
PHYSICAL REVIEW E 83, 031921 (2011)

Three-dimensional vesicles under shear flow: Numerical study of dynamics and phase diagram
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The study of vesicles under flow, a model system for red blood cells (RBCs), is an essential step in understanding
various intricate dynamics exhibited by RBCs in vivo and in vitro. Quantitative three-dimensional analyses of
vesicles under flow are presented. The regions of parameters to produce tumbling (TB), tank-treating, vacillating-
breathing (VB), and even kayaking (or spinning) modes are determined. New qualitative features are found: (i) a
significant widening of the VB mode region in parameter space upon increasing shear rate γ̇ and (ii) a robustness
of normalized period of TB and VB with γ̇ . Analytical support is also provided. We make a comparison with
existing experimental results. In particular, we find that the phase diagram of the various dynamics depends on
three dimensionless control parameters, while a recent experimental work reported that only two are sufficient.
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I. INTRODUCTION

Vesicles, which are made of a pure bilayer of phospo-
holipids, are regarded as an elementary system for the
understanding of individual red blood cells (RBCs) dynamics,
a first step toward a bottom-up approach to blood flow and
rheology. Apart from a dilute suspension where a rheological
law can be extracted analytically [1], a complete understanding
of blood flow should ultimately emerge from a numerical
study.

Computational approaches are, however, challenging due
to the free boundary character of the RBCs; the shape
is not known a priori and is fixed via a subtle interplay
between the local flow and the different internal modes of the
RBCs (membrane bending, shear elasticity). To date, several
numerical studies have been devoted to the study of vesicles,
capsules, or RBCs [2–12].

Our goal in this paper is to present numerical simulation
for a single three-dimensional vesicle under shear flow in the
Stokes limit with an arbitrary viscosity contrast. We determine
the range of parameters (control and material parameters)
corresponding to different dynamics of vesicles. It will emerge
that even for such an apparently simple situation the full phase
diagram reveals several unexplored features.

RBCs, apart from having the same type of phospholipid
membrane as vesicles, are endowed with a cytoskeleton (a
cross-linked network of proteins lying underneath the RBC
membrane). Nevertheless, their dynamics seem to share some
common properties with vesicles. Under simple shear flow,
RBCs [13] and vesicles [14–16] exhibit tank-treading (TT)
and tumbling (TB); these two modes have been studied both
theoretically and numerically [2,4,17,18]. More recently, a
new type of motion called vacillating-breathing (VB) (a.k.a.
swinging or trembling) has been both predicted [19–23] and
observed experimentally [16,24]. In this mode the main axis
of the vesicle oscillates about the flow direction, whereas its
shape makes a breathing motion (see movies [25]). VB has also
been observed for capsules, which are, like RBCs, endowed
with membrane shear elasticity [11]. Another motion observed
for vesicles, called spinning in Ref. [21], is also characterized
here (see the movie for this type of motion [25]). This motion

was described for rigid ellipsoids by Jeffery [26]; the main axis
describes a cone about the perpendicular to the plane of the
shear flow (see movies [25]). Unlike rigid particles where the
cone angle is fixed by initial conditions (due to the reversibility
of the Stokes equations), the cone angle for vesicles is an
intrinsic property. This kind of motion is rather known under
the name kayaking (K) in other fields (e.g., rigid particles,
polymers, liquid crystals); we thus adopt the term kayaking to
comply with the common usage [27]. A systematic analysis of
these four motions (TT, TB, VB, K) is explored in this paper.

Previous analytical and numerical studies have reported on
the phase diagram of the various motions. The first important
result to be reported here is that even for a quasispherical
shape, the location of the transition boundary between TT
and TB is significantly overestimated by previous analytical
results. We explain briefly here the main reason. The second
important result is that the band of the phase diagram where
the VB mode takes place (in parameter space) widens upon
increasing the shear rate. It seems that this widening was not
reported previously, neither analytically nor numerically and
experimentally. We shall also show that K seems to occur even
if the vesicle is initially forced to be in the shear plane. In
other words, TB vesicles undergo a transverse instability. A
final result is that we find that the period of oscillation (defined
as the time needed for the major axis to make a full rotation) in
the TB regime (rescaled by the shear rate) is quite insensitive
to the shear rate, in good agreement with the Keller-Skalak
(KS) theory [17].

This paper is organized as follows. In Sec. II we present the
model equation for vesicles in the Stokes limit. In Sec. III
we provide the basic ingredients of the numerical method
together with some typical results related to convergence and
precision. In Sec. IV we present the major results of the present
study. Sections V and VI are devoted to comparison with
experimental results. Section VII contains a conclusion and
some general remarks.

