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Vibrational dynamics of hydrogen in proteins
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Biological macromolecules expand with increasing temperature and this dynamic expansion is associated with
the onset of function. The expansion is typically characterized by the mean square vibrational displacement
(MSD), 〈u2〉, of specific constituents such as hydrogen within the macromolecules. The 〈u2〉 increases with
increasing temperature and the slope of 〈u2〉 versus temperature can increase significantly at a temperature
TD identified as a dynamical transition. We illustrate that the observed expansion and change in slope of 〈u2〉
with temperature at TD can be reproduced within a simple model of the vibration, an atom in an anharmonic
potential, V (u). Given V (u), only the temperature is varied in the model. A simple Gaussian potential or a
potential containing a hard wall is particularly effective is reproducing the observed change in the slope of 〈u2〉
with temperature around TD .
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I. INTRODUCTION

Many biological macromolecules undergo a dynami-
cal transition [1–10] or crossover at a temperature TD ∼
200–230 K. The crossover can be characterized by a significant
increase in the slope of the mean square displacement (MSD),
〈u2〉, of atoms in the molecule with temperature at TD . Above
TD , the 〈u2〉 is large, the macromolecule is more flexible
and atoms in the macromolecule traverse larger distances
and sample new environments. This dynamical crossover
is associated with the onset of function or activity in the
macromolecule.

In the classical limit and in a harmonic approximation [4,9],
the MSD arising from vibration is 〈u2〉 = kBT /φ where kB

is the Boltzmann constant, T is the temperature and φ is
a harmonic force constant. An increase in slope of 〈u2〉 vs.
T at T � TD suggests a reduction in the effective force
constant φ at T � TD . Often the slope begins to increase
somewhat at lower temperatures (T � 100 K) and the changes
with temperature are continuous [5]. However, there usually
remains a marked change in slope at TD . The magnitude of
the change in slope depends on the degree of hydration of the
protein [2,4–6] and many other factors. The observed change in
slope can be reproduced in molecular dynamics simulations of
proteins [1,8].

The change in slope is observed in hydrated proteins, in
DNA and in RNA. Typical examples are hydrated lyzozyme
[3], myoglobin [9], and purple membrane bacteriorhodopsin
[2,5]. The 〈u2〉 is determined in neutron scattering [4,9,10],
x-ray and Mossbauer spectroscopy [10,11], and in dielectric
spectroscopy [5]. In neutron scattering, the 〈u2〉 of hydrogen is
predominantly observed, usually hydrogen bound in molecules
(e.g., methyl groups). In Mossbauer spectroscopy the 〈u2〉
of 57Fe is observed. The sudden change in slope of 〈u2〉
at TD has been attributed to a change in the “effective
elasticity” of the protein [7], to a “glass” transition in the
protein [9,12,13], to the onset of thermally activated transitions
and diffusion that modify the trapping cages [9,14] and to a
fragile-strong crossover in the hydration water surrounding the
macromolecule [15].

Our goal is simply to illustrate that a marked change in the
slope of 〈u2〉 with T can arise in the vibrational dynamics

of a particle of mass M in an anharmonic potential well.
This can arise, for example, in a Gaussian potential well, in
which the curvature (effective force constant) decreases with
increasing distance of the particle from the minimum of the
well. This average distance increases with increasing 〈u2〉. In
the Gaussian well example, the increase in slope with T is
gradual. However, if the potential has hard wall and soft wall
components in it, an abrupt change in slope of 〈u2〉 with T can
be obtained. We consider a single particle in a 1D well and
use the self-consistent harmonic (SCH) theory [16–19] to
describe the dynamics of the particle in the well. The essential
feature of the SCH model is that the optimum harmonic force
constant φ is obtained as the second derivative of the potential
averaged over the vibrational distribution of the particle in
the well. As the 〈u2〉 increases, a wider region of the well is
sampled and the force constant, φ, can change (e.g., decrease)
with increasing 〈u2〉. This decrease leads to an increase in
slope of 〈u2〉 with temperature at TD as is observed.

