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Analytical calculation of fragmentation transitions in adaptive networks
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In adaptive networks, fragmentation transitions have been observed in which the network breaks into
disconnected components. We present an analytical approach for calculating the transition point in general
adaptive network models. Using the example of an adaptive voter model, we demonstrate that the proposed
approach yields good agreement with numerical results.
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In the past decade, networks have proven to offer a metaphor
for describing and analyzing complex systems in different
fields ranging from technological to biological and social
systems [1–4]. By conceptually reducing a complex system
to a set of discrete nodes connected by links, a simplification
is achieved that often enables deep insights into the structure
and dynamics of the system.

In network physics, dynamics can refer to two different
concepts. First, the dynamics of networks describes the
temporal evolution of the topology, the specific pattern of
nodes and links. Second, the dynamics on networks refers
to the evolution of internal properties in the network nodes,
which are coupled according to the (typically static) topology.
Systems combining both types of dynamics are called adaptive
or coevolutionary networks [5,6].

Adaptive networks are presently studied in several different
disciplines [7] and are known to exhibit unique phenomena,
including robust self-organization to critical states [8], emer-
gence of distinct classes of nodes from an initially homo-
geneous population [9], formation of complex hierarchical
topologies [10,11], and complex network-level dynamics and
phase transitions [12].

One exciting recent discovery in adaptive networks is the
existence of a generic scenario for fragmentation transitions
(FTs) [13]. In many adaptive networks, dynamics is contingent
on the presence of so-called active links that connect nodes in
different states. Absorbing states are therefore encountered
either when the network becomes polarized, so that all nodes
are in the same state, or when the network fragments such
that nodes separate into disconnected components, which are
internally state uniform.

FTs are frequently observed in simulations [13–17]. How-
ever, for a detailed understanding of dynamics in more
complex future models, analytical approaches to FTs will be
instrumental. Existing approaches that faithfully capture other
transitions [12,17–23] yield only rough approximations for the
fragmentation threshold, overestimating the actual value by
150%–200% in some examples [17,22,23]. In this paper, we
propose an analytical approach for the FT allowing accurate
prediction of transition points.

Below, we illustrate our results by the example of the adap-
tive voter model, a paradigmatic model of opinion formation
in networked populations [14–17,22,23]. The original voter
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model [24] describes a network in which the nodes represent
agents and the links represent social contacts. Each agent
can hold either of two opinions. In time, the opinions are
updated by either (a) selecting a random agent and letting it
adopt the opinion of a randomly chosen neighbor (direct voter
model), (b) selecting a random agent and copying its opinion
to a randomly chosen neighbor (reverse voter model), or
(c) selecting a random link and letting one of the linked agents
adopt the other’s opinion (link-update voter model). Because
in the original model the topology remains fixed, the dynamics
continues until global consensus is reached.

Adaptive variants of the voter model take an additional
process into account: At a certain rate, agents that are
connected to agents of different opinion break the respective
link and connect to a randomly chosen agent of their own
opinion. The rewiring leaves the number of agents and links
unchanged but alters the structure of the network. Specifically,
it can cause a fragmentation of the network such that both
opinions survive in disconnected network components that are
internally in consensus [14,16,25,26].

Here, we consider an adaptive voter model with link update
in which rewiring events occur at a rate p and opinion updates
occur at a rate 1 − p. The challenge that we address is
computing the fragmentation threshold, i.e., the critical value
of p at which the active links disappear. While details of the
computation depend on the specific update mechanism, the
proposed approach is applicable to a wide range of models
employing different update rules.

For computing the FT, we follow an approach inspired
by the computation of epidemic thresholds: We consider
a situation in which the network is almost fragmented so
that there are two almost disconnected clusters of different
opinions, with few remaining active links between the clusters.
We then derive dynamical equations capturing the net change
in the density of active links. If this change is negative, then
the number of active links declines exponentially, leading
eventually to the fragmented state. If the balance is positive,
then active links proliferate, preventing the network from
reaching the fragmented state.

We have to take into account that a single opinion adoption
event will create several active links that are connected to
the same node. Even in the limit of low average active link
density, we can not treat such links as independent because
they all become inert at once if the focal node reverts to its
original opinion. This correlation may explain the observed
inaccuracy of mean-field and pair approximations.
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Predictions can be improved by using a basis that accounts
for multiple active links connecting to the same node. In a
first approximation, we use q-fan motifs, which we define as
a subgraph consisting of one node holding a given opinion
and q neighbors of the node holding the opposite opinion. The
node holding the solitary opinion is denoted as the base node
of the fan, whereas the other nodes are denoted as the fringe
nodes. For instance, a 4-fan contains a base node and four
fringe nodes, which are connected to the base node by active
links.