II. THE MODEL

We consider a model system, which is a phospholipid
vesicle (Fig. 1). The Stokes equations (experiments have so
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FIG. 1. (Color online) A typical vesicle obtained by simulations.
The white line indicates the main axis direction. The color code on
the vesicle corresponds to the value of the local curvature, which is
large at the tips and low in the central region.

far explored the limit of small Reynolds numbers) can be
formally solved using the boundary integral (BI) formalism
(see, for example, [28]) which yields

ηmvmem(r) = ηoutvshear(r) +
∫

mem
G(r − r′)fmem(r′) dr′

+ (ηout − ηin)
∫

mem
vmem(r′) ·K(r − r′) · n̂(r′) dr′,

(1)

where vmem(r) is the local velocity field at the membrane,
vshear = γ̇ yx̂ is the externally applied Couette flow (with γ̇

the shear rate), ηm ≡ (ηin + ηout)/2 (ηin and ηout stand for
viscosities of the internal and external fluid, respectively),

∫
mem

is an integration over the membrane, n̂ is the outward unit
normal vector, and G(r − r′) and K(r − r′) are the Green’s
tensors defined as

G(x)ij = 1

8π

(
δij

x
+ xixj

x3

)
; K(x)ijk = 3

4π

xixjxk

x5
. (2)

A vesicle that is subjected to a flow undergoes a shape
transformation that is limited by bending modes. The reaction
bending force of a vesicle on the fluid is given by the Helfrich
force [29]

fcurv(r) = −κ
[

1
2c(r){c(r)2 − 4g(r)} + �2Dc(r)

]
n̂(r), (3)

where κ is the bending modulus, c(r) is the local mean
curvature [c(r) = c1(r) + c2(r), where c1 and c2 are the two
principal curvatures at point r of the membrane], g(r) is
the Gaussian curvature (g = c1c2), and �2D is the (surface)
Laplace-Beltrami operator on the membrane. The other con-
tribution to the membrane force follows from local membrane
incompressibility:

ftens(r) = T [ζ (r)c(r)n̂(r) + ∇2Dζ (r)], (4)

where ∇2D is the surface gradient operator and ζ (r) is a local
dimensionless Lagrange multiplier that enforces membrane
inextensibility (the constant T has a dimension of energy

per unit surface). Local membrane inextensibility sets severe
limitations on the numerics, on both the time step and the
precision of the results, as discussed in the next section.

III. THE NUMERICAL METHOD

The numerical procedure is simple in its principle: From
the shape of the vesicle we can compute the membrane force
fmem. The knowledge of fmem allows us to get the expression
of the velocity field at the membrane interface thanks to the
integral formulation (1) and thus to predict its motion. We refer
to [28] for the general description of the BI method; however,
specific schemes have been used to solve particular problems
that we discuss now.

A. The mesh

The mesh is defined using an elementary icosahedron. This
icosahedron is refined by dividing each of its triangular faces
into four triangles (the new vertices corresponds to the middles
of the edges). This refinement can be applied recursively until
the expected degree of accuracy is reached (we do it three
times so that we end with 642 vertices and 1280 triangles).
The resulting mesh is projected on a unit sphere that can be
stretched or flattened to obtain a prolate or oblate ellipsoid.
Noise is added to the mesh to remove an eventual excess of
symmetry at particular sites. Examples are provided in Fig. 2
where we show the mesh used for a spherical vesicle and the
initial ellipsoidal configuration for a prolate vesicle.

B. Advection of the mesh

The basic advection scheme, using the velocity field to
calculate the new position of the vertices, is not appropriate
to the problem we consider here. Indeed, when the vesicle
tanktreads, the differential motion between the points located
in the equatorial region and the vertices located close to

FIG. 2. Example of mesh used for a spherical and ellipsoidal
initial configuration. For the ellipsoidal shape, the gray scale
corresponds to the local curvature field.
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the rotation pole results in an entanglement of the mesh
after few rotations. These entanglements induce numerical
instabilities and must be avoided. Several techniques can
be used to prevent these instabilities, like regenerating the
mesh from time to time. These regeneration steps are not
innocuous: They introduce noise and discontinuities in the
dynamics since the position of the new vertices is obtained by
interpolation or extrapolation. Another solution is to replace
the basic advection scheme with a more efficient one, keeping
in mind that the mesh is essentially defined to trace the shape
of the vesicle: The mesh points are not supposed to follow the
actual dynamics of matter; they only need to follow it in the
normal direction. More precisely, the knowledge of the normal
velocity is sufficient to determine the new shape. We can thus
remove the tangential component of the velocity at the surface
of the vesicle in order to compute the dynamics of the vertices.
Let us first define the velocity of a vertex in the frame of the
center of mass of the vesicle as

u(r) = v(r) − vc.m., (5)

where r denotes the position of a vertex and vc.m. is the velocity
of the center of mass of the vesicle. In the center-of-mass
frame, the advection velocity for a vertex is

uadv(r) = u(r) · n̂(r) n̂(r), (6)

and in the laboratory frame, it becomes

vadv(r) = u(r) · n̂(r) n̂(r) + vc.m.. (7)

