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Entropic measures of complexity are able to quantify the information encoded in complex network structures.
Several entropic measures have been proposed in this respect. Here we study the relation between the Shannon
entropy and the von Neumann entropy of networks with given expected degree sequence. We find in different
examples of network topologies that when the degree distribution contains some heterogeneity, an intriguing
correlation emerges between the two entropic quantities. This results seems to suggest that heterogeneity in
the expected degree distribution is implying an equivalence between a quantum and a classical description of
networks, which respectively corresponds to the von Neumann and the Shannon entropy.
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I. INTRODUCTION

Measures of complexity are central to the investigation of
networks [1–4] in social, technological, and biological areas.
These measures allow us to capture differences and similarities
among networks appearing in vastly different contexts, which
furthers our understanding of the information encoded in the
systems that they represent. In particular, following Refs. [1–
4], one may define the complexity of a network as a summary
of the underlying graph structure. Consequently, the presence
of hierarchical organization [5] or a scaling behavior of the
degree distribution [1] are examples of structural features that
contribute to the complexity.

Recently, following information theoretical and statistical
mechanics paradigms, several entropic measures for complex-
ity [6–21] have been proposed for network structure. These
measures have been shown to be extremely successful in
quantifying the level of organization encoded in structural
features of networks [7,22–25].

Nevertheless, the relationship among the different entropic
measures remains an open question. In a previous article [15],
we found insightful connections between the von Neumann
and the Shannon entropy. The Shannon entropy S of a network
ensemble is proportional to the logarithm of a typical network
in the ensemble. As such, the Shannon entropy of all networks
with given structural constraints has the clear interpretation
of quantifying the information present in network structures.
The smaller the entropy of an ensemble, the stronger the
limitations imposed by the constraints and, in some sense,
the more optimized the network. It turns out that the Shannon
entropy of an ensemble depends on the number of constraints
that are imposed. In particular, more constraints imply a
smaller entropy. Additionally, the entropy also qualitatively
depends on the type of constraints. For example, the entropy of
scale-free networks [10,11] is much smaller than the entropy
of networks with exponential degree distribution also if in
both cases only the degree distribution of the network is fixed.
This result is able, for example, to quantify how much more
information is encoded in such scale-free networks respect to
networks with other degree distributions.

The von Neumann entropy of a network, SVN, was pre-
viously introduced by Braunstein, Ghosh, and Severini [8,9]

and later discussed in Ref. [12] and Ref. [17]. This quantity is
determined by the spectrum of the graph Laplacian L of the
network. Specifically, considering networks with N nodes and
an average degree of 〈k〉, we have that

SVN = −Tr
L

〈k〉N log
L

〈k〉N , (1)

where TrL = 〈k〉N . The authors of Ref. [12] demonstrate
that the von Neumann entropy may be seen as a measure
of regularity in networks, i.e., regular graphs with an equal
number of neighbors for all nodes tend to display a higher
entropy than those with heterogeneous degree distributions
and the same number of links. Since L has eigenvalues λi , for
i = 1, . . . ,N and at least one eigenvalue is equal to zero, the
maximum of the von Neumann entropy is reached when all
other eigenvalues are equal and hence SVN � log(N − 1). This
bound is also saturated by random graphs in the asymptotic
limit [18].

In the present article we explore in greater detail the relation
between the Shannon and von Neumann entropies, S and
SVN, respectively, for an ensemble of networks with hidden
variables that fix the degree sequence. Our results indicate that
for the canonical ensemble of exponential random network,
in the limit of large N , the entropy SVN � O[log(N )]. This
rule holds irrespective of the scaling of the average degree
〈k〉, and the degree distribution which are responsible for
the subleading corrections. Moreover, as soon as we introduce
heterogeneity in the expected degree of individual nodes, the
von Neumann entropy correlates with the Shannon entropy
in a nontrivial manner. The heterogeneity of expected degrees
induces an intriguing relation between the quantum description
of the network captured by the von Neumann entropy and
the classical description of the networks. It has been already
shown that growing complex networks with heterogeneous
feature of the nodes show in their evolution some sort of
quantum effects [26–29], in the sense that the evolution of
these networks is described well by quantum statistics.