II. DYNAMICAL MODEL

To describe the dynamics of a particle in a potential
V (u) we employ the self-consistent harmonic (SCH) theory
of dynamics [16–19]. In the SCH theory the aim is to
determine the harmonic force constant φ that best describes the
anharmonic dynamics. The harmonic model can be introduced
via a trial harmonic Hamiltonian Hh and its corresponding
density matrix ρh. The optimum φ in Hh can be determined
by minimizing the Helmholtz free energy. The result is that
the usual harmonic force constant φ(u) = (d2V/du2)u=0, the
second derivative evaluated at the minimum of the well
(u = 0), is replaced by

φ =
∫

duρ(u)
d2V (u)

du2
, (1)

the second derivative averaged over the vibrational distribution
ρ(u) in the well. The distribution is

ρ(u) = [2π〈u2〉]−1/2e−u2/2〈u2〉, (2)
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a Gaussian since we are assuming a harmonic model. The
mean square displacement 〈u2〉 is given by the usual harmonic
expression,

〈u2〉 = h̄

2Mω
coth

(
kBT

h̄ω

)
, (3)

where M is the particle mass, ω2 = φ/M is the harmonic
frequency, and h̄ is Planck’s constant divided by 2π . In the
classical limit, T � θE = h̄ω/kB , Eq. (3) reduces to

〈u2〉 = kBT

φ
. (4)

Equations (1) to (3) constitute the SCH theory. It is
implemented by iterating Eqs. (1), (2), and (3) until consistent
beginning, for example, with an estimated value of 〈u2〉. The
SCH can be derived by summing a class of anharmonic terms
as well as by minimizing the free energy or ground state energy
at T = 0 K.

III. RESULTS

A. Harmonic potentials

Our model of an atom in a macromolecule is a single particle
in a 1D potential well. We begin with a harmonic well to
introduce the model and consider low temperature to determine
a low-temperature model force constant, φL, and to set the
length scales. The harmonic potential is V (u) = (1/2)φLu2,
d2V/du2 = φL, the oscillator (SHO) frequency is ω2 = ω2

L =
φL/M and in the classical limit the 〈u2〉 is Eq. (4) with φ = φL.
We choose a mass M = 20 Amu which is intended to represent
hydrogen bonded in a molecule.

At low temperature, T � 120 K, the observed 〈u2〉 versus
T in biological macromolecules is well described by a straight
line, as in Eq. (4). We choose the low-temperature force
constant in our model, so that 〈u2〉 = kBT /φL reproduces
the observed straight line 〈u2〉obs vs. T at low T . We select,
arbitrarily, myoglobin hydrated with 0.38 g of D2 O per g of
protein as observed by Doster et al. [9]. To fix φL we introduce
a convenient temperature T0, arbitrarily choosing T0 = 240 K,
and extrapolate the observed myoglobin low temperature 〈u2〉
to T0 and determine the length u2

0 ≡ 〈u2〉obs = kBT0/φL. This
extrapolation of the low-temperature myoglobin 〈u2〉 data
is shown as a solid line in Fig. 1 giving u2

0 = 0.1 Å
2

at
T0 = 240 K. Clearly, the low temperature force constant is
(φL/kB) = T0/u

2
0. We also use u0 and T0 as convenient length

and temperature scales, respectively.
We use (φL/kB) as the low-temperature force constant in all

potentials. When the potential well V (u) is not harmonic, we
adjust the parameters in V (u) (in units of kB) so that the low-
temperature force constant is (d2V/du2)u=0 = (φL/kB) =
T0/u

2
0. In this way all potentials have the same initial slope

of 〈u2〉 vs. T at low temperature and they differ only in their
higher temperature behavior (T � T0/2).

The inset of Fig. 1(a) shows the harmonic potential V (u) =
(1/2)φLu2 in the dimensionless length x = u/u0 in the form
υ(x) = V (x)/kBT0. Using φL/kB = T0/u

2
0, υ(x) = (1/2)x2.