The advection equation for a vertex ri of the mesh is thus

ri(t + dt) = ri(t) + vadv(t) dt. (8)

Using this prescription, it is possible to obtain a mesh that
reaches a steady state while the vesicle is TT. In this case,
entanglements are suppressed automatically. One can consider
this scheme as a continuous regeneration of the mesh of the
vesicle. Of course, while the mesh (which is a pure geometrical
representation of the shape) does not follow the dynamics of
matter in the tangential directions, physical fields transported
at the surface of the vesicle by the velocity field have to be
advected by the full velocity. As an example of a physical
field, consider the case of the tension field ζ (r), we must use
the convective derivative

Dζ

Dt
= ∂ζ

∂t
+ vt.∇2Dζ (9)

to calculate the variation of ζ at a vertex of the mesh, where
vt(r) = v(r) − vadv(r) is the tangential component of u(r),
and ∇2D is the gradient along the surface. We require local
membrane incompressibility. If we view ζ as a tension force, a
possible small (see below for the specification of the smallness)
compression or dilation of the local area induces a tension that
is (to leading order) proportional to the change of area. Since
ζ is advected, we write the evolution equation for ζ as

∂ζ (r)

∂t
+ vt · ∇2Dζ (r) = 1

A(r)

dA(r)

dt
(10)

with this scheme. A(r) is the area element attributed to site
r (1/3 of the sum of the area of the triangles containing
r) and the temporal variation dA(r)

dt
is calculated using the

full velocity field. The right-hand side of the equation is

also equal to the surface divergence of the velocity field.
Exact incompressibility would require a vanishing surface
divergence. Equation (10) can be viewed as a penalization
procedure (the full tension is T ζ , as is visible from the
definition of the force, Eq. (4), with T a large parameter;
see below), where the surface divergence scales as the tension
divided by T . This enforces a very small surface divergence.
We show below (in the Sec. III D) how the local area is
conserved in practice.

When the vesicle tumbles, this advection scheme in the
normal direction reduces mesh entanglements, but does not
entirely suppress them, so we have to regenerate the mesh
from time to time in the same way we constructed the initial
configuration: A spherical mesh centered on the vesicle is
generated whose vertices are projected on the actual shape.
The time tmesh between two regenerations of the mesh is a
control parameter; we use in practice γ tmesh = 1, but we also
tried different values as well as random regeneration times,
with minor influence on the results if tmesh remains smaller
than the TB period. In this case, the discontinuities induced in
the dynamics are barely measurable.

C. Curvature and differential operators

On a triangulated surface these operators can be estimated at
each vertex as follows. The Laplace-Beltrami operator applied
to a function fi ≡ f (ri) defined at any vertex ri of the surface
can be estimated as [30]

�2Df = 1

2Ai

∑
j∈ni

(cot αij + cot βij ) (fj − fi), (11)

where i denotes the site where the Laplace-Beltrami operator is
computed, ni represents the set of neighboring sites [connected
to site i by a link; see Fig. 3 (left)]. αij and βij are the two
angles defined in Fig. 3 (left) and Ai is the area attributed to
site i, that we can compute by summing over all the triangles
containing the site i, a third of their area. The local curvature
at site i can be derived from this expression by replacing the
function f (ri) by −ri . Let us define the curvature vector as

K = 1

2Ai

∑
j∈ni

(cot αij + cot βij ) (ri − rj ). (12)

The local curvature at the surface of the vesicle is

c(ri) = c1(ri) + c2(ri) = −‖K‖ if K · n̂ > 0

+‖K‖ otherwise, (13)

θij
i j

j−1

j+1

α ij

β
ij

i j

j−1

j+1

FIG. 3. Angle definitions for the Laplace-Beltrami operator com-
putation (left) and Gaussian curvature (right).
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where n̂ is the normal vector pointing toward the external
medium. A sphere shall thus have a negative curvature with
these conventions.

The computation of the Gaussian curvature is simpler, from
its definition it can be estimated as

g(ri) = 2π − ∑
j∈ni

θij

Ai

, (14)

where θij is defined in Fig. 3 (right).
The surface gradient operator ∇2D of a function at a vertex ri

can be estimated by averaging the gradient calculated on the
neighboring triangles (the triangles containing i). The average
is weighted by the area of the triangle, and the gradient is
calculated in each triangle by assuming a linear form for the
function inside the triangle.