Here we observe that the simple heterogeneity in the
degrees induces a correlation between essentially classical and
quantum measures of complexity of the networks. It may be
valuable to interpret this fact with particular attention to the
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classical-quantum interface. The suggestion arising from our
discussion tells in some way that mixed quantum systems,
consisting of ensembles composed by many pure states, have
a more classical nature when their von Neumann entropy
correlates to the Shannon entropy. In our case, this is exactly
when there is some “extra amount of disorder” introduced at
the degree level. The hypothesis opens a scenario to further
investigate this kind of correlation, with the purpose to study
properties of the transition from quantum to classical physics,
at least when considering large ensembles of two-level states.

The article is structured as follows. In Sec. II, we define
and evaluate the Shannon entropy for networks ensemble with
expected average degree sequence. In Sec. III, we define the
von Neumann entropy of networks in terms of the Laplacian
spectra. In Sec. IV, we show how the Laplacian spectra can
be calculated by the cavity methods. In Sec. V, we compute
the Laplacian spectra of dense networks. In Sec. VI, we use
the effective medium approximation (EMA) for the spectra
or sparse networks. Finally, in Sec. VII, we show that the
Shannon entropy and the von Neumann entropy of networks
with heterogeneous degree distribution correlate in the cases of
dense and sparse network ensembles. Conclusions are drawn
in Sec. VIII.

II. SHANNON ENTROPY OF CANONICAL ENSEMBLE
WITH HETEROGENEOUS DEGREE DISTRIBUTION

In general, the entropy is defined as the logarithm of
the number of networks in the ensemble. One distinguishes
between two types of ensembles: (i) the microcanonical en-
semble, where structural features—constraints—are satisfied
by all networks in the ensemble. The G(N,M) model [30,31]
from the theory of random graphs is a simple example of a
microcanonical ensemble of networks with N nodes, where
we dictate that the total number of links is M . The entropy
for the microcanonical ensemble may also be computed
via combinatorial methods. (ii) One also defines canonical
ensembles, where constraints are satisfied on average. The
complement of the G(N,M) ensemble is the G(N,p) model,
which corresponds to the canonical ensemble of networks
with N nodes and a fixed probability p for a link to be
present. The total number of links M in the G(N,p) ensemble
is Poisson distributed with average 〈M〉 = pN . The parallel
between microcanonical and canonical network ensembles can
be extended to include more general community, structural,
and even spatial constraints [10,11,14–16,19,21].

In this article, we focus on the canonical ensemble with
fixed expected degree sequence, which is the conjugated
canonical ensemble of the configuration model where the
degree sequence is fixed. This ensembles is also known as
the hidden variable ensembles and these have been studied
both by statisticians and physicists [10,14,15,32–35].

A network belonging to the canonical ensemble of uncor-
related networks with fixed expected degree sequence may be
constructed as follows:

(i) For each node i, draw its expected degree qi from
the probability distribution pq , where qi <

√〈q〉N and 〈q〉 =∑
q ′ pq ′q ′. The upper bound condition for the qi ensures that

they remain uncorrelated across nodes.

(ii) Between nodes i and j we add a link with probability

pij = qiqj

〈q〉N . (2)

In the large network limit N → ∞ the degree ki of each
node i in this ensemble is given by a Poisson variable with
mean and variance equal to qi . Therefore also the total number
of links is a Poisson variable with average 〈k〉 → 〈q〉. It follows
that the average degree of each network realization is a self-
averaging quantity for networks in which 〈q〉 = o(N ), i.e.,
the average degree of each node converges in probability to
a delta distribution peaked at the expected average degree
(〈k〉 = 〈q〉).