Figure 1(b) shows the harmonic potential and vibrational dis-
tribution ρ(x) = [2π〈x2〉]−1/2 exp [−x2/2〈x2〉] at three tem-
peratures where 〈x2〉 = 〈u2〉/u2

0. Since d2υ(x)/dx2 = 1 for

(a)

(b)

FIG. 1. (a) The mean square vibrational displacement, (MSD),
〈u2〉, given by Eq. (3) of an atom in a harmonic well. The slope of
〈u2〉 vs. T in the classical limit, T � θE , is given by 〈u2〉 = kBT /φL.
We choose the low temperature force constant φL in our model so that
it reproduces the observed slope of myoglobin at low temperature,
i.e., u2

0 = 〈u2〉obs = kBT0/φL where u2
0 = 0.1 Å

2
is the observed MSD

at temperature T0. (b) The vibrational distribution ρ(x) in harmonic
well υ(x) = V (u)/kBT0, x = u/u0 at three temperatures.

all x for the harmonic potential, the SCH force constant φ

given by Eq. (1) remains φ = φL at all T independent of the
width of ρ(x). For a harmonic potential, the SCH model is the
same as the harmonic approximation.

B. Symmetric potentials

Figure 2(a) shows the 〈u2〉 predicted by the SCH theory for
a particle in a Gaussian potential,

V (u) = −Ae−αu2
, (5)

where A and α are adjustable parameters. In this case d2V/du2

decreases with increasing u and the SCH force constant φ,
given by Eq. (1), decreases with increasing temperature as
the vibrational distribution, ρ(u), broadens. The slope of 〈u2〉
vs. T (〈u2〉 = kBT /φ) therefore increases with increasing
temperature as shown in Fig. 2(a). Thus using a simple model
of anharmonic effects (e.g., the SCH model) and a simple
potential (a Gaussian), a variation of 〈u2〉 with temperature
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(a)

(b)

FIG. 2. (a) The MSD, 〈u2〉, of an atom in a Gaussian well, V (x),
where x = u/u0. The slope of 〈u2〉 with temperature shows a marked
increase at a T ∼ 250 K simulating a dynamical transition at TD ∼
250 K. (b) The vibrational distribution ρ(x) in the Gaussian well at
three temperatures.

as observed in biological macromolecules can be reproduced.
The degree of change in slope of 〈u2〉 vs. T with increasing
temperature depends entirely on the parameters chosen in
the Gaussian potential. In the example shown in Fig. 2(b), the
ρ(x) begins to sample regions of V (x) where d2V/dx2 is quite
small (even negative) at a temperature of T � 250 K. Thus the
SCH force constant φ decreases rapidly with increasing T for
T � 250 K and the slope of 〈u2〉 = kBT /φ increases rapidly
with increasing T for T � 250 K.

Figure 3(a) shows the MSD 〈u2〉 for a particle in a potential
that is the sum of two harmonic potentials as depicted in
the inset of Fig. 3(a) and in Fig. 3(b). At low temperature,
the slope of 〈u2〉 is set by the large force constant φL. This
slope is indicated by the short dashed line in Fig. 3(a). At
high temperature the slope of 〈u2〉 is set by the much smaller
force constant φH that characterizes the shallow harmonic
well at large values of x. The steeper slope of 〈u2〉 at higher
temperatures is indicated by the long dashed line in Fig. 3(a).
The temperature (T ∼ 150 K) at which the slope crosses over
from a low to a higher value depends on the energy at which
the V (x) crosses over from a large force constant φL to the
smaller one, φH . The φH is adjustable. The crossover from the

(a)

(b)

FIG. 3. (a) The 〈u2〉 in a potential well composed of two harmonic
components characterized by force constants φL and φH . The slope
crosses over gradually from a low (L) temperature to high (H)
temperature value. (b) The ρ(x) for a potential composed of two
harmonic components.

low (L) to high (H) temperature slope will always be gradual
because the distribution ρ(x) continues to sample the steep
well potential near x = 0 at higher temperature, as shown in
Fig. 3(b).

