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Mathematics and morphogenesis of cities: A geometrical approach
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Cities are living organisms. They are out of equilibrium, open systems that never stop developing and sometimes
die. The local geography can be compared to a shell constraining its development. In brief, a city’s current layout
is a step in a running morphogenesis process. Thus cities display a huge diversity of shapes and none of the
traditional models, from random graphs, complex networks theory, or stochastic geometry, takes into account
the geometrical, functional, and dynamical aspects of a city in the same framework. We present here a global
mathematical model dedicated to cities that permits describing, manipulating, and explaining cities’ overall shape
and layout of their street systems. This street-based framework conciliates the topological and geometrical sides
of the problem. From the static analysis of several French towns (topology of first and second order, anisotropy,
streets scaling) we make the hypothesis that the development of a city follows a logic of division or extension
of space. We propose a dynamical model that mimics this logic and that, from simple general rules and a few
parameters, succeeds in generating a large diversity of cities and in reproducing the general features the static
analysis has pointed out.
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I. INTRODUCTION

The city is a living structure: It is an open system, always
in motion. A city is born, develops, heals over injuries (war
damages, etc.), and sometimes dies in part or totally. Its
development responds to internal and external constraints in
such a way that local geography acts as a shell that sculpts it. As
general living systems, cities exhibit a huge range of diversity
both on their overall shape (that can be circular, sprawling,
linear, or even fractal) and on the appearance of their street
systems (regular, organic, treelike). Such a diversity can also
be observed at the level of a single city that has not developed
homogeneously.

We seek out to show that behind this diversity stands a
single principle: A city develops within a logic of division or
extension of space. The intra- and inner diversity of shapes can
be seen as a variation in a coherent global phenomenon. Our
approach is street based: We consider an infinitesimal piece
of street as the elementary component of a city and wager
it contains important information. The dual approach is to
consider the buildup area (buildings, parks, etc.) as the unit of
formation. Several points of view have been used in the past to
model cities: cellular automata, multiagent systems, fractals,
stochastic geometry, L-systems, and graph theory leading to
complex systems’ theory.

Cellular automata and multiagent systems have widely and
successfully been used to simulate the dynamics of populations
and of land use [1]. The fractal description of cities [2] gathers
these simulations into a theory and points out the advantages
of a fractal-shaped city from the point of view of the buildup
area. Nonetheless, the basis of these models is either a discrete
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field or the map of a given city. They explain the global
differentiation of space when the street network is known or
ignored.

Since the famous “Bridges of Konigsberg” problem by
Euler, one is tempted to describe a city as a graph with streets
as edges and their intersections as vertices. This provides a
relational representation of the city [3]. One of the difficulties
then is the particular embedding of these graphs that make
random graphs unable to stick to a city’s map representation.

Stochastic geometry gets around this problem by consider-
ing stationary tessellations (Poisson Voronoı̈, Poisson Delau-
nay, or Poisson Line Tessellation, and their superpositions and
iterations) that are geometrical objects embedded in a compact
subset of the space and deduces geometrical random graphs
from their induced topology [4]. L-systems with procedural
programming make a map evolve from local coherence rules
and input data that incorporate global constraints [5,6]. The
stochastic geometry approach gets good results at analyzing
optimization problems on street networks, and L-systems are
successfully used in graphics, but they do not explain the
underlying phenomena at work to determine the appearance
of a city.

For a few years a complex network-based study has been
adopted to describe cities [7,8]. But the main conclusion is
that a city behaves neither as a classical scale-free network
nor a small-world network, essentially because of its spatial
embedding [9]. Cities then clearly need a dedicated mathe-
matical framework, taking into account both the topology and,
what is new, the geometry of a street network. The scope of this
article is a street-based approach to cities that allows analyzing,
manipulating, and explaining cities’ morphogenesis. In Sec. II
we define a mathematical formalism to handle with cities both
in a relational and a geometrical way, the very substance of
the geometry being that street segments are lined up into sets
called streets, which we model via a hypergraph additional
structure.
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Section III presents several description measurements
(topology of first and second order, anisotropy, and streets
scaling) to obtain quantitative comparison elements between
cities, and exhibit some features of the global mechanic
of cities system (organic shape, log scaling of length,
and small topological radius). These features call for the
modeling of the city as a process of division and exten-
sion of space. We use ten French towns and their centers
without having to restrict them to a square window to
illustrate this.

Eventually we present a morphogenetic model of the city
(Sec. IV) and its simulation (Sec. V) that implements the idea
of space division or extension. This model reproduces the
general features pointed out in Sec. III, and the variation of a
few normalized parameters allows recovering a large range of
diversity. The model is expressed in terms that are as relevant
for mathematicians or physicists as they are for town planners
or social scientists. No sampling of space is required for the
simulation.

II. CITIES’ SPACE

Since the famous resolution of the “Bridges of Konigs-
berg” problem by Euler [3], one is tempted to look at
cities with a formal and relational point of view: A city
is a graph whose edges are streets and vertices are their
intersections.

Nevertheless, this approach does not take into account
the physical constraints (of being a functional object on
the plan) that are exerted on cities. Furthermore, it en-
hances a fundamental disjunction between intersections—
that would be objects of interest—and street segments that
would simply bind them. Under those street segments or
edges lies a characteristic geometry. Each point of this
geometry should be seen as an object in relation with
other similar objects. This paragraph aims at introducing a
terminological frame that permits manipulating cities as “con-
tinuous graphs” embedded in a two-dimensional Euclidian
space. The vocabulary used in this article is freely adapted
from general graph theory [10] to respond to our specific
needs.