The entropy of canonical network ensembles is readily
obtained from an appropriate definition of the ensemble
[15,32–35]. Each network is defined by its adjacency matrix
A ∈ {0,1}N×N , where aij = aji describes the presence (aij =
1) or absence (aij = 0) of a link between nodes i and j .
Each network of the canonical ensemble is assigned a given
probability distribution P({a}) defined over its adjacency
matrix {a}. This is

P({a}) =
∏
i<j

p
aij

ij (1 − pij )1−aij , (3)

describing the fact that a link between nodes i and j is
present (aij = 1) with probability pij and is absent (aij = 0)
with probability (1 − pij ). The Shannon entropy of such an
ensemble is defined as

S = − 1

N

∑
{a}

P({a}) lnP({a})

= − 1

N

{∑
i<j

[pij log pij + (1 − pij ) log(1 − pij )]

}
. (4)

Substituting the form (2) of the link probability pij in the
canonical ensemble with expected average degrees, we get

S = 〈q〉
2

log 〈q〉N − 1

N

∑
i

qi ln qi +

− 1

N

∑
i<j

(
1 − qiqj

〈q〉N
)

log

(
1 − qiqj

〈q〉N
)

. (5)

For convenience, we introduce here the quantity

Sp =
∫

dqpqq ln(q). (6)

This gives us that

S = 〈q〉 log 〈q〉N − Sp +

− 1

N

∫
dqdq ′pqpq ′

(
1 − qq ′

〈q〉N
)

log

(
1 − qq ′

〈q〉N
)

.

If we expand the last term in the right-hand side, we get the
approximate relation

S � 〈q〉 log 〈q〉N + Sp − 〈q〉 − 1

N2

∫
dqdq ′pqpq ′

(
qq ′

〈q〉
)2

.

(7)
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III. VON NEUMANN ENTROPY

In quantum mechanics, a mixed state is a statistical mixture
of pure states. These are represented by rays in Hilbert
space and correspond to the maximum knowledge which can
be acquired about the system. Mathematically, each quantum
state is described by a density matrix, i.e., a positive semidef-
inite, trace-one, symmetric matrix. The density matrix of a
system with Hilbert space HN

∼= CN is

ρ =
N∑

i=1

ωi |ψi〉〈ψi |, (8)

where ωi is a real weight from a probability distribution and
|ψi〉〈ψi | is the projector corresponding to the pure state |ψi〉.
In words, each density matrix represents a convex combination
of pure states, which are then the extremal points of the set.

The amount of “mixedness” of a quantum state is given
by the von Neumann entropy, which, in this sense, can be
seen as the quantum analog of the Shannon entropy [36]. In
information-theoretic terms, the von Neumann entropy quan-
tifies the incompressible information content of a quantum
source, where the signal is given by pure states; the entropy
of a pure state is zero. Additionally, it has an important
operational meaning, being the unique measure of bipartite
entanglement in pure states, via the notion of a reduced
density operator. The connection between quantum mechanics
and thermodynamics is expressed by the fact that S(ρ) is
invariant under Schrödinger evolution for systems completely
isolated from the environment. Indeed, entropy increases with
measurement processes, but

S(ρ) = S(UρU †), (9)

for any unitary operator U .
The definition of S suggests a direct way to associate

a quantum state to a network by making use of the graph
Laplacian. Importantly, the invariance under unitary operators
guarantees invariance under graph isomorphism. A discrete
analog of the Laplace-Beltrami operator, the graph Laplacian
is a positive semidefinite symmetric matrix. Once normalized
in appropriate way, it can be treated as a density matrix. Let
G = (V,E) be a simple undirected graph on N nodes and
L links with adjacency matrix A. From this adjacency matrix
we construct the graph Laplacian L

�ij = δ[i;j ]qi − aij , (10)

where qi = ∑N
j=1 aij . The Laplacian operator appears quite

frequently in the study of diffusion [37], resonance in electric
circuits [38], and certainly in a myriad of applications in
combinatorics and computer science [39]. We associate to each
node of the network a state in the standard basis of an Hilbert
space of dimension n: 1 ↔ |1〉, . . . ,N ↔ |N〉. Each link {i,j}
corresponds to a pure state (|i〉 − |j 〉)/√2. The associated
density matrix is