In Fig. 4 we show 〈u2〉 for a potential that is again the sum of
two harmonic components but with a barrier between the two
components. This potential leads to a 〈u2〉 which has the same
basic character as that shown in Fig. 3(a). Thus introducing a
barrier and displacing the minimum of the shallow potentials
to finite values of x makes little difference to 〈u2〉. The 〈u2〉
in Figs. 3(a) and 4 are very similar probably because both
potentials are symmetric about x = 0. The ρ(x) are also similar
and therefore the ρ(x) for the potential depicted in Fig. 4 is
not shown.

C. Asymmetric potentials

The four potentials V (x) considered so far are symmetric
around the origin (x = 0), i.e., symmetric around the center of
the low-temperature well. This means that as temperature is
increased, although 〈x2〉 increases, the vibrational distribution
ρ(x) remains centered around x = 0. We now consider
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FIG. 4. The 〈u2〉 for an atom in a potential well composed of two
harmonic components with a barrier separating the two components
(see inset). The 〈u2〉 vs. temperature and ρ(x) (not shown) is similar
to that in Fig. 3(b).

potentials that are asymmetric around x = 0. This means that
the center point of ρ(x) will change with temperature. To
accommodate this we generalize ρ(x) to

ρ(x) = [2π〈x2〉]−1/2e−(x−	)2/2〈x2〉, (6)

where as before 〈x2〉 = 〈u2〉/u2
0. The SCH 〈x2〉 and φ are

obtained as before. The 	 is obtained by minimizing the
potential energy 〈V (x)〉 as a function of 	. Since we are in
the classical limit, minimization of the free energy reduces to
minimization of the potential energy.

Figure 5 shows the MSD for a particle in a double well
potential. The double well potential selected consists of two
harmonic wells (with force constant φL) separated by a barrier.
At low temperature, the particle is confined to the left well
(x = 0) with 	 = 0, as indicated by the ρ(x) in Fig. 5(b) for
T = 60 K. As temperature is increased the center of the ρ(x)
moves to the right until at high temperature (T = 240 K) the
ρ(x) is centered symmetrically between the two wells. In the
example shown in Fig. 5, the barrier height between the two
wells is relatively small (compared to kBT0) and 	 moves from
	 = 0 to the midpoint between the two wells at a relatively low
temperature. This double well potential does not reproduce the
observed increase in slope of 〈u2〉 with increasing temperature
well.

In Fig. 6(a) we show the MSD for a particle in an
asymmetric potential which is intended to simulate a particle
near a surface or a wall. The wall on the LHS of the
potential is formed by continuing the large low temperature
force constant φL (near x = 0) to high energy (∼2kBT0).
On the right-hand side (RHS), the “barrier height” of the
low-temperature potential is low. Thus the particle can cross
the barrier on the RHS and move to the right away from the
wall at higher temperature. The potential on the RHS also has
a well with a minimum or “well center” at x ≈ 3. At higher
temperature we anticipate that the particle will move toward
the “well center.” As shown in Fig. 6(a), the 〈u2〉 increases

(a)

(b)

FIG. 5. (a) The MSD, 〈u2〉, for a double well potential. The height
of the barrier (at xB = 0.75) between the two wells (see inset) is
relatively small, V (xB )/kBT0 � 0.2. (b) The ρ(x) for a particle in a
double well potential. The center of ρ(x), 	 moves from one well
(	 = 0) at T = 0 K to the midpoint between the two wells (	 = xB )
at a relatively low temperature. The slope at high temperature is set
by the harmonic well force constant (H) at larger x.

very rapidly at high temperature (T ∼ 250 K) with 〈u2〉 vs.
T reaching a very steep slope at high temperature. The steep
slope is associated with the particle moving rapidly away from
the wall as T is increased, i.e., 	(T ) increasing rapidly with
T at higher temperature.