When importing a map (via a .MIF file), the raw data
is coded into a list of polylines. In fact, these polylines
come from the sampling of curved streets that are difficult
to represent in a computer. We consider it is possible to
transform a geometrical graph into a straight graph arbitrary
close to it. The important paradigm of degree 2 points comes
up. To rectify the map we have added degree 2 vertices, but
we want to consider a version of the same object. In short,
a segment with its two extremities and the same segment
with its extremities plus its midpoint should be seen as the
same entity. We define a measure on a geometrical graph that
allows to see that graph as a “continuum” and to consider
each point of its geometry in the same time. The data rather
represents street segments that actual streets. The particularity
of a city’s geometry is that its street segments are coherently
arranged into disjoint geometrical sets: the streets. We try
to record the notion of streets with a hypergraph additional
structure. This provides a multiscale representation of the
city.

(a) (b)

FIG. 1. (Color online) The representation of a graph by its
symmetric adjacency matrix (a). This graph is planar: It admits at
least two geometrical graphs as drawings (b).

A. Graphs and planar graphs

Let S be a set, V (for vertices) a finite subset of S, E (for
edges) a symmetric part of V × V , and then G = (V,E) is
said to be a (undirected) graph.

A drawing of G is an injective function from V to R
2 and

from E to the set of continuous paths such that the image of
an edge has for limits the images of the vertices it binds and
does not pass through images of vertices it does not bind. An
edge crossing is the intersection of the images of two edges
outside the image of V .

If there exists a drawing without any edge crossing, the
graph is said to be planar (Fig. 1). The first characteristic of
city graphs is their planarity.

B. Geometrical graphs

A geometrical graph can be seen as a particular drawing
of a planar graph. Let the available space A be a connected
and compact subset of R

2, V a finite subset of A, and E a set
of almost everywhere derivable paths included in A from one
element of V to another that does not intersect outside of V .
Then G = (V,E) is an element of the space of geometrical
graphs Gg(A). If E is restricted to straight segments [G ∈
Gs(A)], G is a straight graph. To a geometrical graph G, one
associates πG, the subset of A defined by

πG = {x ∈ A, ∃e ∈ E, x ∈ e}. (1)

πG is compact so we can provide Gg(A) with an Hausdorff
distance:

dH (g1||g2) = max
x∈πg1

min
y∈πg2

||x − y||. (2)

A drawing G′ = (V ′,E′) is a rectification of the geometrical
graph G = (V,E) if V ⊂ V ′ ⊂ πG and if each element of E′ is
a segment. G′ is not necessarily a planar straight graph because
edges can possibly intersect outside of vertices (Fig. 2). The
idea is that one should be able to add to a geometrical graph
as many vertices of degree 2 as he wishes and still consider
the same mathematical object. In this article we will admit
that Pr1 and Pr2 hold for a large enough class of geometrical
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(b)(a)

FIG. 2. (Color online) A geometrical graph (a) and two of its
rectifications (b). The upper one is not straight because two edges
intersect outside of the vertices set.

graphs:
Pr1: Every geometrical graph admits a planar rectification.
Pr2: Every geometrical graph is the limit of a sequence of

straight graphs.
To get (Pr1), one has to sample an original graph with

enough additional vertices of degree 2 and a small enough
edges length. (Pr2) states that it is possible to approximate any
geometrical graph by a straight graph arbitrary close to it in
the sense of dH . This is of practical importance as it allows to
work only with straight planar graphs, while a city’s original
maps can have curved edges.

C. Measure

As a compact part of A, πG is a Polish space (complete
and separable) on which one can define a Borelian measure
μG. For instance,

∫
G

dμG is the total length of edges in G or
in (III C) we define the angular density of a graph �(·) with
μG(·). This measure respects∫

f (g)dμG =
∑
e∈E

∣∣∣∣
∫

e

f (x)dμ1(x)

∣∣∣∣ , (3)

where μi is the i-dimensional Borelian measure, f is a positive
function, and

∫
e

is the integral along the path e. If f is a
continuous function defined on R

2, we have∫
f (g)dμG = lim

ε→0

1

2ε

∫
f (x,y)(πG ⊕ Bε)dμ2(x,y), (4)

where ⊕ is the Minkowski addition and Bε is the closed
Euclidian ball of radius ε: x ⊕ Bε = {y ∈ R

2 ||x − y|| � ε}.
So μG is a measure between μ1 and μ2 that allows to make
quantitative measurements on the whole geometrical graph.

D. Hypergraph structure

If H is an equivalence relationship on E then [(V,E),H ] is
said to be a hypergraph.
Let (V,E) be a graph and R be a reflexive relationship on E2.
Then the relationship R̂, defined by

e1R̂e2 iif ∃ α1 = e1,α2, . . . ,αn = e2 ∈ E|,
(5)

α1Rα2,α2Rα3, . . . ,αn−1Rαn,

(b)(a)

FIG. 3. (Color online) A straight graph (a) and its hypergraph
structure (b) deduced from Rπ/20. Viewed as a city’s map, this graph
contains seven streets segments but three streets.

is an equivalence relationship. From this, one can consider Rθ :

e1Rθe2 iif(e1 �2 e2) ∨ [(e1 � e2) ∧ (|�(e1,e2) − π | � θ )],

(6)

where e1 � e2 means that e1 and e2 intersect, and e1 �2 e2 means
that e1 and e2 intersect in a vertex of degree 2. �(e1,e2) stands
for the angle between e1 and e2 oriented with the same origin.