ρ{i,j} = 1
2 (|i〉〈i| + |j 〉〈j | − |i〉〈j | − |j 〉〈i|). (11)

The density matrix of the pure state (|i〉 − |j 〉)/√2 corre-
sponds to the Laplacian of a graph with a single link and with
N − 2 nodes of degree zero, where N is the dimension of the

space. The density matrix ρ{i,j} is a pure state. Taking equal
weights ωi,j depending on the number of edges, the matrix

ρ = 1

〈k〉N
∑
E

ρ{i,j} = 1

〈k〉N L (12)

is just the Laplacian of the graph but adjusted to have unit trace.
In this expression, the weights may be chosen arbitrarily, with
the only constraint

∑
{i,j}∈E ωi,j = 1.

Since the smallest eigenvalue of the Laplacian is zero,
we expect that SVN ∈ [0, log(N − 1)]. The maximum SVN

is attained by the complete graph on N nodes and in the
thermodynamic limit by any Poisson random graph [18]. The
minimum is clearly for pure states.

The von Neumann entropy on suitable rotation of
the Laplacian matrix about its eigenvector basis can be
expressed as

SVN = ln(N ) −
∫

dλm(λ)
λ

〈k〉 ln

(
λ

〈k〉
)

, (13)

where the term m(λ) denotes the density of eigenvalue state
λ of the Laplacian. Therefore the von Neumann entropy
has a leading term of order log(N ) and a subleading terms
determined by the spectrum of the Laplacian. Apart from issues
arising from cospectrality, where the nonisomorphic graph can
have the same entropy, it is also worth observing that the ratio
between the two largest eigenvalues of the adjacency matrix,
which is responsible for mixing properties of Markov chains
on the graph, does not seem to have immediate implications
when considering this type of entropy. In fact, we observe that
the second term on the right-hand side of Eq. (13) is dominated
by the behavior of the density of states m(λ) for large values
of the eigenvalues λ’s. Therefore, the large eigenvalues of the
graph Laplacian, which determine the fast temporal scales
of the diffusion dynamics on the network, give the largest
contribution to the von Neumann entropy.

The von Neumann entropy is defined on every single
graph. Nevertheless, it is important to evaluate the von
Neumann entropy of ensembles of graphs with different degree
distributions. This helps in understanding the impact of the
heterogeneity of the network on this new quantity relating
networks to quantum states. In canonical network ensembles
the Laplacian spectra is self-averaging as long as 〈k〉 = o(N ),
meaning that the spectra of a network of this ensemble will
approach the average spectra of the network in the ensemble
in the large N limit. We note also that since in the canonical
ensemble the average degree 〈k〉 is a self-averaging quantity,
the von Neumann entropy of large networks in the canonical
network ensembles can be written also as

SVN = ln(N ) −
∫

dλm(λ)
λ

〈q〉 ln

(
λ

〈q〉
)

. (14)

IV. LAPLACIAN SPECTRA OF COMPLEX NETWORKS

As mentioned in the previous section, the Laplacian
spectrum of a network in the canonical network ensembles
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is self-averaging. Thus, the density of eigenvalues λ is
given by

m(λ) = lim
N→∞

1

N

N∑
i=1

δ(λ − λi)
A
, (15)

where {λi} is the set of the eigenvalues of L and the overline

(· · ·)A denotes the average over the probability P({a}). This is
given by Eq. (3) for networks in the canonical ensemble. To
calculate this object in the large N → ∞ limit, one introduces
[40] the partition function

Z(λ) =
∫ N∏

i=1

dφi exp

(
− i

2
λε

N∑
i=1

φ2
i + i

2

N∑
i,j=1

φi�ijφj

)
,

(16)

where λε = λ + iε. The introduction of a small imaginary ε is
to ensure that the integrals are convergent and well defined. In
terms of Z, we have

m(λ) = lim
N→∞

− 2

Nπ
Im

∂

∂λ
log Z(λ)