The potential shown in Fig. 6 is a simple but very flexible
potential which can reproduce a large or small change in
slope of 〈u2〉 vs. T with the change in slope taking place
at any desired temperature. It could also describe the eventual
instability of a protein at an even higher temperature (as can
the Gaussian potential). In Fig. 7 we show this potential with
parameter (barrier height, well center, and φH ) selected to
reproduce the 〈u2〉 observed by Doster et al. [9] for hydrated
myoglobin. Clearly, the change in slope seen in the data is well
reproduced. In this potential, the slope at high temperature is
set chiefly by the rate at which the particle is moving away
from the wall (by the rate of change of 	(T ) with T ) rather
from the force constant φH describing the potential well on the
RHS away wall. In this sense the physical origin of the slope
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(a)

(b)

FIG. 6. (a) The MSD 〈u2〉 for a well that has a hard wall
component. The 〈u2〉 vs. T shows a large increase in slope at
T � 250 K, an increase arising from the center of ρ(x) moving rapidly
away from the wall as T increases as shown in (b).

of 〈u2〉 at higher temperature is quite different from that for
the symmetric Gaussian potential shown in Fig. 2.

IV. DISCUSSION

A. Dynamics of proteins

There are predominantly two approaches to revealing and
understanding the dynamics of proteins. The first is experi-
ment, chiefly neutron scattering experiments. The second is
molecular dynamics (MD) simulation. The present work is
neither of these. Rather it is an analytic approach using a
simple model of the dynamics of an atom. The aim of the
simple model is to make a single point, an important one we
believe, that the change in slope of the observed 〈u2〉 versus
T can be reproduced by a vibrating particle in an anharmonic
potential. The model is simply anharmonic vibration with only
temperature changing in the model. The present dynamical
model does not contain any thermally activated, transition
rate processes as in the “two-state” model introduced by
Frauenfelder et al. [20], Keller and Debrunner [14], and Doster
et al. [9]. It does not contain any diffusive motion.

In the classical limit, which is reached at T � 100 K, the
present MSD is independent of the mass of the particle. The

FIG. 7. The MSD 〈u2〉 for a well that has a hard wall component.
The well parameters (φL, φH , barrier height, and well center) are
adjusted to reproduce the 〈u2〉 vs. T observed for myoglobin by
Doster et al. at low and high temperature. The observed values of
Doster et al. [9] as presented in Ref. [4] are shown. The calculated
〈u2〉 clearly reproduce the observed 〈u2〉 for myoglobin well.

〈u2〉 depends only on the potential, V (u), selected and the
temperature. The observed 〈u2〉 in proteins can be reproduced
using a Gaussian potential or a potential with a wall. In the
Gaussian potential, the slope of 〈u2〉 can change rapidly with
temperature at a dynamical transition temperature TD , if the
second derivative of V (u) changes rapidly with u at energies
V (u) ∼ kBTD . That is, if at energies kBTD , V (u) becomes soft.
A marked change in 〈u2〉 versus T will take place at TD for
any potential that has this property. For a potential with a wall,
the slope of 〈u2〉 versus T changes at TD because the particle
moves away from the wall at T � TD . The slope is large for
T � TD because the particle is moving rapidly away from the
wall for T � TD .

In the present model the change in slope of 〈u2〉 with T ,
with only T itself varying, is captured because the dynamical
model is nonperturbative. That is, derivatives of V (u) at
displacements u � 0 [described here by ρ(u) ] are sampled. A
perturbative theory of anharmonic effects in which derivatives
of V (u) at (u = 0) only are included would probably not
suffice. Also since we are in the classical limit, the vibrational
distribution ρ(u) should be interpreted as representing a
statistical distribution of the displacements of an ensemble
of identical, independent classical particles in the well at
temperature, T .