For instance, think of considering the map of a city and the
relationship where “these two edges are pieces of the same
street.” This Rθ allows recovering the notion of “streets” even
if the input data do not contain such labels. The algorithm
labeling street segments with a street number does not depend
on its starting point and is fast to run. The price to pay is
that some special cases are where forks of two segments make
a very small angle with a third one will be considered as a
single street. This additional structure is essential as it gives a
way to analyze the overall structures of planar graphs, and, in
particular, of cities. (See Fig. 3.)

E. City graphs

We define pragmatically the set of city graphs GC as the
subset of GS that represents an existing city or a city that could
have existed. We restrict this definition to Gs because many
of the cities’ streets are straight, and even if it is not the case,
there exists a straight approximation that is as accurate as we
want.

In the following, we will write C = (V,E) to be a city
and canonically provide C with a hypergraph structure from a
relationship Rθ . For the sake of simplicity we keep the same
notation to designate the hypergraph : C = [(V,E),H ]. Its
Borelian measure is written as μC .

The relational aspect inherited from a simple graph struc-
ture allows us to define the set of faces F . Euler’s equality is
respected so that VNo. − ENo. + FNo. = 1. To each edge e we
associate the set V (e) of its extremities in V , and to each point
v ∈ πC we associate E(v) to the set of edges that pass through
it. N (v) is the degree of a vertex.

We partition V = V1 ∪ V2 ∪ V+, where V1 contains all
vertices of degree 1, V2 of degree 2, and V+ of higher degrees.
Vertices in V1, V2, and V+ are, respectively, terminations,
junctions, and intersections. Elements of V2 are seen as
sampling artifacts used to fit the curved geometry of the city.
Elements of E are called street segments, those of H streets.
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III. CITY SPACE FEATURES

Owing to their spatial constraints, real geometrical graphs
do not behave as classical complex networks (small-world
or scale-free networks) [9]. Real cities display structural,
geometrical, and functional features. For instance, a real
city aims both at lodging its inhabitants and at providing
them with efficient access to geographical and human re-
sources. These constraints logically affect the structure of
a city graph. The purpose of this section is to define some
mathematical tools that will quantitatively measure structural
differences between city graphs. Classical measures from a
complex network theory (efficiency, robustness, centrality,
degree correlation) have been investigated in Refs. [11–13].
The measures presented below are dedicated to cities. Each
one is illustrated with the city of Amiens in France: the
entire city and its center (Fig. 5). The main properties are
recapitulated in Sec. III E for ten French towns and their
centers.

We have imported vector maps in a calculus framework and
successively rectified them by taking care of conserving the
planarity and angles at the intersections, and we used Rπ/10 to
obtain an hypergraph structure.

A. First-order topology

Let C = [(V,E),H )] be a city and N (k) = {v ∈ C,N (v) =
k}No. be the number of vertices of degree k in C and N̄ (k) =
N (k)/

∑
N (i). The set V2 (junctions) should not be taken into

account because it only represents sampling artifacts to pre-
serve the shape of streets. In Ref. [8] the histogram of N is stud-
ied by means of an exponential tail of distribution. Nonethe-

FIG. 4. (Color online) The histograms of degrees’ distribution in
Amiens (entire city and center). We observe that both distributions are
peaked in 3 even in the more regular city center, where the number
of connections 4 is still half. The large number of 2 comes from
straightening, especially in the suburbs’ curved streets, and should
not be taken into account.

less, this distribution (Fig. 4) is very peaked in 3 or in 4. It is
sufficient to describe the histogram N by the organic ratio

rN = N (1) + N (3)∑
j �=2 N (j )

, (7)

which allows to discriminate quickly whether the city had been
planned (rN � 0 in the limit case) or not. Indeed, a planned city
is filled with a homotopy of a rectangular grid [only N̄ (4) �= 0].
This is clearly useful to settle buildings but also sticks to
a human perception of space because we have the intuition
of left and right and front and behind. In unplanned cities
(organic will be the dedicated word in Sec. IV to emphasize the
comparison with living systems), i.e., created by the interaction
between nonconcerted settlements, there is little probability for
street segments to be coherent and thus rN � 1.

Following Ref. [13], we characterize the topology of a city
by its “meshedness coefficient.” It is easy to count v and e,
and then f is deduced from Euler’s formula. Given V , the
maximum number 2s − 5 of faces is obtained by the Greedy
triangulation algorithm [13]. So the quantity M = (e − v +
1)/(2v − 5) is equal to 0 if the city is a tree and is close to 1 if
it is a highly connected graph. For real cities [12], M typically
ranges between 0.08 and 0.35.

To be coherent with our preceding remark, we should not
take junctions into account. They have no incidence on the
numerator but we have to change 2v − 5 into 2v(1 − N̄ (2))
− 5:

M3 = e − v + 1

2v(1 − N̄ (2)) − 5
. (8)

M3 is quite small because of the general lack of triangles
in the topology of a city. As a trapezoid contains two
triangles, we rescale it in M4 = 2M3, whose maximum is hit
when the considered city contains the maximal number of
trapezoids. Amiens appears as an “average” organic city, with
a meshedness coefficient of 0.41 (0.54 when restricted to the
center) and rN = 0.79 (0.68 in the center).

B. Second-order topology

The streets H induce a particular topology. In Ref. [12]
its study is referred as the “dual approach.” We use here the
expression “second-order topology” because it is a derived
topology. Moreover, as faces are the dual of vertices, the dual
of a space is a space containing the same information. We
prefer to retain the word “duality” to express this idea: “the
mass of a city (buildings, houses, parks) is the dual of the street
system,” which could refer to the work of Refs. [1] and [2].

Let us call the topological distance of C the function d
topo
C :

H × H −→ N that satisfies

d
topo
C (h1,h2) =

{
0, if h1 = h2,

min
h∈H,h∩h2 �=∅

d
topo
C (h,h1) + 1, otherwise (9)

The topological distance counts the number of times one needs
to turn to go from a street to another one. The topological
average distance of a street h0 is

d̄
topo
C (h0) = 1

HNo.