A
. (17)

To facilitate the averaging over the canonical ensemble, one
uses the replica trick and writes

log Z(λ)
A = lim

n→0

1

n
log Z(λ)n

A
, (18)

where

Z(λ)n
A =

∫ n∏
a=1

N∏
i=1

dφia exp

(
− i

2
λε

n∑
a=1

N∑
i=1

φ2
ia

+ 1

2

N∑
i,j=1

qiqj

〈q〉N

{
exp

[
i

2

n∑
a=1

(φia − φja)2

]
− 1

})
.

(19)

This result is independent of scaling assumptions on 〈q〉. In
what follows, we consider the cases where 〈q〉 scales with N ,
i.e., a dense network, and where 〈q〉 � O[1], separately.

V. DENSE NETWORKS

For dense network ensembles with divergent average
degree, i.e., when 〈q〉 → ∞ as N → ∞, it is possible to
further simplify Eq. (19), by expanding the inner exponential,
and obtain

Z(μ)n
A =

∫ n∏
a=1

N∏
i=1

dφia exp

(
− i

2
λε

n∑
a=1

N∑
i=1

φ2
ia

+ i

4N

N∑
i,j=1

n∑
a=1

[xixj (φia − φja)2]

)
, (20)

where xi = qi/〈q〉. We now consider two further subcases for
the distribution pq of the qi expected degrees:

(i) Poisson networks. In this case, qi = 〈q〉 and hence xi =
1. Following Ref. [37], the Laplacian matrix L/〈q〉 has one
eigenvalue equal to zero and the remaining N − 1 eigenvalues
equal to 〈q〉, i.e.,

m(λ) = N − 1

N
δ[λ,〈q〉] + 1

N
δ[λ,0]. (21)

Putting this result into Eq. (14) we obtain that

SVN = ln(N ) + o(1). (22)

(ii) Exponential networks. For uncorrelated exponential
network ensembles, the probability that a randomly selected
node i has expected degree qi = q is given by

pq = 1

〈q〉e
−q/〈q〉. (23)

Denoting xi = qi/〈q〉, the probability that node i has an
associated expected degree x is given by π (x) = e−x . The
eigenvalues λ are given by λ = xi with degeneracy Nπ (xi) − 1
if Nπ (xi) > 2, while the remaining K eigenvalues are equal
to zero. For a dense exponential network of size N , the value
of K is given by K = ln N − ln 2. Therefore, the density of
states is equal to

m(λ) =
[
π (λ) − 1

N

]
�(K − λ)(1 − δ[λ,0]) + K

N
δ[λ,0]. (24)

It follows that, in the limit of large N , the spectrum m(λ) is
formed by a peak for λ = 0 and a bulk spectral density that
is decaying exponentially with a behavior reminiscent of the
degree distribution. So, the von Neumann entropy is

SVN = ln(N ) −
∫ K

0
dxe−xx ln(x) + o(1). (25)

In Fig. 1, we represent the spectrum of large dense networks
with exponential degree distribution showing the exponentially
decaying density of states. Therefore the von Neumann entropy
of the exponential dense random ensembles has a term log(N )
and a subleading term equal to the entropy of the degree
distribution Sp given by Eq. (6),

SVN = ln(N ) − Sp. (26)

0 50 100 150 200 250 300
λ

1

10

100

1000

N
 m

(λ
)

<q>=50
<q>=60
<q>=70
<q>=80
<q>=90

FIG. 1. (Color online) Laplacian spectra of dense networks with
exponential expected degree distribution. The data are obtained
from networks of size N = 1000; the number of links and pq are
distributed exponentially with average 〈q〉 = 50,60,70,80,90. The
data are averaged over 20 network realizations.