The model is adapted or adjusted to describe a specific
protein by adjusting the low-temperature force constant φL

in the model. We chose φL to reproduce the observed 〈u2〉
versus T of myoglobin at low temperature as observed by
Doster et al. [9] (see also Fig. 1 of Bicout and Zaccai [4])
as depicted here in Fig. 1. Specifically, the parameters in the
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(a)

(b)

FIG. 8. (a) The calculated MSD 〈u2〉 for a Gaussian potential
well (solid line). The low-temperature force constant φL of the
Gaussian is set to reproduce the low temperature slope of 〈u2〉
vs. T in purple membrane (PM). The calculated 〈u2〉 at higher
temperature for the Gaussian V (u) reproduces the observed 〈u2〉 for
PM (dashed-dotted line) well at higher temperature (T � 200 K).
The vibrational distribution ρ(x) is shown in (b).

potential V (u) are adjusted so that [d2V (u)/du2]u=0 = φL.
We can readily adjust the φL to reproduce other biological
macromolecules such as purple membrane (PM) where at low
temperature the slope of 〈u2〉 versus T is marginally larger [1].
This is shown in Fig. 8 for the Gaussian potential where we
see that the observed 〈u2〉 versus T in PM is well reproduced
at low and at high temperature using a Gaussian potential.
Note that the definition of 〈u2〉 in Refs. [1] and [2] (Fig. 8) for
PM is twice the value used in Refs. [9] and [14] (Fig. 7) for
myoglobin.

MD and the SCP theory have been compared explicitly in
solids. Specifically, the elastic constants [21], thermodynamic
properties [22], and phonon response [23] in solids calculated
using SCP theory at different levels of approximation and
MD have been compared. For elastic constants, most appropri-
ate here, the two agree accurately at intermediate temperatures
but the SCP values can differ by up to 20% near the solid
melting temperature where anharmonic effects are largest. At
the same time MD simulations can show spurious dynamic
response that is not found in SCP models or experiment.

Thus we expect the SCP to be accurate up to intermediate
temperatures and qualitatively correct but possibly 10–20 %
in error at the highest temperatures.

B. Potentials in proteins

Neutrons scatter predominantly from hydrogen in proteins
and interfacial water. In the following paragraphs we attempt
a comparison of our model potentials with the potentials seen
by hydrogen (H) in proteins. H in proteins is bound in a wide
spectrum of sites and in solvent water. The H potential in these
sites varies greatly. It depends on its separation from and on
bond angles with its neighbors. The present simple model
potentials represent an average over these widely varying
potentials. To make a comparison we consider two simplified
cases which represent two ends of the spectrum. We also
ignore the dependence on angles. The first is hydrogen (H)
in a hydrogen bond (H-bond) and the second is H in amino
acids.

The dynamics of H in a H-bond is governed by the H-bond
energy. As a simple example, we consider the H-bond in a
single formamide dimer. The formamide dimer is, for example,
a model bond used to represent H-bonds in protein backbones.
The formamide dimer consists of a tightly bound N− –H+
pair which is hydrogen bonded to a second pair O− = C+,
an acceptor-acceptor base pair. In the formamide dimer (N–H
· · ·O = C), the H-bond is the bond indicated by the dotted line
between the H+ (the donor H+) and the acceptor O− in the
acceptor-acceptor base pair. Figure 9 shows the formamide
H-bond energy versus separation r between the H and the
acceptor (O), as calculated by Morozov and Kortemme [24]
using density functional theory (DFT) (see Fig. 4 of Ref. [24]).
The H-bond energy is divided by kBT0 = 0.476 kcal/mole =
1.99 kJ/mole where T0 = 240 K and the separation r by
u0 = 0.33 Å (x = r/u0) so that the H-bond energy is in

FIG. 9. (Color online) H-bond potential V (r) in a formamide
dimer versus H+ to acceptor (O−) separation, r , from Fig. 4 of
Morozov and Kortemme [24]. The potential is shown in units
x = r/u0 where u0 = 0.33 Å and V (x)/kBT0, where T0 = 240 K
and kBT0 = 0.476 kcal/mole. Also shown is the present Gaussian
model potential in these units.
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the same units as the present model potentials. The DFT
energy is very similar to the H-bond energy obtained using
molecular mechanics methods in which each atom in the bond
interacts with a potential such as the CHARMM27 potential
[25] or other potentials [27]. In the CHARMM27 potential,
the interatomic potential is represented by a standard 12-6
Lennard-Jones potential [26] plus an electrostatic term [25].
In Fig. 9 the H-bond energy is compared with the present model
Gaussian potential. The Gaussian well minimum is moved to
coincide with that of the H-bond potential.