D. Area conservation

Area conservation is an important constraint on the dynam-
ics of vesicles as discussed by Helfrich in his seminal article
[31]. Equation (10) is able to fix the area of the vesicle within a
few percent in usual cases. This accuracy is unfortunately not
sufficient to obtain reliable results in general, especially when
the vesicle tumbles and is subjected to a cyclic stress. In such
a case the area of the membrane oscillates around an average
value and these oscillations can modify the dynamics. This
problem is particularly important for quasispherical vesicles,
the case usually considered in analytical works. Indeed, the
limit of a spherical shape presents a peculiarity: There is no
distinction between TT and TB. As a consequence, the TB
regime disappears abruptly in this limit. The dynamics of
a vesicle is thus very sensitive to the value of the reduced
volume,

τ = 6
√

πV/S3/2, (15)

that controls its shape (V is the volume of the vesicle and
S its area). The maximum value τ = 1 corresponds to a sphere,
while τ = 0.95 is still small for most analytical approaches.
Fixing τ with an accuracy better than 1% is thus a key point
in this study. Fortunately, a quasiperfect adjustment can be
obtained with the help of a very simple feedback on the tension
field ζ ,

∂ζ (r)

∂t feedback
= α(τ − τsim) − ξ

∂τsim

∂t
, (16)

that we can add to the right-hand side of (10). Here τsim is
the instantaneous reduced volume of the vesicle and τ is the
requested value. α and ξ are two positive constants that fix the
relaxation time of τsim to its expected value τ . The last term
dτsim/dt is a damping term that prevents the scheme from
spurious oscillations. The scheme used in this study ensures a
variation of τ (and thus S) lower than 6 × 10−6 for any of the
results presented in this article. We show in Fig. 4 the variation
of τ in the TB regime for the most difficult case we considered
(due to the proximity of a transition line). We can clearly see
the efficiency of the scheme and the stability of the overall
method, which makes it possible to follow the vesicle during
several hundred TB periods.

The numerical control parameters are chosen as follows.
α is a frequency and ξ is dimensionless. We used tcurv =

15 20 25
κt/η

in
R

3

0.94999

0.95

0.95001

τ

 τ=0.95, λ=16, Cκ=10

Oscillation amplitude Δτ = 6 10−6

FIG. 4. Oscillations of the reduced volume in the TB regime. The
variations of τ remain very weak thanks to the feedback added to the
tension field ζ .

ηoutR
3/κ as the time unit in our simulation; this is the

characteristic relaxation time of a vesicle in a quiescent fluid.
If R is the typical radius of the vesicle, defined as R ≡
(3V/4π )1/3, then we choose the parameter values according
to the following relations:

α = 105/tcurv, ξ = 103, T = 5000κ/R2. (17)

IV. RESULTS

The phase diagram of various dynamics (TT, TB, and
VB) of a vesicle and RBC in a Couette flow recently moti-
vated a large number of theoretical and experimental studies
[1,21,22,32–34]. This is the first focus of our study. Let us
introduce appropriate dimensionless numbers. Shape deforma-
bility can be measured by the dimensionless number

Cκ = ηoutγ̇ R3

κ
≡ γ̇ tcurv. (18)

Vesicles exhibit various equilibrium shapes (i.e., in the absence
of flow) [35], depending on their reduced volume τ . τ is the
second dimensionless parameter. For τ > 0.652, the shape is
prolate (one long revolution axis) [35]. In the range 0.591 <

τ < 0.652, the shape is oblate (one small revolution axis; the
shape is biconcave, known also for RBCs). We found that,
for Cκ � 1 (which is quite easily reachable experimentally),
the oblate branch is suppressed in a Couette flow so that only
prolate shapes prevail (see Fig. 1). This result agrees with
that of Noguchi and Gompper [36]. The last dimensionless
parameter is the ratio of the internal fluid viscosity over that
of the external one:

λ = ηin/ηout. (19)

We first focus on a reduced volume close enough to unity.
This will allow us to compare our results to the theoretical
ones considering the quasispherical limit [19–23]. We have
chosen the value τ = 0.95 and have explored the effects of the
two other parameters Cκ and λ. The resulting phase diagram
is represented in Fig. 5.
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0.1 1 10
Cκ

5

10

15

20

λ

Theory [36]
Tumbling (TB)
Vacillating (VB)
Flow alignment
Tanktreading (TT)
Kayaking (K)

TB

VB

TT
Theory [23]}

Kτ=0.95

FIG. 5. (Color online) Phase diagram for τ = 0.95 (correspond-
ing to an excess area � = S/R2 − 4π = 0.43, where S is the area
of the vesicle, and the radius R is defined from the volume V as
3πR3/4 = V ). The symbols correspond to numerical results, the
solid line to the analytical ones of Farutin et al. [37], and the dashed
lines to the theory of Danker et al. [23]. The flow alignment states
correspond to a VB mode with a very small amplitude (see Fig. 13).
These states are thus intermediate between VB and TT. The K phase
is visible at the upper right corner of the diagram.