036109-4



SHANNON AND VON NEUMANN ENTROPY OF RANDOM . . . PHYSICAL REVIEW E 83, 036109 (2011)

VI. SPARSE NETWORK ENSEMBLES

For sparse network ensembles, where 〈q〉 ∼ O(1), the
analysis of the previous section does not hold. In particular,
we cannot expand the inner exponential in Eq. (19) in terms
of large 〈q〉. Predicting Laplacian spectra of sparse graphs is
a problem that up to date has been only solved numerically by
the use of population dynamics techniques or message passing
techniques. In this article, in order to determine the behavior
of the tail of the Laplacian spectrum, we make use of the
effective medium approximation [41], which gives a fairly
good approximation of the bulk properties of the spectrum.
In the Appendix, we also show how to derive the effective
medium approximation from the exact calculations of the
spectrum by population dynamics.

Assuming that the expected degree q can take any real
values drawn from a pq distribution, the density of states mE(λ)
in the effective medium approximation is given by

mE(λ) = 1

π

∫
dqpqIm

1

λε + qhEMA(λ)
, (27)

with the variable hEMA satisfying the self-consistent equation

hEMA = −
∫

dq
qpq

〈q〉
1

λε + qhEMA(λ)
− 1. (28)

A. Sparse Poisson random networks

For the case of the G(N,p) ensemble the spectra is
given by

mE(λ) = 1

π
Im

1

λε + qhEMA
, (29)

with q = pN , and

hEMA = − 1

λε − 1 + qhEMA
− 1. (30)

The solution to this equation is

qhEMA = 1

2
[−(q − 1 + λε)

± i
√

4qλε − (1 + λε − q)2]. (31)

Plugging this solution into Eq. (29), we see that in order to
have a positive density in Eq. (31), the effective field hEMA

must be complex with a negative imaginary part. It follows
that in the limit ε → 0,

mE(λ) = 2

π

√
4qλ − (1 − λ − q)2

(q − 1 − λ)2 + (q − 1 + λ)2 − 4λq
. (32)

We can see that the spectrum of the Laplacian is not expected to
show a clear correlation with the degree distribution of Poisson
networks. As a consequence of this, the von Neumann entropy
of Poisson sparse networks is not correlated with the Shannon
entropy of the networks or the Shannon entropy of their degree
distributions.

B. Sparse Networks with heterogeneous expected degree

We have numerically solved Eqs. (27)–(28), defining the
spectra of networks with the heterogeneous expected degree
in the effective medium approximation. In Fig. 2, we report
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m
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-1

10
0

m
E
(λ

)

<q>=2.5
<q>=5
<q>=7.5
<q>=10

(a)

(b)

1

FIG. 2. (Color online) Laplacian spectra predicted by the ef-
fective medium approximation for graphs with power-law (a) and
exponential (b) distributions of the expected degrees. The predicted
spectrum for large eigenvalues λ has a power-law behavior for
scale-free networks and an exponential behavior for exponential
networks.

the predicted spectra for sparse exponential networks with a
degree distribution

pE(q) = 1

〈q〉e
−q/〈q〉 (33)

and for power-law networks with expected degree distribution

pSF(q) = mγ−1(γ − 1)q−γ . (34)

In the case of large eigenvalues, the spectral density follows
a power-law distribution for scale-free networks and an expo-
nential distribution for exponential networks. The theoretical
expectations are confirmed by direct diagonalization of the
Laplacian matrices reported in Fig. 3. Indeed, it is explicitly
shown that the tail of the spectrum of the Laplacian has an
exponential behavior for networks with exponential degree
distribution and a power-law tail for networks with a power-law
expected degree distribution. In Fig. 2, we have numerically
integrated the effective medium equations.