For simplicity, let us first assume that the network is
degree-regular, so every node has exactly the same number of
neighbors k. The dynamics of active links for the special case
of k = 3 is illustrated in Fig. 1. We start from a single active
link (left half of figure). In an update event, with probability p,
the active link is rewired becoming inert (not shown) or, with
probability 1 − p, one of the nodes adopts the other’s opinion.
In the adoption event, the original active link becomes inert,
but the two other links of the adopting agent become active,
forming a 2-fan. We continue by studying how updates affect
this 2-fan (Fig. 1, right half). If an update is a rewiring event
(probability p), then it decreases the width of the fan, turning
the 2-fan into a single active link. If the update is an opinion
adoption event (probability 1 − p), then there are two possible
scenarios occurring with equal probability. In the first scenario,
the node at the base of the fan changes its opinion. In this case,
the 2-fan becomes inert, but one new active link is formed at
the base of the fan. In the second scenario, one of the fringe
nodes of the fan adopts the base node’s opinion; in this case,
the width of the fan is reduced by one, but an additional 2-fan
is activated. Because the two active motifs in the latter scenario
are now separated by an inert link, they can be assumed to be
independent to good approximation.

In finite networks, the dynamics of q-fans can be formulated
as a Markov chain. However, for estimating the fragmentation
transition in large networks, it is reasonable to move to
a continuous time framework, where the density of q-fans
is described by a system of differential equations. For the
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FIG. 1. (Color online) Illustration of the evolution of active links
in a degree-regular network with degree k = 3. Agents are depicted
as nodes that are open or solid depending on their opinion. Shown
is the network in the neighborhood of an active link connecting
clusters of different opinions. Arrows correspond to adaptation and
rewiring events and are labeled with the corresponding transition
rates. Depending on the parameters, the updates lead to proliferation
or decline of isolated active links (encircled by dashed lines) and
2-fan motifs (encircled by dotted lines).

example of degree-regular networks with k = 3, we thus obtain
(see Fig. 2, upper panel)

˙{1} = −{1} + 2{2},
˙{2} = −2{2} + (1 − p){1} + (1 − p){2},

(1)

where {q} is the q-fan density, i.e., the number of q-fans
normalized by the total number of links L.

The systems of equations obtained by the approximation are
linear and can therefore be solved straightforwardly. Even for
nonlinear systems, the stability of the fragmented state can be
tested by a local linearization given by the system’s Jacobian
matrix J, with Jij = ∂ ˙{i}/∂{j}, e.g., for k = 3,

J =
(−1 2

1 − p −1 − p

)
. (2)

The fragmented state {i} = 0 is stable if all eigenvalues of the
Jacobian matrix have negative real parts. For linear systems,
this state is then also globally attractive. The FT occurs in the
bifurcation where eigenvalues cross the imaginary axis. For
k = 3, this transition occurs at p = 1/3.

We note that the stability of global consensus states, which
are also characterized by {i} = 0, is not captured by the
same Jacobian because these states violate our assumption

FIG. 2. Illustration of the transitions for the q-fan motif {q} in
degree-regular networks with degree k. Motifs and transitions are
depicted as in Fig. 1. Additionally, the corresponding systems of
differential equations and the Jacobians are shown. Note that the
prefactor q for each contribution from a q-fan accounts for the q

possibilities of choosing an active link.
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of the presence of two almost disconnected clusters. Although
adaptations for other transitions may be possible, the method,
as proposed here, only captures transitions to the fragmented
state.

Degree-regular networks with k > 3 can be treated anal-
ogously to the k = 3 example. The corresponding equations
for k = 4 and the generalization to arbitrary k is shown in
Fig. 2. An update affecting an active link deactivates the link
and activates a (k − 1)-fan with probability 1 − p. An update
affecting a q-fan (a) deactivates the fan and activates a single
link [probability (1 − p)/2], (b) decreases the width of the fan
by one, turning the q-fan into a (q − 1)-fan (probability p), or
(c) decreases the width of the fan by one and activates a new
(k − 1)-fan [probability (1 − p)/2].

From the Jacobian, we can obtain the transition points
either by numerical computation of eigenvalues or analytically
by construction of test functions [27]. This procedure yields
a more precise estimate of the FT than pair approximations
(Fig. 3).