A first important feature found here is that the boundaries
of the phase diagram are strongly underestimated in previous
analytical theories [21,23]. For example, for Cκ � 0.1, the
bifurcation from TT to TB occurs here for λ � 8, while
analytical theories predicted λ � 4 (Fig. 5). This is unexpected
because deviation from a sphere is only about 5% and a
perturbative scheme is expected to make sense. Thus, we have
attempted to understand this behavior by revising previous
analytical theories. The key ingredient is that the next order
terms in an expansion in powers of excess area (relative to
a sphere) are decisive, however small the deviation from a
sphere is. We have identified the fact that this is the result of
a singular behavior of the expansion scheme. Details of the
analytical theory are given elsewhere [37]. The outcome of
this analytical theory is presented in Fig. 5, revealing excellent
agreement with the full numerical simulation.

Previous analytical [21,23] as well as numerical calcu-
lations [22] (based on hybrid simulations of a dynamically
triangulated membrane model and a particle-based mesoscale
solvent, multiparticle collision dynamics) and experiments
[32] reported that the band of existence of the VB mode
saturates with Cκ above a value of the order of Cκ ∼ 0.5. This
is in good agreement with the present numerical study as long
as 0.5 < Cκ < 2. Beyond a value of the order of Cκ = 2, the
VB band exhibits a sudden ample widening, as shown in Fig. 5.
This effect highlights the nontrivial character of dynamics due
to shape deformation. A careful theoretical analysis of this
phenomenon has led us to the discovery that not only is the
fourth-order harmonic strongly coupled to the second one, but
it also acquires strong activity on increasing Cκ . This mode,
which is damped at low deformability, becomes active (i.e., it is
excited) at larger deformability (larger Cκ ). As a consequence,
the VB regime is promoted, leading to the VB band widening.

-π/2 -π/4 0 π/4 π/2
θ

-1

-0.5

0

0.5

dθ
/γ

dt

Cκ=1
Cκ=5
Cκ=8
Cκ=10
KS Theory
fit with A+Bcos(2θ)+Ccos(4θ)

λ=16

λ=20
+0.5

.

FIG. 6. (Color online) θ̇ as a function of θ for λ = 16, λ = 20
(shifted upward by +0.5), for various Cκ . The dashed line corresponds
to the KS theory. The solid black line is a fit of the data points for λ =
16 and Cκ = 8 with the function A + B cos(2θ ) + C cos(4θ ) (A =
0.543, B = 0.462, and C = 0.049), showing that higher harmonics
play an important role.

We have found that this behavior is captured by the new theory
that implements fourth-order harmonics [37].

Let us now analyze the behavior of the TB angle θ (t).
It is convenient to represent a phase portrait in the plane
(θ̇ ,θ ). This will also allow us to shed light on the limit of
applicability of the KS theory, which is often used as a basis
in experiments [15,16] and in numerical simulations [22]. We
find that, for Cκ → 0 (we choose Cκ = 0.1 as an example),
the simple relation θ̇/γ̇ = A + B cos(2θ ) (where A and B

depend on the geometrical properties of the ellipsoid and on
the viscosity ratio λ, as described in Ref. [17]) predicted by the
KS theory is in excellent agreement with the BI simulations.

At larger deformabilities, the situation is more complex and
requires a careful analysis. We first focus on the value λ = 20.
The result is reported in Fig. 6 (shifted by +0.5 upward for
clarity). All data for 1 < Cκ < 10 are nearly superimposed,
reflecting a good agreement with the KS theory even though,
for Cκ � 5, the vesicle is actually K (Figs. 7 and 8). θ (t)
represents the TB of the projection of the main axis in the shear
plane. In contrast, at smaller values of λ (λ = 16 in Fig. 6),
significant deviations from the KS theory are manifested.
In particular, we observe the excitation of the fourth-order
harmonic, represented by cos(4θ ) in the figure when Ck is
increased up to 8. Note that, for Cκ = 10, other higher-order
harmonics are excited as well, which is a precursor to the
TB-VB or the TB-K bifurcation.

We find that K takes place at much larger values of λ than
reported in [21], and we did not see evidence for coexistence
with TB. Figure 8 shows a typical behavior of the two K angles.
Note, finally, that all spherical harmonics of odd and even
orders are free to develop in the numerical scheme. We have
checked that odd harmonics (such as third-order harmonics)
are absent from dynamics. If noise were present, it may induce
odd harmonics (like third harmonic observed in experiments
[32]), but the effect of noise is beyond the present study.