VII. CORRELATION BETWEEN THE SHANNON AND THE
VON NEUMANN ENTROPY IN SPARSE NETWORKS

The prediction of the effective medium approximation
indicates that as soon as the heterogeneity of the degree is
introduced the von Neumann entropy is dominated by the
tail of the Laplacian spectrum. Since this tail has in the
first approximation the same distribution as the expected
degree, the von Neumann entropy is linearly correlated with
the entropy associated with the expected degrees. Moreover,
since the Shannon entropy is also related to the entropy
associated to the expected degrees, this relation is reflected in a
clear correlation between the Shannon and the von Neumann

036109-5



KARTIK ANAND, GINESTRA BIANCONI, AND SIMONE SEVERINI PHYSICAL REVIEW E 83, 036109 (2011)
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FIG. 3. (Color online) Spectra of single networks with power-law
(a) and exponential (b) expected degree distributions. As predicted
by the effective medium approximation, the spectra of the Laplacian
matrices of power-law networks has a power-law tail, while the
spectra of networks with expected exponential degree distribution
have exponential tail. The data in (a) were obtained from single
networks of size N = 104; the data in (b) were obtained from
20 network realizations of size N = 103.

entropy. In Fig. 4 we show that the expected results about
the eigenvalues of the Laplacian of scale-free and exponential
sparse networks are confirmed by the simulation data. The
data are obtained by comparing the Shannon and the von
Neumann entropy, and the entropy associated to a given
expected (exponential or power-law) degree distribution. All
the networks have size N = 1000 and the different points
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FIG. 4. (Color online) Comparison between the von Neumann
entropy SVN, the Shannon entropy S, and the entropy of the expected
degree distribution Sp . These are for networks with power-law and
exponential degree distributions, as a function of the average degree
and the value of the power-law exponent γ of the scale-free expected
distribution. For every value of the Shannon entropy, an average
is performed over 20 network realizations with exactly the same
Shannon entropy:

correspond to networks with different average degrees for
the exponential case and networks with different power-law
exponents for power-law networks.

VIII. CONCLUSIONS

We have studied the relation between the von Neumann
entropy and the Shannon entropy of networks with a given
expected degree sequence. We report facts occurring for a
variety of networks, including dense and sparse networks. We
have seen that, when a certain heterogeneity of the expected
degree sequence is introduced, an intriguing connection
appears between von Neumann and Shannon entropies. This
connection is missing for networks with homogeneously
distributed average degrees.

Rather than try to interpret immediately the observed
connection, it is worthwhile to instead formulate an open
scenario, with the purpose of directing a future line of research.
Essentially, it is legitimate to ask whether the Shannon and
the von Neumann entropies are correlated for mixed states
exhibiting a certain degree of classicality. In this light, it is
plausible that the relation between these two entropies can
shed new light into discussions about the quantum-to-classical
transition. The specific aspect of this framework does not have
the potential to address problems associated to decoherence of
pure states but rather to the classical characteristics of mixtures
with many components.
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APPENDIX: DERIVATION OF THE EFFECTIVE MEDIUM
APPROXIMATION FROM THE REPLICA METHOD

In a sparse network ensemble, it is possible to find a solution
for a matrix partition function, Eq. (19), by introducing a
functional order parameter. This approach, first introduced in
the context of dilute spin-glass systems [42], has had wide
success in a host of different contexts. Formally, defining
�φ = (φ1, . . . ,φn), we introduce

cq( �φ) = 1

N

N∑
i=1

δ[q,qi ]

n∏
a=1

[δ(φa − φia)]. (A1)

Following standard arguments, we obtain the following func-
tional saddle-point expression for the partition function

Z(λ)n
A =

∫ ∏
q>0

Dcq( �φ)eN�({cq };λ), (A2)

where �({cq}; λ) = S0 + S1 + S2 and

S0 = −
∑
q>0

pq

∫
d �φcq( �φ) log cq( �φ), (A3)

S1 = − i

2
λε

∑
q>0

pq

∫
d �φcq( �φ) �φ · �φ, (A4)
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S2 = 1

〈q〉
∑
q,r>0

pqprqr

∫
d �φd �ψcq( �φ)cr ( �ψ)

×
{

exp

[
i

2

n∑
a=1

(φa − ψa)2

]
− 1

}
. (A5)