∑
h∈H

d topo(h,h0). (10)
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FIG. 5. (Color online) . The “topological maps” of Amiens (left-hand side) and its center (right-hand side). In each map, the red street is
the topological center and the color of each street refers to its distance to that center. The maximum distance to the center is the radius of the
map (18 in the entire city and 16 in the center). It is striking that this radius increases slowly with the size of the considered street system. We
can even infer that the construction of the surrounding highway belt (the found center) is made precisely to keep the topological radius of the
city small.

This formula defines a new centrality measure on the map
similarly to those studied in Ref. [11]. A street that minimizes
d̄

topo
C is then called a center. One drawback of this wholly

topological definition is that, because topological distances
are integers, several streets can be defined simultaneously as
central streets. Common sense would then be to take all of
these streets as simultaneous central streets, and to calculate
the distance of any street as the minimum of the distance to
any of these streets. Another way is to weight by the street’s
length:

d̄
topo leng
C (h0) = 1

μC(C)

∑
h∈H

||h||d topo(h,h0) (11)

(||h|| is the length of the street h). From this, a unique center hc

is defined if the city is not too regular. The topological radius
of the city is then defined by r

topo
C = max d

topo
C (h,hc) and its

diameter by

diamtopo
C = max

h1,h2∈H
d

topo
C (h1,h2), (12)

with r
topo
C � diamtopo

C � 2r
topo
C that make these measures be

equivalent. Figure 5 plots in a color map the distance of each
street to the topological center of Amiens that ends up to be a
part of its highway belt. This map gives a hierarchical vision of
the space. There is no radial component of the increase of the
topological distance: A scale of long streets serves the entire
city, allowing the variation of the topological distance to be
mainly local.

Added to that, the topological radius of the city grows very
slowly with the size of the city (14 in the center of Amiens, 18
in the entire city that is eight times bigger).

The topological efficiency 1/d̄
topo leng
C (h0) is defined for

each street, and we can consider that it is defined on each
point of the city, being constant almost everywhere in a street.
It defines a new centrality [11] on the network.

C. Anisotropy

In order to grant an efficient access to physical resources, the
street system locally tends to be perpendicular to structuring
elements as, for example, rivers or older streets. Then a city is
not “isotropic.”

Let �u0 ∈ R
2 be an arbitrary vector, taken as an angular

origin. For angle α ∈ [0,π ],

�∗(α) = μC(c ∈ C,�(c,�u0) ∈ [0,α]), (13)

where �(·,·) is the angle measure between two vectors in
[0,π ]. It is a measure of the “total length” of streets in C that
are oriented in directions [0,α]; in the special case of straight
graphs, the impact of each street segment is proportional to its
length. From this, we define the angular density by �(α) =
d�∗(α)

dα
, whose representation describes the anisotropy of the

city graph (Fig. 6). We notice a fuzzy symmetry around the first
bisectrix as a result of the streets’ local perpendicularity. For
an isotropic city, the angular density �I would be a continuous
and uniform density �I (α) = 1

π
.

It would be useful to sum up this angular density as a single
normalized indicator. We looked for a bound distance measure
between � and �I . Because the observed distribution � is
discrete because of the limited number of street segments,
measures such as

∫ |f − 1
π
|n depends highly on the size of the

bean chosen to estimate the integral.
Because the angle is defined modulo π , we can “fold” �:

�(2)(θ ) = �(θ )ei2θ − ∫
�(u)ei2udu. The inertia matrix(∫

Re(�(2))2 − ∫
Re(�(2))Im(�(2))

− ∫
Re(�(2))Im(�(2))

∫
Im(�(2))2

)

is symmetric and positive (from Cauchy-Schwartz’s inequal-
ity) with two eigenvalues λ1 > λ2, such that

A = 1 − λ2

λ1
(14)
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FIG. 6. (Color online) Angular distribution of Amiens (top left:
entire city; top right: center). We notice in both distributions a fourfold
symmetry. The doubled angular distributions (bottom) appear as
ellipsoı̈ds, which allows to define the anisotropy coefficient as the
ratio of the eigenvalues of the inertia matrix: A = 0.42 in the entire
city and A = 0.71 in the center.

correctly defines an anisotropy coefficient. As for Amiens, its
anisotropy coefficients varies from 0.42 in the entire city to
0.71 in the center.

D. Street length

The second-order topology leads us to think that a city
organizes into a hierarchical way with long streets and shorter
streets. Consequently we do not expect an exponential decay
in the distribution of street lengths. In Amiens, the distribution
of street lengths is L. Figure 7 is well fitted by a mixture of
log-normal laws:

ln L ∼ p−N (m−,σ−) + (1 − p−)N (m+,σ+), (15)

FIG. 7. (Color online) The histogram represents the distribution
of the logarithm of street length in the center of Amiens. The red
plot is the fitting of this histogram with a gaussian mixture whose
parameters are p− = 0.5, m− = 2.2, σ− = 0.3; m+ = 4.3, σ+ = 1.2.

with m− < m+. The identification of this model is performed
with an expectation minimization algorithm.

The log scaling reveals that there is no evident length scale
in a city, and there is no preexistent typical street. A city
autoscales: Its dynamics is purely multiplicative and could
be the result of new streets cutting through former blocks or
extending space at the exterior of the city.

As for the bimodality, a town-planning explanation is that
several transportation modes follow each other through time
and their superposition creates modes in the distribution of L.