Another fact is the quasirobust character of the rescaled
period (Fig. 9) as a function of the deformation regardless of the
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x

y

Applied shear

ψ θ

z

FIG. 7. (Color online) A shape of a vesicle in the K regime
showing the the two angles of K. The parameters are τ = 0.95,
Cκ = 5, λ = 20.

dynamical mode (TB, VB, or K) (only minor variations by few
percent are manifested over a range of a decade in shear rate).
This finding is not intuitive in as much as deformation (at large
enough Cκ ) plays an essential role (strong deviation from the
KS theory). This result seems not to agree quantitatively with
previous numerical analysis [22]. The ratio of their frequency
over the KS one undergoes a larger variation (see their Fig. 2)
in the explored shear rates, while our results (Fig. 9) show a
weak variation.

We have checked that the same quasi-independence on Cκ

is also manifested in the new analytical theory [37]. Note that
the work of Ref. [22] contains fluctuations that may account for
the quantitative difference. Further studies would be needed
before a firm conclusion can be reached.

An experimental study on the TB regime has been reported
by Mader et al. [16]. Their Fig. 5 shows a deviation from the
KS theory (their period is larger than the KS period). However,
the authors did not report on the actual period, but rather they
extracted the period from a fit with the KS theory. Their results
are consistent with ours, as explained below.

15.1 15.2 15.3 15.4
 κ  t / η

in
 R

3

-80

-60

-40

-20

0

20

40

60

80

 θ
  a

nd
  ψ

 (d
eg

re
es

)

in plane angle  θ
kayaking angle  ψ

FIG. 8. (Color online) The two angles of K, one in the shear
plane measured as a deviation of the major vesicle axis from the flow
direction and the other represents the angle of of the cone of the K;
the main axis describes a cone about the perpendicular to the plane
of the shear flow (see movies [25]). The parameters are τ = 0.95,
Cκ = 5, λ = 20.

5 10
Cκ

10

12

γT

λ=11 BI data
λ=11 KS value
λ=16 BI data
λ=16 KS value
λ=20 BI data
λ=20 KS value

τ=0.95 VBTB

KayakTB

TB

.

FIG. 9. Rescaled TB period for τ = 0.95 as a function of the
deformability Cκ for λ = 11, 16, and 20.

In order to compare our results with the experimental
finding, we must, like experiments, force our data to fit with the
KS [17] theory, from which we determine the TB frequency
or period. This theory is indeed often used to fit the variations
of θ (t), where t is time, that can be measured experimentally
or numerically. In the TB regime, the KS formula [17] is

θ (t) = arctan

(√
A2 − B2

A − B
tan(

√
A2 − B2 t)

)
. (20)

Once the two coefficients A and B are determined, the
period is easily obtained as T = π/

√
A2 − B2. This procedure

can be the source of very strong errors when the KS theory
becomes inaccurate. We show an example of such a behavior in
Fig. 10. This figure shows a fit of θ (t) with expression (20) for
λ = 16 and Cκ = 11, where the KS theory is not applicable,
as can be easily seen in Fig. 11. It is impressing to see
how excellent is the fit in the region where the dynamics
is slow (θ ∈ [−π/4,π/4]) in Fig. 10. This region is indeed
the experimentally accessible one; outside this interval the
variation is so fast that usually no point can be measured.
Thanks to the very small time step used numerically the full
curve θ (t) is easily obtained (the solid line of Fig. 10). While
the true period γ̇ T = 9.5, the fit with the KS formula gives
γ̇ T = 11.3, which corresponds to an overestimation of the
period by 20%. A good fit of the data for θ ∈ [−π/4,π/4] is
not a good criterion to test the validity of the KS theory. To
show the variation of the fitted period with the deformability,
we compare the true period to the result of the fitting procedure
for λ = 16 and Cκ between 1 and 11 in Fig. 12. While the true
period remains nearly constant, the period obtained with the
KS theory exhibits an apparent rapid growth with Cκ . This
increase is an artifact of the fitting procedure. Note that in
another (theoretical) paper by Mader et al. [38] a toy model
was presented. There the authors (their Fig. 5) have (as done in
experiments) fitted their data with the KS theory. Their period
obtained from the fit shows the same trend as reported here (the
crosses in Fig. 12), and more interestingly it varies by about
30% (a variation which is close to what found here) before it
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FIG. 10. θ as a function of time (t) for λ = 16, Cκ = 11, and
τ = 0.95. The dashed line corresponds to a fit with the KS theory.
The solid black line with the circles corresponds to the BI simulation.
The temporal resolution of the BI simulation corresponds to 400 time
steps between two circles. Although the fit seems excellent in the
central part of the graph, the period given by this fit is 20% larger
than the true one.

saturates at larger Cκ (saturation that occurs in our numerical
simulations at about Cκ = 20 is not shown here).