As before, pq is the probability distribution for the expected
degrees. From this result combined with Eq. (17), we note
that the density of eigenvalues is given by the variance of the
functional cq( �φ), i.e.,

m(λ) = lim
n→0

1

nπ
Re

∑
q>0

pq〈 �φ · �φ〉cq
, (A6)

where the angled brackets refer to the average over the
saddle-point cq ( �φ) measure. This is given by the self-consistent
equation

cq( �φ) = exp

(
− i

2
λε

�φ · �φ − q[1 − ĉ( �φ)]

)
, (A7)

where

ĉ( �φ)= 1

〈q〉
∑
r>0

prr

∫
d �ψcr ( �ψ) exp

[
i

2

n∑
a=1

(φa − ψa)2

]
. (A8)

It is not possible to obtain an analytic closed expression for
the cq measure without making further assumptions. The most
general ansatz that one can make here, and expect to hold, is
that the measures are invariant under replica symmetry. This
amounts to writing cq as a superposition of Gaussian measures.
In particular, we write that

cq( �φ) =
∫

dhqP (hq)
n∏

a=1

e− i
2 hqφ2

a

(√
hq

2π

)n

, (A9)

and

ĉ( �φ) =
∫

dĥP̂ (̂h)
n∏

a=1

e− i
2 ĥφ2

a . (A10)

Thus, the Gaussian measures are parametrized by the complex
variances 1/hq and 1/ĥ, which are solved for to obtain the
recursive relationship

P (hq) =
∑
r>0

e−qqk

k!

∫
dĥ1 · · ·

∫
dĥk

k∏
�=1

[P̂ (̂h�)]

× δ

(
hq −

[
k∑

�=1

ĥk + λε

])
(A11)

and

P̂ (̂h) =
∑
q>0

pqq

〈q〉
∫

dhqP (hq)δ

(
ĥ − hq

hq − 1

)
. (A12)

These two equations may be numerically solved, in the general
case, using a population dynamics algorithm, as described in

the next section of the Appendix. To conclude, the density of
states is given by

m(λ) = 1

π

∑
q>0

pqIm
1

hq

. (A13)

A. The population dynamics algorithm

Eqs. (A11) and (A12) can be solved by a population dy-
namics algorithm to find the distribution P̂ (̂h). We summarize
the algorithm as follows:

algorithm PopDyn({̂hqi
} of M fields) begin do

(i) choose a field ĥqi
relative to a node i of the network.

(ii) draw k from a Poisson distribution with probability
e−qi qk

i /k!.
(iii) select n = 1, . . . ,k fields ĥn

qj
relative to nodes j , chosen

with probability proportional to qj .

ĥqi
:= λε −

k∑
n=1

1

ĥn
qj

− 1
− k. (A14)

(iv) update probability distribution function P̂ (̂h).
while (P̂ (̂h) not converged)
return
end

B. Derivation of the effective medium approximation

Finally, this population dynamic algorithm can be approxi-
mated by the EMA equations. Here we describe the derivation
of the equations presented in the main text from the population
dynamics algorithm. In the EMA, we average Eq. (A14)over
the probability that node i with hidden variable qi has
k links and over the hidden variables qj of node i’s neighbors.
Therefore, using Eq. (2) and the fact that the expected degree
of node i is 〈ki〉 = qi , we obtain for the average of Eq. (A14)
the following expression;

ĥq = λε − q − q

∫
dq ′ q

′pq ′

〈q〉
1

ĥq ′ − 1
. (A15)

Therefore, if we define

hEMA = −
∫

dq
qpq

〈q〉
1

ĥq − 1
− 1, (A16)

using Eq. (A15), the self-consistent equation for hEMA defined
by Eq. (A16)is given by

hEMA = −
∫

dq
qpq

〈q〉
1

λε − 1 + qhEMA
− 1. (A17)

Finally, inserting into Eq. (A13)the effective medium ap-
proximation for the fields hq , i.e., hq = λε + qhEMA, the
density of states mE in the effective medium approximation is
given by

mE(λ) = 1

π

∫
dqpqIm

1

λε + qhEMA(λ)
. (A18)
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