, except for β and N , are as in Fig. 1.

|μν | ∼ 1/
√

N , ν = 2, . . . ,P , and so ζ � 1. Figure 8 shows
how ζ decreases with T in variously correlated networks for
P = 3 (left panel) and P = 10 patterns (right panel). The
behavior does not qualitatively differ from that observed for
the single-pattern case in the main panel of Fig. 2, suggesting
that the influence of assortativity we report is robust as to the
number of patterns stored, P .

IV. DISCUSSION

We have shown that assortative networks of simple model
neurons are able to exhibit associative memory in the presence
of levels of noise such that uncorrelated (or disassortative)
networks cannot. This may appear to be in contradiction with
a recent result obtained using spectral graph analysis whereby
synchronizability of a set of coupled oscillators is highest for
disassortative networks [34]. A synchronous state of model
oscillators and a memory phase of model neurons are both sets
of many simple dynamical elements coupled via a network
in such a way that a macroscopically coherent situation is
maintained [30]. Obviously both systems require the effective

 0

 0.5

 1

 0  4  8

ζ

T

β=-0.5
β=0

β=0.5

 

 

 

 0  4  8
T

β=-0.5
β=0

β=0.5

FIG. 8. (Color online) Global order parameter ζ for assortative
(β = 0.5), neutral (β = 0.0), and disassortative (β = −0.5) networks
with P = 3 (left panel) and P = 10 (right panel) stored patterns.
Symbols from MC simulations, with error bars representing standard
deviations. All parameters are as in Fig. 1.
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transmission of information among the elements. So why are
opposite results as regards the influence of topology reported
for each system? The answer is simple: Whereas the definition
of a synchronous state is that every single element oscillate
at the same frequency, it is precisely when most elements are
actually behaving randomly that the advantages to assortativity
we report become apparent. In fact, it can be seen in Fig. 2 that
at low temperatures disassortative networks perform the best,
although the effect is small. This is reminiscent of percolation:
At high densities of edges the giant component is larger in
disassortative networks, but in assortative ones a nonvanishing
fraction of nodes remain interconnected even at densities
below the usual percolation threshold [32]. Because in the
case of targeted attacks it is this threshold which is taken
as a measure of resilience, we say that assortative networks
perform the best. The relevance of partial synchronization and
the important role of hubs have already been noted for systems
of (weakly) coupled oscillators [50,51], for which, however,
assortativity has not been expected to be of consequence [51].
In general, the optimal network for good conditions (i.e.,
complete synchronization, high density of edges, low levels
of noise) is not necessarily the one which performs the best in
bad conditions (partial synchronization, low density of edges,
high levels of noise). It seems that optimality—whether in
resilience or robustness—should thus be defined for particular
conditions.

We have used the technique suggested in Ref. [33] to
study the effect of correlations on networks of model neurons,
but many other systems of dynamical elements should be
susceptible to a similar treatment. In fact, Ising spins [47],
voter model agents [52], or Boolean nodes [53], for instance,
are similar enough to binary neurons that we should expect
similar results for these models. If a conclusion can be
drawn, it is that persistence of partial synchrony, or coherence

of a subset of highly connected dynamical elements, can
sometimes be as relevant (or more so) as the possibility of
every element behaving in the same way. In the case of
real brain cells, experiments suggest that hub neurons play
key functional roles [40,41]. From this point of view, there
may be a selective pressure for brain networks to become
assortative, although, admittedly, this organ engages in such
complex behavior that there must be many more functional
constraints on its structure than just a high robustness to noise.
Nevertheless, it would be interesting to investigate this aspect
of biological systems experimentally. For this, it should be
borne in mind that heterogeneous networks have a natural
tendency to become disassortative, so it is against the expected
value of correlations discussed in Ref. [33] that empirical data
should be contrasted in order to look for meaningful deviations
toward assortativity. Similarly, it may be necessary to take
into account the correlations that could emerge due to the
spatial layout of neurons [54,55]. In any case, it would be in
areas of the cortex specifically related to memory, such as the
temporal (long-term memory) [56,57] or prefrontal (short-term
memory) [58,59] lobes, that this effect might be relevant.
A curious fact that would seem to support our hypothesis
is that, whereas the vast majority of nonsocial networks are
disassortative [1], one that appears actually to be strongly
assortative is the functional network of the human cortex [22].
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