Finally, it is worth emphasizing that the transient dynamical
regime can prove to be very slow, especially at large values
of Cκ . It is necessary to ascertain the establishment of a given
regime on the scale of the longest time. For large enough λ,
the appropriate (slow) time scale is τκ = ηinR

3/κ; motion is
limited by the more viscous internal fluid. For Cκ = 10, this
may typically represent a hundred cycles in the TB regime.
Here it suffices to provide an illustration exhibiting the slow
relaxation (Fig. 13). The VB amplitude close to the TT-VB line
(λ = 9, Cκ = 8) is shown. We find an exponential relaxation

-π/2 -π/4 0 π/4 π/2
θ

-4

-3

-2

-1

0

dθ
/γ

dt

BI data points
fit with KS 

λ=16, Cκ=11, τ=0.95

.

FIG. 11. (Color online) θ̇ as a function of θ for λ = 16, Cκ =
11, and τ = 0.95. The circles are the BI results, while the squares
correspond to the fit with the KS theory for θ ∈ [−π/4,π/4]. We
clearly see that higher harmonics not included in the KS theory are
present.
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Cκ
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9.5
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12

γT BI data
fit with the KS theory

τ=0.95
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.

FIG. 12. Rescaled TB period for τ = 0.95 as a function of the
deformability Cκ for λ = 16. The circles are the BI simulation results
while the crosses correspond to the fit with the KS theory. The fitted
period increases rapidly with Cκ while the true period is almost
constant.

of the VB amplitude. The vesicle reaches its steady state only
after a characteristic time of about 30ηinR

3/κ , corresponding
to 125 oscillations. This critical slowing down was also
discussed analytically in Ref. [21]. Note that it is likely very
hard to approach the transition boundary in experiments, due
in particular to fluctuations. Membranes’ thermal fluctuations
will probably affect the location of the boundaries in the
phase diagram. Experiments [32,33] report that fluctuations
are important for the type of vesicles that were studied, and
they show that third-order harmonics is excited. Nevertheless,
experiments have attempted a systematic comparison with
Lebedev et al. [21] analysis which does not include any
fluctuation. Inclusion of fluctuations in a future theory should
be essential to guide experiments. If one takes parameters
away from the bifurcation line, then the relaxation time
toward the final regime is shorter (see Fig. 14), of order of
few τκ ’s.
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FIG. 13. Long time relaxation of the vesicle close to the TT-VB
line. The inset shows a log plot of the vacillation amplitude.
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FIG. 14. Relaxation of the vesicle inside the VB region. The inset
shows a plot of the vacillation amplitude at small time revealing that
an ellipsoid initially oriented along the flow reaches the VB regime
quite quickly.

Experiments [32] have reported on the time scale of
transition from TT to VB (called TR there) and TT to TB.
As can be seen from their Fig. 5, it is not easy to state that
the amplitude of TR or TB has reached a permanent regime.
In addition, no statistics is provided, so that it is difficult to
extract a precise time scale. Nevertheless, if we admit that the
permanent regime is reached then the time scale is of about
few periods, and this is in a reasonable agreement with our data
of Fig. 14, where the relaxation time if of about ten periods;
note that after the first three periods of our inset of our Fig. 14
the amplitude varies by only few percent, so that it is hard to
detect experimentally these small amplitude variations given
intrinsic experimental error bars.

V. COMPARISON BETWEEN THE PRESENT PHASE
DIAGRAM AND THE EXPERIMENTAL ONE

It is always difficult to compare simulation data with exper-
iments, especially in the context of quasispherical vesicles,
as discussed above, but it is tempting to superimpose our
phase diagram for τ = 0.95 with the very nice phase diagram
obtained experimentally in [32]. This comparison is found
in Fig. 15. It is important to mention that the experimental
diagram includes vesicles with different reduced volumes, and
the phase boundaries are thus necessarily broader than the
theoretical ones, obtained for τ = 0.95. The parameters �, �,
and S used in [32] are defined as

� = 4π (τ−2/3 − 1), � = 4
√

�√
30π

(
1 + 23

32
λ

)
,

(21)

S = 7π

3
√

3�
Cκ.

These variables originate from the early theoretical approaches
[21] that predicted a phase diagram with no dependence in
� (τ in our variables). To make clear that the phase diagram
indeed depends on τ , meaning that in total three dimensionless

Theory [36]
Tumbling (TB)
Vacillating (VB)
Tanktreading (TT)
Theory [21]

TB

VB

TT

FIG. 15. (Color online) Comparison with the experimental phase
diagram by Deschamps et al. [32]. The symbols carrying error bars
correspond to experimental data of Deschamps et al. [32] where the
gray bands are guides for the eye (drawn in Ref. [32] in order to
delimit the region of the VB mode, called there TR, or trembling).
The blue triangles, green circles, and red squares are results from
the present numerical simulations. Also shown is the theory by
Farutin et al. [37] (solid line) and the theory of Lebedev et al. [21]
(dashed-dotted lines).

