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Comment on “Phase transition in a one-dimensional Ising ferromagnet at zero temperature using
Glauber dynamics with a synchronous updating mode”
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Sznajd-Weron [Phys. Rev. E 82, 031120 (2010)] suggested that the one-dimensional Ising model subject to
the zero-temperature synchronous Glauber dynamics exhibits a discontinuous phase transition. We show here
that the phase transition instead is of a continuous nature, and we identify critical exponents, β ≈ 0, ν ≈ 1, and
z ≈ 2, via a systematic finite-size scaling analysis.
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Recently, Sznajd-Weron [1] has studied the phase transition
in a one-dimensional (1D) Ising ferromagnet at zero tempera-
ture using Glauber dynamics with a synchronous update rule.
Interestingly, it has been successfully shown that the system
exhibits a well-defined phase transition as the parameter W0,
the spin-flipping probability for the null energy difference,
is changed. Whereas the absence of the phase transition at
a finite temperature in the standard equilibrium Ising chain
model is a well-known textbook example, the slow magnetic
relaxation in the spin chain systems has become a hot research
topic, theoretically and experimentally (see references in
Ref. [1]).

In the Glauber dynamics of the 1D ferromagnetic spin chain
at zero temperature, the energy difference �E is computed
for the single-spin flipped configuration, and the spin flip is
accepted at the probability [1]

W (�E) =
⎧⎨
⎩

1, for �E < 0,

W0, for �E = 0,

0, for �E > 0.

(1)

For each site of the system, the above probability is computed,
and each spin flip at next time step is decided. The synchronous
update rule means that all spins in the system are updated at
the same time, differently from more commonly used method
of the sequential spin update rule. The use of the synchronous
update rule enables the system to have the antiferromagnetic
ordering, different from the use of the sequential update rule
[1]. As an order parameter, the density ρ of active bonds that
connect different spin values (up and down) is used:

ρ = 1

2L

L∑
i=1

(1 − σiσi+1), (2)

where L is the number of spins and σi(= ±1) is the Ising spin
at the ith site in the 1D chain with the periodic boundary
condition σi+L = σi applied. The density of active bonds
is especially useful in the present context, since it can
effectively distinguish the ferromagnetic ordering (ρ = 0) and
the antiferromagnetic ordering (ρ = 1). It should be noted
that the system eventually approaches the steady state that is
either fully ferromagnetic ρst = 0 or fully antiferromagnetic
ρst = 1, and that the intermediate value in between is not
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possible as the time t → ∞. Due to the zero-temperature
nature of the dynamics, the ergodicity is broken, and thus
the time average and the ensemble average of ρst are not
equivalent to each other. The ensemble average of the order
parameter 〈ρst〉 in the present context equals the probability
of the fully antiferromagnetic stationary state, and thus it can
change continuously across the phase transition at Wc. We
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FIG. 1. (Color online) (a) Ensemble average 〈ρst〉 of the density
of active bonds in the steady state versus the spin-flipping probability
W0 for null energy difference, at various system sizes L = 80,
160, 320, 640, and 1280. (b) Finite-size scaling of data points in
(a) using the scaling form in Eq. (3) with Wc = 0.5, β = 0, and ν = 1.
The existence of a continuous phase transition is clearly shown.
Ensemble averages were performed over 104 random initial spin
configurations.
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FIG. 2. (Color online) (a) The ensemble-averaged relaxation time
〈τ 〉 multiplied by L−2 versus the flipping probability W0 for various
system sizes. (b) Finite-size scaling of relaxation time using the
scaling form in Eq. (4) with Wc = 0.5, ν = 1, and z = 2.

emphasize that the continuity of 〈ρst〉 does not contradict the
discreteness of ρst.

Figure 1(a), corresponding to Fig. 4 in Ref. [1], displays the
ensemble average of the steady-state value of the active bond
density 〈ρst〉 as a function of the spin-flipping probability W0

for the null energy difference. We believe that our simulation
results and the ones presented in Ref. [1] are identical, and
both clearly indicate the existence of the phase transition at
W0 = Wc (≈0.5). However, in sharp contrast to Ref. [1], where
a discontinuous phase transition has been concluded, in this
Comment we claim that the system exhibits a continuous phase
transition. In order to support our claim of a continuous phase

transition, we apply the standard technique of the finite-size
scaling [2] of the order parameter 〈ρst〉:

〈ρst〉 = L−β/νf [(W0 − Wc)L1/ν], (3)

where f (x) is a universal scaling function, and β and ν

are standard critical exponents, describing the criticality of
the order parameter and the coherence length, respectively.
In Fig. 1(b), we show the scaling collapse of 〈ρst〉 through
the use of the scaling form (3). It is very clearly shown
that the phase transition at Wc ≈ 0.5 is well captured by
β ≈ 0.0 and ν ≈ 1.0. The well-defined value of ν indicates
that the coherence length ξ in the system diverges as the
critical point is approached, as in a usual continuous phase
transition [3].

The relaxation time τ for the system to reach the steady
state (ρ = 0 or 1) from a random initial condition has also
been reported in Fig. 5 of Ref. [1]. We again measure τ in the
same way as in Ref. [1] and plot it in Fig. 2(a). As was already
observed in Ref. [1], we also notice that 〈τ 〉 scales as L2 at
Wc. This reminds us that the dynamic critical exponent z [2]
describing the divergence of the relaxation time is given by τ ∼
Lz exactly at the critical point. Accordingly, the observation of
τ ∼ L2 strongly indicates z = 2, and we can write the finite-
size scaling form of the relaxation time as

〈τ 〉 = Lzg[(W0 − Wc)L1/ν], (4)

where g(x) is the scaling function for the relaxation time. The
finite-size scaling form (4) satisfies both 〈τ 〉 ∼ Lz at W0 = Wc

and 〈τ 〉 ∼ ξz for W0 �= Wc with the prescription g(x) ∼ x−νz

for small x since the correlation length follows ξ ∼ (W0 −
Wc)−ν . In Fig. 2(b), the scaling collapse of the relaxation
time is displayed, which confirms again the existence of
the continuous phase transition at W0 = Wc (≈0.5), which is
characterized by the coherence length exponent ν ≈ 1.0 and
the dynamic critical exponent z ≈ 2.0.

In summary, different from the conclusion in Ref. [1],
we have clearly shown that the Ising ferromagnet chain at
zero temperature with the synchronous update rule exhibits a
continuous phase transition at W0 = Wc (≈0.5). Furthermore,
through the use of the standard method of the finite-size
scaling, we have identified critical exponents β ≈ 0.0, ν ≈
1.0, and z ≈ 2.0.
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