E. Synthesis: The city as a space division process

Table I summarizes the main indicators presented through
this section for ten French cities and their extracted centers. For
French towns the organic coefficient rN may seem surprisingly
high, even for Lyon’s center, which is visually gridlike. The
preponderance of degree 3 intersections speaks in favor of
seeing a city as the result of a division process. The cutting of

TABLE I. Features of 10 French cities and their centers. rn is the organic coefficient, M4 the meshedness coefficient, A the anisotropy,
μC(C) the total street length, HNo. the number of streets in the hypergraph generated wit Rπ/10, r topo the topological radius of that hypergraph,
and res the root mean square between the street length distribution and its bi-log-normal fitting.

Whole cities Centers

City C ↓ rN M4 A μC(C) HNo. r topo res rN M4 A μC(C) HNo. r topo res

Angoulme 0.80 0.28 0.46 300 1628 14 0.21 0.73 0.37 0.29 39 261 7 0.2
Avignon 0.85 0.23 0.59 625 3348 13 0.12 0.82 0.30 0.73 240 1607 9 0.12
Caen 0.79 0.29 0.53 485 3045 11 0.08 0.76 0.34 0.67 128 797 9 0.22
Carcassonne 0.86 0.20 0.66 483 1997 20 0.17 0.72 0.38 0.89 66 296 6 0.42
Dijon 0.75 0.33 0.39 558 2605 14 0.14 0.66 0.42 0.74 149 860 8 0.33
Grenoble 0.74 0.32 0.61 361 1638 10 0.17 0.70 0.40 0.74 119 576 6 0.29
Lyon 0.66 0.47 0.53 837 3606 15 0.17 0.53 0.51 0.93 183 606 6 0.24
Rennes 0.82 0.26 0.79 625 3538 15 0.20 0.77 0.30 0.80 192 1041 7 0.17
Rouen 0.71 0.38 0.69 348 1770 17 0.19 0.66 0.43 0.85 141 788 7 0.13
Troyes 0.81 0.28 0.87 230 1079 9 0.17 0.67 0.42 0.92 48 248 6 0.41
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TABLE II. Variation of the meshedness coefficient M4 = 2(e −
v + 1)/[2v(1 − N̄ (2)) − 5] for the 16 simulated cities. Each result is
the averaging of 30 simulations. The variation for each case is almost
constant and equal to 0.04. M4 is an increasing function of both Pe

and ω.

� Pe 0 0.5 0.8 0.99999

1 0.37 0.43 0.46 0.48
0.6 0.26 0.31 0.33 0.36
0.3 0.14 0.16 0.18 0.20
0 0 0 0 0

a block creates new intersections of degree 3 even if the block
was formed of degree 4 vertices.

The meshedness coefficient M4 is strongly correlated to rN .
In fact, it is a second-order refinement of rN . We will show
that it describes the shape of city graphs when rN is constant
or equal to 1 (shown in Table II).

The anisotropy coefficient A is the most discriminating
indicator: It ranges from 0.29 to 0.93. It also points out that
the street system within a city is not homogenous: for instance,
A(Lyon) = 0.53 and A(Lyon Center) = 0.93.

The total street length μC(C) and the number of streets
HNo. measure the size of a city. In fact, the ratio between
μC(C) and HNo. provides an indication of the straightness of
the city, which is geometrical information.

The topological radius r topo is very small compared to a
measure of the city size: r topo � HNo.. r topo may scale as the
logarithm of HNo., as a small-world complex network. This
scaling may also be the consequence of a division process
and/or of an upper system of long streets that covers the
entire city’s stretch, constraining the topological distance’s
variations to be mainly local. However, the topological radius
is an indicator of the transportation performance of a given
city: Carcassonne and Caen have almost the same total street
length but the topological radius of Carcassonne is roughly
twice Caen’s.

res, the relative root mean square between the street length
distributions and their bi-log-normal fitting, is �0.2 with two
exceptions (Carcassonne and Troyes’s centers), ∼0.4. The log-
normal scaling of street lengths is relevant in most of the cases.
This also calls for a division (multiplicative) modeling of the
city, but a division process’s length distribution would only
have a single tail.

In the following section (Sec. IV) we present a morphogen-
esis model for the organic city consisting in the duality between
division and extension of space. In Sec. V we will show that
this model reproduces the features we have presented above:
a high organic coefficient, a small topological radius, and a
local variation of the topological distance, plus a log-normal
distribution for streets’ lengths.

IV. A STREET-BASED DYNAMICAL MODEL

This section presents a model of the growth and develop-
ment of a town. The town is reduced to its streets and we
build a dynamical model, allowing to add street segments one
after another. As discussed in the previous sections, the spatial
extension of the town and the geometry of the streets is of

prime interest. As pointed out in Ref. [14], a city is above
all an out-of-equilibrium system—that is to say, a dynamical
system observed at a random time of its development.

Our model is based on three assumptions, two principles
(installation and connection), and a few parameters, with the
entire model giving a coherent and consistent vision of the
problem. We aim at building a model that can reproduce
several limit cases of urban growth but can also point out
continuity between them. The principles and parameters we
use are meaningful, and expressed in an interface language
that allows the mathematical and physical communities to
exchange with town planners, architects, and social scientists.

This section develops the model in the quite general case
of organic development of the city on flatlands, which we can
easily translate our assumptions into analytical procedures.

A. Hypothesis

As a dynamical system and a geometrical graph, we will
see a city as a function C : R+ −→ GC ⊂ Cd , with C(t) =
{V (t),E(t)}. Then we make the following postulates on the
evolution of C:

P1: A city is the result of a sequence of operations occurring
at increasing times (ti)i∈N such that

C(t) = C(ti) ∀t ∈ [ti ,ti+1[.