So far, we assumed degree regularity and did not account
for inert links. Even if present in the initial network, degree
regularity is destroyed by adaptive rewiring. Further, one can
suspect that active regions of the network have a decreased
density of inert links because of past rewiring events. For
improving the prediction, we therefore introduce spider motifs,
which consist of one central base node connecting to m nodes
of its own opinion and l nodes of the opposing opinion. The
{m,l}-spider thus holds m inert links and l active links, leading
to a total degree k = m + l. As before, we do not account for
all motifs in the network, but consider only active spiders,
i.e., l > 0.

The effects of updates on a spider motif are shown
schematically in Fig. 4. In a rewiring event, either the rewired
link is kept by the fringe node and the {m,l}-spider is turned
into a {m,l − 1}-spider or the rewired link is kept by the base
node turning the {m,l}-spider into a {m + 1,l − 1}-spider. In

FIG. 3. (Color online) Fragmentation threshold in the adaptive
voter model. Shown are numerical results from agent-based simu-
lation (black dots), pair approximation (dashed line), the analytical
approach proposed here (crosses), and its refined variant (circles).
The proposed approaches yield a better match with the numerical
results than the established procedure. Numerical simulations used
N = 106 nodes.
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FIG. 4. Example for the transition probabilities of a {3,4}-spider
motif. Diagrams and arrows represent motifs and transitions in
analogy to Fig. 2. The dashed links indicate the number of next-
nearest neighbors, which is drawn from the excess degree distribution
(here, Poisson distribution).

an opinion adoption event, either the base node is convinced,
which turns all active links into inert links and vice versa,
leading to a {l,m}-spider, or one of the fringe nodes is
convinced by the base node, giving rise to a new {1,g}-spider,
while in the focal spider one active link turns into an inert link.
In the latter case g, the number of active links of the newly
activated spider is given by the excess degree distribution
P (g + 1) [28]. The evolution of spider densities thus follows:

{m,l}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 (1−p)

−−−→ {l,m},
1
2 (1−p)

−−−→ {m + 1,l − 1} +
kmax−1∑
g=1

P (g + 1){1,g},
1
2 (p)
−→ {m + 1,l − 1},
1
2 (p)
−→ {m,l − 1}.

In an adaptive network, the excess degree distribution is often
unknown because it is reshaped by the rewiring events. How-
ever, the success of the degree-regular approximation suggests
that good results can be obtained if reasonable distributions
are used. The results in Fig. 3 were obtained by assuming a
Poissonian degree distribution with mean degree 〈k〉, which
implies that the excess degree distribution is also Poissonian
with the same mean degree [28]. Further, we considered
only spiders up to a maximal degree of kmax = 50. For
simplicity, we constructed the Jacobian matrix by computer
algebra and determined the FT from numerical computation
of eigenvalues. Figure 3 shows that the results from the refined
procedure are in good agreement with numerical values.

In summary, we proposed two approaches for computing
fragmentation thresholds in adaptive networks. The simpler
approach allows for a quick analytical estimation of the
threshold with higher accuracy than previously proposed
approaches. The refined approach yields numerical predictions
with high accuracy. In particular, it works well for low 〈k〉,
where pair and mean-field expansions yield poor results. For
high 〈k〉, there is a small discrepancy, which may be due to
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long-range correlations or inaccuracies in the assumed degree
distribution. In contrast to other techniques, the proposed
approaches lead to linear ordinary differential equations
because they assume a low density of active links. These
equations are valid in the limit of infinite network size,
where noise can be neglected. In small networks, the fan and
spider expansions, proposed here, can be used for constructing
Markov chains capturing the effect of randomness in the
updates. A difficulty not addressed in this paper is obtaining
the degree distribution for an adaptive network without explicit
simulation. In principle, the relevant information for applying
the refined procedure proposed here could be obtained by
third-order moment expansions [17], which can not predict

the fragmentation transition precisely, but allow for a relatively
faithful estimation of the width of the degree distribution. In
practice, it may be simpler to use statistical fits of distributions
observed in a small set of exploratory simulation runs. Further,
using a Poisson distribution should yield good results for all
networks with exponentially decaying degree distributions.
We therefore believe that both the simple and the refined
procedures, proposed here, can be applied with relative ease in
practice and will be instrumental to exploring fragmentation
transitions in future adaptive network models.

The authors thank G. Demirel and F. Vazquez for insightful
discussions.
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