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Collective behavior of brain tumor cells: The role of hypoxia
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We consider emergent collective behavior of a multicellular biological system. Specifically, we investigate the
role of hypoxia (lack of oxygen) in migration of brain tumor cells. We performed two series of cell migration
experiments. In the first set of experiments, cell migration away from a tumor spheroid was investigated. The

second set of experiments was performed in a typical wound-healing geometry: Cells were placed on a substrate,
a scratch was made, and cell migration into the gap was investigated. Experiments show a surprising result: Cells
under normal and hypoxic conditions have migrated the same distance in the “spheroid” experiment, while in
the “scratch” experiment cells under normal conditions migrated much faster than under hypoxic conditions. To
explain this paradox, we formulate a discrete stochastic model for cell dynamics. The theoretical model explains
our experimental observations and suggests that hypoxia decreases both the motility of cells and the strength of
cell-cell adhesion. The theoretical predictions were further verified in independent experiments.
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I. INTRODUCTION

Collective behavior of living cells [1] is an intriguing
and challenging phenomenon not only from the biological
perspective, but also from the physical point of view. This
explains an increasingly growing interest about this subject in
the physics community [2]. A remarkable range of collective
behavior is displayed in morphogenesis [3], wound healing [4],
and tumor growth [1,4,5]. In the present study, we focus on
the invasion of aggressive malignant brain tumors [6].

Gliomas are the most common type of primary brain
tumors [7]. A hallmark of malignant gliomas is their ability
to invade into surrounding brain tissue. Glioma cells not
only proliferate (divide), but detach from the tumor core
and actively migrate away into the extracellular matrix [4].
Therefore, surgery is commonly noncurative as cells invade
the brain and escape resection [8]. The invasive nature of
malignant brain tumors often leads to recurrence: formation
of distant recurrent (secondary) tumors in the invasive region.
Experimental observations show that cells on the surface of
a primary tumor (so-called proliferative cells) divide much
more frequently than individual invasive cells [8,9]. However,
invasive cells might form clusters, which can eventually
develop into secondary tumors.

In experiments, the growth of glioma spheroids in trans-
parent gel has been investigated. The observed patterns are
different for two cell lines; the mutant cells (U87-AEGFR)
form small clusters within the invasive region, while the
wild type cells (U87) do not cluster [10,11]. More strikingly,
when cells are placed on a substrate, wild type cells remain
homogeneously distributed over the system, while mutant type
cells eventually form clusters, which grow with time [12].
Using discrete stochastic modeling [12,13], we have shown
that radically different morphologies can result even from
small differences in the strength of cell-cell adhesion. When
the adhesion parameter becomes larger than its threshold
value, the uniform system becomes unstable, which leads to
phase separation: Clusters coexist with individual migrating
cells. This idea was inspired by a very different physical
phenomenon: a ferromagnetic phase transition in the Ising
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model [14]. Importantly, the theoretical predictions were
verified in a separate experiment [12].

The main focus of the present work is on an intriguing
question: How does hypoxia (lack of oxygen) affect cell
behavior? Cells inside a primary brain tumor are regularly
subjected to hypoxic conditions. It is well known that
hypoxia leads to increased tumor invasion [15]; however,
the mechanism of this phenomenon remains unclear. How
do hypoxic conditions affect cell motility, cell proliferation,
and cell-cell adhesion? We investigated these problems both
experimentally and theoretically; we further confirmed our
theoretical predictions in additional experiments.