From Fig. 9 we see that the H-bond potential has clear
anharmonic character as does the model present Gaussian
potential. In addition the H-bond potential is asymmetric
around the minimum energy. Both the anharmonic and
asymmetric character will lead to an increase in slope of
〈u2〉 at higher temperature, as found here in Fig. 8 for
the model Gaussian potential and in Fig. 6 for the model
hard walled potential. As anticipated, the H-bond potential
is much narrower and stronger than the model Gaussian.
High-frequency, small amplitude motion is expected for H in a
H-bond whereas the Gaussian represents an average for H over
all sites.

Hydrogen is also attached to the backbone of proteins. In
this position, the dynamics of the H is largely determined by the
lower frequency, larger amplitude dynamics of the backbone.
Specifically, H is a component of amino acids which make up
the backbone and are attached to the backbone. To describe the
dynamics of amino acids in the backbone, a simplified potential
between amino acids is often introduced [28,29]. Each amino
acid is approximated by a single (heavy) atom or pseudoatom.
The effective or coarse-grained (CG) potential between the
pseudoatoms is obtained using several methods one of which
is simulating the amino acids in proteins using molecular
dynamics (MD) and determining the effective interaction
between them which best represents their properties. In the
MD simulation a potential between all the atoms in the amino
acids is typically used, denoted an all-atom potential. The CG
potential is subsequently used to calculate the longer time
scale dynamics of the backbone or of larger polypeptides in
the protein The dynamics of H in these amino acids is largely
governed by these CG potentials.

Specifically, Basdevant et al. [28] and Ha-Duong [30]
represent the CG potential by a repulsive (1/r6) term plus
a Gaussian attractive term. If the amino acid is charged there
is also an electrostatic term. A representative CG potential
between two TRP3 amino acids [28] is shown in Fig. 10
and compared with our model Gaussian potential. The CG
potential is again shown with separation divided by u0 =
0.33 Å and energy divided by kBT0 so that it has the same
units as our model potentials. The minimum of our Gaussian
model potential has been shifted to coincide with that of the
CG potential. From Fig. 10 we see that the CG potential is
asymmetric and anharmonic so the a change is slope of 〈u2〉
with increasing temperature can be expected. Indeed the shape
of the CG potential is similar to that of the the present hard wall
potential as is shown in Fig. 11. The present hard wall model
leads to a significant change of slope of 〈u2〉 with increasing
temperature as shown in Fig. 7 and a similar change can be
expected for the CG potential. From Fig. 10 we see that the
CG potential is broader and weaker (on the right side) than

FIG. 10. (Color online) Coarse-grained potential V (r) between
two TRP3 amino acids in a protein from Fig. 3 of Basdevant et al. [28].
The potential is in units of x = r/u0 and V (x)/kBT0 as in Fig. 9 and
compared with the present Gaussian model potential.

our model Gaussian. Thus lower frequency, larger amplitude
motions than average are expected for H in amino acids.

In summary, hydrogen in H-bonds and in amino acids
see effective potentials that are anharmonic and similar in
character to the model potentials used here. The H-bond
potential is stiffer and the CG potential between amino acids
is softer than the present model potentials which represent an
average over a spectrum of potentials seen by H in proteins.

C. Concluding remarks

In summary, our aim in this paper is to illustrate that a
change in slope of the MSD 〈u2〉 versus temperature can be
obtained within vibration of a mass in an anharmonic potential.
Our goal is not to say that thermally activated processes and