P2: Infrastructures are conserved:

C(t1) ⊆ C(t2) if t1 � t2.

P3: There exist two functions Pt (price) and Vt (potentiality)
such that the city is a compromise between them:

C(t + �t ) = argmin Vt (C(t),c).

c ⊂ C(t)

Pt (c − C(t)) � 0

Functions C and P are not obvious to define. They should be
in a “microscopic” point of view aggregation of economical
parameters. We can avoid developing them if we observe a
city’s growth is determined by “macroscopic” insights:

Its planning: A city may be organic (the sum of local and
independent phenomena; streets are added independently with
no visibility on a global planning) or centralized (a global
authority decides on the coherent and simultaneous addition
of several streets on a large surface).

Its construction: The capacity to add new elements to the
map and to build new streets.

Its organization: From a random settlement to a highly
structured one.

Its sprawling: A city has to make a compromise between
its inner development and outer growth.

We will consider here the case of organic growth.

B. Organic growth of a city

The algorithm below simulates a city’s growth within
the individual settlement hypothesis. Under this assumption,
each settlement (a generic term to designate a commercial
infrastructure, a private individual, etc.) is added at a given
time and at a given location, then connects to the existing
infrastructures.
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The main idea is that the city C(t) induces a spatial potential
field describing the attractiveness of any point of the available
space. A new settlement (either an individual settler or a
facility) has its own policy (see Sec. IV B 3) of choice with
respect to this potential. After having chosen its location, it
connects to the existing street system. This model explicitly
decouples the problems of positioning and of connecting.

In this section we will model how the geometry of the
current city induces a potential field, how a new settlement
can be connected to the city, and at last how we can tune the
behavior of settlements by a few parameters.

1. Potential field

For each point x in the available space, the potential PC→
quantifies to what extent x is a good choice to locate a new
center. This potential should mimic the following ideas:

(i) A large-scale behavior such that the global attraction of
a part of the city should be proportional to the global mass of
infrastructures in place and slowly decrease with some distance

d: PC→x ∝ −
∫

dμC

dγ (x,C) .
(ii) A very short-scale behavior that forbids a new center to

be located on existing infrastructures: PC→x = +∞.
(iii) A medium scale deduced from the two previous ones,

which should display some local minimum.
Thus among several possible fields we choose (Fig. 8)

PC→x =
(

α

dmin(x,C)
− β√

dmin(x,C)

) ∫
dμC√
d⊥(c,x)

. (16)

dmin(x,C) = minc∈C(x,c) is used in Eq. (16) so that the
rejecting zone is hard: There is a tube around the city where
new settlements are impossible. The radius of this tube is
λ0 = (α/β)2.

d⊥(x,c) is the || · ||1 norm in the local basis formed by
the unitary tangent and the normal to C in c. The use of
such a distance simplifies the integral calculus compared
to the Euclidian distance. Toward ∞, PC→x ∼ β

d(x,C) , and
between those two extreme positions, interferences between
street segments produce local minima. To choose parameters α

FIG. 8. (Color online) The level lines of the potential field for a
city reduced to a single segment of length 1 with λ0 = 1 and β = 10.

and β, one sets λ0, the hard rejection radius, and β, the
long-range influence. The choice of β influences the local
geometry of the city but will not be discussed here.

Among all possible potentials, we picked one that fulfills
the conditions we set and that allows an explicit calculus
of the integral. Further discussions would address the choice
of the used distance and the decay exponent γ .

2. Connection

Once a settlement is added in a location x, it links to the
existing network C. Not all connections are eligible.

From a point x we define the visible set of points,

Vx|C{x ∈ C,[c x] ∩ C = {c}}, (17)

and the optimal set of points from x of a part E of C,

Ėx = {e ∈ E ∃ε | ∀e′ ∈ E ∩ c ⊕ Bε, d(x,e) � d(x,e′)}.
(18)

New connections are made between x and points in the optimal
visible set V̇x|C . This is a finite set included in C ∪ (x⊥C),
where x⊥C is the set of orthogonal projections of x on the city.
To avoid connections too close to each other, we introduce the
relative neighborhood. In a general way, if P is a point and E a
point set, then s ∈ E is said to be in the relative neighborhood
of P (s ∈ RN [E||P ]) if and only if [14]

∀u ∈ S, d(P,s) � max{d(u,P ),d(u,s)}, (19)

i.e., there is no point both closer to s and to P . All candidates to
become new connections are segments from x to RN ( ˙Vx|C ||x):
[x,RN (C||x)].

3. Parameters

The tuning of those parameters will be discussed in Sec. V.

Organization. The global field induces minima. These
minima represent points where it is the most interesting to
settle.

The question is to find a parameter Pe that describes whether
the city is organized or not. The idea is that when, a city is
organized, it sticks strictly to optimal settlement places, and
when it is purely unorganized, new settlements are added at
random without any influence of the potential field.

Then a new settlement is selected by a Monte Carlo method
with a number n of iterations, and the new point is be chosen
as X = ArgminnP (Xi). For random cities n is close to 1 and
for an organized city it is much higher.

Let W be the area of a part of the plan that contains the
current city, and let X1, . . . ,Xn be n points on this part, uni-
formly and independently chosen. And let X = argminP (Xi).
Then let

Pe = P(|X − ArgminP )| � e) (20)

represent the probability that the Monte Carlo method throws
a point in a radius e of a local minimum.

We want to give Pe as an input parameter and traduce it into
an iteration number. Let N be the number of local minima.
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If e is quite small,

Pe ≈ 1 −
(

W − Nπe2

W

)n

, (21)

n � ln (1 − Pe)

e2

W

Nπ
. (22)

n is estimated roughly by noticing that a local minimum is often
owing to the interaction between two close streets segments:
n ∼ 3v because 3 is roughly the average connectivity number
of intersections.