parameters are relevant, in contrast to the single available
experimental report [32], we present the phase diagram for
τ = 0.95 and τ = 0.8 (Figs. 16 and 17) in the rescaled
variables � and S. We can easily see that the two phase
diagrams differ, and more specifically the VB phase is shifted
upward when τ decreases. The same behavior is recovered by
the analytical calculation [37]. Note also that the VB band in
the numerical data (Fig. 17) lies above the VB experimental
band, meaning that for this value of excess area (about 2) our
band is shifted upward by about a factor 1.7 on the average.
Furthermore, according to the experimental data it is likely
that thermal fluctuations play a significant role. Inclusion
of thermal fluctuations should constitute an interesting step

1 10 100
S

1

2

3

4

Λ

Theory [36]
Tumbling (TB)
Vacillating (VB)
Flow alignment
Tanktreading (TT)
Kayaking (K) TB

VB

TT
Theory [23]}

Kτ=0.95, Δ=0.437

FIG. 16. (Color online) Phase diagram for τ = 0.95 in the
variables � and S. Numerical simulations are represented with
symbols. Also shown are the theory of Danker et al. [23] (dashed
line) and of Farutin et al. [37] (solid line).
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FIG. 17. (Color online) Phase diagram for τ = 0.80 in the
variables � and S. The scale is identical to the scale of Fig. 16.
The solid and dashed lines are guide for the eyes.

toward a more complete comparison between theory and
experiments.

VI. COMPARISON BETWEEN EXPERIMENTS
AND THE NUMERICAL CALCULATION

IN THE TANK-TREADING REGIME

The TT regime of vesicles has been investigated experi-
mentally in Ref. [24] for different excess area (or reduced
volume). We would like to compare their results to ours. We
represent the results in terms of the variable � defined above.
This choice is made in order to compare with the results of
Ref. [21], where it was suggested that in the TT regime the
TT angle would practically depend on a single parameter only,
namely �. Indeed, the second parameter S plays almost no
role, since its value is of about 400 (recall that Cκ = 100) and,
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Cκ=100

FIG. 18. (Color online) The TT angle as a function of � for
different excess area. We compare experimental data of Kantsler and
Steinberg [24] (their Fig. 2 where data are converted in terms of the
variable �) versus simulations and theories of Lebedev et al. [21]
and Farutin et al. [37].

from the equations of Ref. [21] in the TT regime, one can easily
see that the correction to the TT angle is of about 1/S. The
various results (theory, present simulations, and experiments)
are reported in Fig. 18 for the different excess area from
a sphere explored experimentally [24]. The results show a
rather satisfactory agreement between the present work and
experiments. Some deviations are found, however, at small
angles. It is likely that in the small angle regimes thermal
fluctuations (together with inherent difficulty in estimating the
angle) may explain these deviations. A firm conclusion on the
origin of deviations at small angles is at present not achieved
yet. The experimental data reported in Fig. 18 are extracted
from Fig. 2 of [24]. In a later paper by the same group [32]
some discussion about error bars is presented. However, the
authors did not provide any new figure replacing Fig. 2 of their
earlier publication [24].

Another important remark is that both experiments and the
present simulations show that the TT angle depends, besides �,
on the excess area from a sphere. From the experimental data
(as well as from the simulations), it is seen that the position
of the zero angle (which is very close to the bifurcation point
toward the VB mode at large enough Cκ , the experimentally
explored range; we have set Cκ = 100) depends significantly
on the excess area.

VII. CONCLUSION

We have reported on a quantitative numerical analysis
in three dimensions that led us to identify new features of
vesicle dynamics, which were not revealed in prior analytical,
numerical, or experimental studies. We have discussed the four
types of motions, namely, TT, TB, VB, and K. We have found
that the dynamics (as well as the phase diagram) is sensitive to
three dimensionless parameters, and not only two, as reported
in [21,32,33]. Our finding agrees with the analytical theory [37]
in the small excess area limit (the range of applicability of the
theory). The TB period rescaled by the shear rate is found to
be quite insensitive to the shear rate, in good agreement with
the KS theory. In the vicinity of the K mode large deviations
of the KS equation θ̇/γ̇ = A + B cos(2θ ) are found.

Our vesicle model has considered the standard ingredients:
Stokes flow with viscosity contrast, bending rigidity, and
membrane incompressibility. Other effects have not been
included here and should constitute interesting tasks for
future investigations: (i) What is the influence of thermal
fluctuations? (ii) What is the role of the spontaneous curvature?
(iii) what are the effect of the membrane internal dissipation
(i.e., by considering the possibility that the two membrane
monolayers slide with respect to each other) and the membrane
viscosity?

Finally, regarding RBC dynamics and blood rheology, an
obvious limitation of our work is the absence of shear elasticity
associated with the cytoskeleton. An analysis that includes this
factor constitutes the next natural step.
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