FIG. 11. (Color online) Coarse-grained potential shown in Fig. 10
compared with the present hard wall model potential.
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diffusion are not important in the long time dynamics of
proteins. The many dynamical processes that may contribute to
the dynamical transition are reviewed by Doster [31]. Indeed,
we have applied the present SCH vibrational dynamics to
the “two-state” model potential introduced by Frauenfelder
et al., Keller and Debrunner, and Doster et al. [9,14,20]. This
potential coupled with the SCH dynamics did not lead to a
〈u2〉 that agreed well with experiment—essentially because
the thermally activated transitions central to this model are not
included. Including the thermally activated transitions between
the two states, as intended [9,14,20], is essential to obtain the
good agreement with experiment that has been obtained using
the “two state” model. Our purpose is simply to illustrate that
a break in 〈u2〉 with temperature is possible within vibration
alone.
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APPENDIX: THE SELF-CONSISTENT
HARMONIC THEORY

In this section we derive the self-consistent harmonic theory
for a single particle of mass M in an arbitrary potential V (u),
used in the present article. The particle is described by the
Hamiltonian

Ĥ = K̂ + V (u) (A1)

where K̂ = −(h̄2/2M)d2/du2 is the kinetic energy operator.
We introduce a model harmonic Hamiltonian

Ĥh = K̂ + 1
2φu2 (A2)

and corresponding harmonic density matrix

ρh = e−βHh

T r(e−βHh )
(A3)

where β = (kBT )−1. Expectation values evaluated using ρh

are

〈Ô〉h = T r{ρhÔ}, (A4)

where Ô is any operator. The corresponding model harmonic
Helmholtz free energy is

Fh = 〈Ĥh〉h − T Sh

= 〈Ĥh〉h + (kBT )T r{ρh log ρh}
= kBT log 2 sinh

(
1
2βh̄ω

)
, (A5)

where ω = ( φ

M
)

1
2 is the model simple harmonic oscillator

frequency. In terms of Ĥh the particle Ĥ is

Ĥ = Ĥh + V (u) − 1
2φu2. (A6)

The basic concept is to use ρh as a trial or model density
matrix with which to evaluate the particle free energy. The trial
particle free energy is

Ftrial = 〈H 〉h + (kBT )T r{ρh log ρh}
= Fh + 〈V (u)〉h − 1

2φ〈u2〉h. (A7)

The Ftrial is an upper bound to the exact Helmholtz free energy,
the Gibbs-Bogoliubov variational principle. We consider Ftrial

as a functional of the model harmonic force constant φ and the
MSD 〈u2〉h. We minimize the Ftrial with respect to φ and 〈u2〉h
independently holding the other variable constant to find the
optimum φ and 〈u2〉h. This variation gives

δFtrial

δ〈u2〉h = 1

2

〈
d2V (u)

du2

〉
h

− 1

2
φ = 0, (A8)

δFtrial

δφ
= 1

2

(
h̄

2Mω

)
coth

(
1

2
βh̄ω

)
− 1

2
〈u2〉h = 0. (A9)

The first term in Eq. (A8) is obtained by making a
Taylor’s expansion of 〈V (u)〉h in Eq. (A7) about V (0), V (u) =
eu( d

du
)V (0), and a cumulant expression of the exponential

〈eu( d
du

)〉h. For, a harmonic system with Gaussian distributions,
〈u〉h = 0 and all cumulants beyond the second cumulant vanish
so that

〈V (u)〉h = 〈eu(d/du)〉hV (0)

= e
1
2 〈u2〉h(d2/du2)V (0). (A10)

Differentiation with respect to 〈u2〉h then yields the first term
in Eq. (A8), and Eq. (A8) leads immediately to Eq. (A1) with
〈〉h expressed as a average in configuration space. The average
in configuration space can be obtained by Fourier transforming
V (u) and again using a cumulant expansion,

〈∇2V (u)〉h = ∇2
∫

dqV (q)〈eiqu〉h

= ∇2
∫

dqV (q)e− 1
2 q2〈u2〉h

=
∫

due− 1
2 u2/〈u2〉h∇2V (u), (A11)

where d/du is denoted by ∇. The first term in Eq. (A9)
is obtained by differentiating Eq. (A5) for Fh with respect
to ω using ω2 = φ/M . Equation (A9) leads immediately to
Eq. (3). The φ represents the optimum harmonic force constant
representing a particle in an anharmonic well V (u) in which
the particle has a MSD 〈u2〉.
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