Connection and construction. There are typically approx-
imately four or five streets segments in [x,RN (V+||x)] for
a new center x. If the city shapes as a slum, it would be
treelike, so we link the number of street segments indeed added
with the construction ω ∈ [0,1] of the city. We sort segments
in [x,RN (V+||x)] by increasing length: (s1, . . . ,sn). s1 is
drawn with probability 1. n′ ∼ B(ω,n − 1) + 1 and segments
s2, . . . ,sn′ are also added. If ω = 1, every admissible segment
is added, and if ω = 0, only the shortest one is added.

Sprawling. When constructing with a rejection radius λ0,
the city gets a typical mesh width. If at a particular urban
operation a potential field with a rejection radius of Kλ0 with
K > 1 is considered, then the city’s inner meshes will appear
as filled up with the rejection zone of this potential field and
new points of interest will position outside of the city.

With this observation we will consider that in a proportion
fext centers are added with respect to a potential of rejecting
radius Kextλ0. This creates foils at the outskirt of the city and
thus an extension of the city that represents, for instance, an
industrial zone that needs a large surface.

Refinements. To enhance the realism of this model, some
empirical parameters are added. The length of a new street
segment is bounded to lmax = klmaxλ0. This can avoid too long
and costly connections (possibly lmax = ∞).

The windows W out of where new settlements are chosen
can be definitely set (Fig. 9) or dynamically change with the
overall city (Figs. 11 and 13).

Because a Monte Carlo method is used to pick new centers,
there is very little probability that a new settlement is added in
line with an existing street. If geometrically this does not have
many consequences, it may strongly change the local topology.
That is why, if an orthogonal projection is in a radius cλ0 with
typically c � 0.3 of an intersection that is visible from the
center, then this orthogonal projection is removed. This raises
the vertices degree and allows longer streets.

V. A FEW SIMULATIONS

To summarize an individual simulation of the city growth,
we need to provide our algorithm with several parameters:
(1) The number of settlements: N .
(2) The organization probability Pe.
(3) The radius of the rejecting tube: λ0.
(4) The long-scale influence: β.
(5) The construction: ω.
(6) The sprawling factor Kext and the sprawling probability
fext.

Notice that only four parameters will actually shape the
simulated city (Pe, β, ω, fext), the others being scaling

parameters and that the influence of β will not be disscussed
here.

A. Simulations with constant parameters

Figure 9 shows the result of 16 simulations. The orga-
nization probability Pe and the construction ω are varying
jointly when the same number of operations N = 80, the same
rejecting radius λ0 = 10 m, the same available space (a square
with an area of 1.6 km2), the same initial city (a segment of
length 20 m at the center of the available space), and the same
extension probability of O are used. The first result is that this
model is able to reproduce very different types of growth with
very few “physical” parameters.

We observe on this matrix representation that the meshed-
ness M4 (see Sec. III) is an increasing function of both Pe

and ω (Table II). This result has been obtained by averaging
the meshedness coefficient of 30 simulations for each couple
(Pe,ω). Added to that, the standard deviation of M4 for each
couple is of 4% so that this coefficient is characteristic of
the conditions of simulation. Contrary to that, the anisotropy
coefficientA is almost the same in each case (between 0.31 and
0.46), with a large standard deviation of 20%. This A is quite
large in the absolute: For the first iterations some directions
have to be arbitrary chosen, which creates favored directions,
but it is the same order of weight as for the most isotropic
French towns. Of course, the organic ratio rN is in every case
close to 1.

When ω � 0, the resulting simulations are to be compared
to the Saffman-Taylor instability. It seems when ω � 0 that
only a bounded number of ramifications are possible from the

FIG. 9. (Color online) Simulations of the morphogenesis model
with constant parameters with variation of the organization Pe and the
construction ω. In each thumbnail, the rejecting radius is λ0 = 10m,
and there is no sprawling: k = 0, the number of settlements is N = 80,
and the available space is bound in a square with sides of 400 m. The
red and bold segment represents an initial street segment and a scale
of 20 m.
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FIG. 10. The Chinese town of Xi’an in 1949, whose various
subdivision patterns inside a regular grid recall variations in the
parameters of the morphogenesis model.

initial segment (4 in this figure) as if the first created branches
shielded the initial center from newer ones. When ω > 0, the
resulting cities are to be compared to crack patterns: Their
dynamics follows a logic of division and subdivision of space.

Interestingly, the Chinese town of Xi’an (Fig. 10) has grown
on a regular grid with a large mesh length, with several
populations that have different characteristics. The result is
a gradient of meshedness coefficient, from almost 0 in the
southwest to almost 1 in the top-right-hand side. Figure 11
presents a city evolving with λ0 = 10 m, K = 10, Kf = 0.1,
Pe = 0.8, and ω = 0.7. The regular need for larger surface
for activities such as industries, big institutions, etc., is well
reproduced here. During its history, as the development of
the city center progresses, it eventually absorbs the peripheral
larger surfaces, splitting them into smaller surfaces, with
thus new larger places appearing at the new periphery. This
reproduces and explains the situation of economical zones
always outside at the periphery of towns. It explains as well
the successive subdivision of space that leaves so many traces,
first in the log-normal distribution of street lengths but also
in the hierarchical distributions of streets (Fig. 12). For this

FIG. 11. (a), (b), (c), (d) Four steps in the development of the
city (e) with 600 urban operations. For this simulation, λ0 = 10 m,
K = 10, Kf = 0.1, Pe = 0.8, ω = 0.7, and the windows are adapted
to the size of the current city. The main phenomenon at work is the
dynamics between the inner development and the extension of the
city that creates two hierarchical scales.

FIG. 12. (Color online) The distribution of the logarithm of street
lengths for two synthetic cities (top) and the second-order topology
(bottom) for the resulting city of simulation (see Fig. 11). As for
real cities (Amiens), the second-order topology presents a bounded
hierarchical representation of the city and the street length is well
fitted by a mixture of log-normal random variables.
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simulation, the ratio rN is equal to 0.93, so that the term
“organic” fits. The meshedness coefficient M4 = 0.48 is quite
close to Amien’s (between 0.41 and 0.54) as the anisotropy
(0.69 to be compared to 0.71 in the center of Amiens).

Figure 12 shows that the morphogenesis reproduces the
small topological radius and the log scaling of street lengths
observed in real cities (see Sec. III E). We have run 20
simulations with the same parameters. The root mean square
distance between the length distribution and its best bi-log-
normal fitting ranges between 0.19 and 0.26. This, compared
to the result of the fittings for real French towns (less than 0.2
when the model is good and more than 0.4 when it is false),
permits to claim that the model reproduces the street length
scaling.

B. Simulations with varying parameters: The city’s history

Constant parameters are not realistic to model a real city,
this one being shaped by its history, which is from the
morphogenetic point of view a variation of input parameters.
We represent the history of a city by a piecewise constant
function t → (Pe,ω,lmax,fext,K,β,λ0).

For instance, the city shown in Fig. 13 has been obtained
by simulating at first a city with a low construction and
no sprawling (ω = 0.2 and fext = 0) and then changed to a
sprawling and constructed city (ω = 0.8 and fext = 0.15). The
simulation starts with two perpendicular streets with a length
20 times larger than λ = 10 m. These preexisting streets are
structuring elements, which could be a river. This kind of
variation in parameters recalls a Kasbah in Morocco, where
the historical center of the city is a souk. This model is the first
step of a very simple model. We can see that, with only one
type of event (new settlement) and a few parameters, a great
variety of structures can be obtained. More refinements can

FIG. 13. A city developing with varying parameters from two
perpendicular, long structuring elements. The historic center of the
city has been built with a low construction parameter and no sprawling
(ω = 0.2 and fext = 0) to recall the tree aspect of a central souk in the
Kasbah. Then parameters are changed to ω = 0.8 and fext = 0.15,
which produces an industrial crown.

be added. The first one is the planned creation of a highway
belt as in Amiens, or an enclosure using the punctual addition
of the convex hull of the current city. The second possibility
would be to add also the “Hausmann” effect, allowing splitting
preexisting streets with new street patterns. We could also
consider distinct populations with interaction rules that build
a city in the same time. These three points are going to be
developed in a second version of the morphogenesis model.

VI. CONCLUSION

We have reduced cities to the map of their street segments
and shown that much information can be deduced from this
representation without additional data such as population
dispersion, width of streets, and ground-specific use. For
instance, we can find backstreets, characterize topology and
shape, or define a centrality. To this we have introduced the
notion of a geometrical and straight graph with a canonical
hypergraph structure to define the difference between street
segments and streets. A measure allows seeing a city’s map as
a “continuous graph” or likewise as an object both relational
and geometrical (see Sec. II).

While Ref. [3] considered a city as a pure graph and
Ref. [11] took into account its spatiality, we have explored
the geometrical aspect of the city, its topology being only the
skeleton that holds it up. From this point of view we have
shown that, despite an evident diversity on their overall shapes
(anisotropy first-order topology), a few fundamental rules
can explain the cities’ general morphogenesis (see Sec. IV).
The urban infrastructure differentiates to adapt to the local
geography and to fulfill the constraints of lodging people
while maintaining their efficient transportation. The model
developed in Sec. IV and illustrated in Sec. V is based on the
division and extension of space principle observed for French
towns in Sec. III. It shows that structural properties of cities
stand out of the local constraints and behaviors that define the
dynamics of cities. For instance, the log scaling of a resulting
street system is a global, nontrivial property that validates the
model as well as the small observed topological radius. Even
in the organic case, when there is no global and coherent plan,
the topological radius of the city increases slower than the size
of the city.

To simulate the cities’ dynamics, we have uncoupled the
space potential induced by the current infrastructure, the
policy of connections, and the freedom a new settlement
(a generic term to refer to a commercial infrastructure, a private
individual, etc.) ought to take on the two previous rules.

Further than the interest of a physical modeling of their
object of study, our work can be applied by town plan-
ners and social scientists: The morphogenesis can help in
semisupervised planning, and the analysis of cities allows
detecting abnormalities on a map (the second-order topology
representation is particularly effective). It can also be applied
in engineering to test a technology that strongly depends on
the urban infrastructures. This morphogenetic model calls
for many outcomes: the study of several potential fields, a
comparison to a large data basis of existing cities, and the
following of the evolution of parameters as the city grows. The
important element is that morphogenesis implements a space
division and extension process. Because we used arbitrary
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tunings and yet obtained realistic results, we have shown that
this class of process is robust to model cities, whether it be in
the centralized case or in the organic one.

In the centralized case, it shows that the reason one wants
a street system to be the homotopy of a square grid is to adapt
to the local geography and infrastructure, which can be seen
afterward as the result of a correlated division process. Indeed,

in the organic case, the city’s layout comes from the duality
between the city’s expansion and the graining of former large
cadastres by new settlements. Also, from this local division
process emerge some nontrivial global phenomena (log scaling
of streets, low topological radius). One can thus say that the
division of space is a natural response of cities to fulfill their
functional goals.
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