II. EXPERIMENTS

A series of experiments were performed with cells cultured
under normoxic (20 percent oxygen) and hypoxic (less
than 1 percent oxygen) conditions. First, we measured the
proliferation rate of normoxic and hypoxic cells. There, cells
were placed uniformly on a substrate, and the cell density
was measured as a function of time. In all the experiments
we performed, culture wells were polystyrene, modified
by incorporation of oxygen ions, producing a surface that
becomes hydrophilic and negatively charged when medium
was added, which enabled cell attachment and spreading.
We checked that the cells remain uniformly distributed over
the system and did not form clusters [12]. We fitted the
experimental growth curves with the modified logistic growth
formula, solving the equation

du i

T o(u)u, ey
where the rate of proliferation depends on the local area
fraction (normalized cell density) 0 < u < 1. There are many
ways to model the density dependence of the proliferation rate.
For example, one can consider o (u) = o (1 4+ u)?(1 — u).
Here, B = 0 gives the usual logistic growth formula; it is
known, however, that the proliferation rate is more or less
constant at small and intermediate densities and decreases
at high densities due to contact inhibition effect. Another
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FIG. 1. (Color online) U87 glioma cell proliferation on a sub-
strate: cell number as a function of time. Symbols show experimental
results for cell proliferation under normoxic (circles) and hypoxic
(squares) conditions. A theoretical fit given by Eq. (1) for the
two expressions for o(u): oy(u), B = 1.73, solid lines and o, (u),
v = 6, dashed lines. The parameters are uy = 0.14, « = 1/29 hour™!
(upper solid line) and o = 1/53 hour™! (lower solid line); uy = 0.14,
a = 1/29 hour™! (upper dashed line) and & = 1/50 hour~! (lower
dashed line).

way to generalize the standard logistic growth is to assume
or(u) = a(l —u’), a well-known Richards growth function,
which is widely used in biology [16]. We found that hypoxia
reduces cell proliferation. For the two growth formulas, the
results are almost identical: The measured proliferation rates
are porm = 1/29 hour™' and oy, = 1/53 hour™! [using
ai(u)] or opy, =1/50 hour™! [using o, (u)]. The resulting
growth curves are shown in Fig. 1. The computed proliferation
rates were verified in an independent experiment, where cells
were stained with Ki67 (a cellular marker for proliferation),
and the number of proliferating cells under both normoxic and
hypoxic conditions was directly counted.

Then we performed two different experiments on cell
migration. In the first experiment, glioma spheroids were
placed on a substrate (hereinafter “spheroid” experiment).
The experiment lasted for 60 hours; cells detached from the
spheroids and migrated away. We took pictures every 12 hours
and measured the distance that cells migrated (invasive radius)
as a function of time for both normoxic and hypoxic cells.
Figure 2 shows the time dependence of the invasive radius.
One can see that the overall migration of the cells in either
normoxic or hypoxic conditions was similar.

The second experiment that we performed showed an op-
posite result! We placed cells uniformly on a plastic substrate
and scratched a 2-mm-wide gap, creating a typical wound-
healing geometry (hereinafter “scratch” experiment). We then
followed the dynamics of the gap closure, under both normoxic
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FIG. 2. (Color online) U87 glioma cell migration away from a
tumor spheroid. The upper panel shows the invasive radius as a
function of time for both normoxic (dashed line, squares) and hypoxic
(dotted line, circles) cells; the results are averaged over 4 sets of
experiments. The lower panel shows a snapshot of the system kept
under hypoxic conditions (view from above) 60 hours after beginning
of the experiment; the outer circle shows the borders of invasive
region; the invasive radius here is approximately 1200 pm.

and hypoxic conditions; Fig. 3 shows a representative snapshot
24 hours after the beginning of the experiment. Surprisingly,
in the wound-healing assay, hypoxic cells migrated less then
normoxic cells. Analyzing experimental images, we computed
the distance that cells migrated, averaging over many sets of
experiments and over the lateral coordinate. We observed that
the front of normoxic cells had moved 1.02 £ 0.21 mm in
24 hours whereas the front of hypoxic cells had moved only
0.73 £ 0.14 mm. How can this paradox be explained?

The first naive attempt to attack this problem would be the
following. Cell invasion is often modeled as propagation of
fronts of cells that can be described by the Fisher-Kolmogorov
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FIG. 3. (Color online) U87 glioma cell migration on a substrate:
closing the scratch. Initially cells were uniformly placed on a
plastic substrate, and a 2-mm-wide scratch was made (upper panel).
The lower panel shows a snapshot of the system 24 hours after
the beginning of the experiment, under normoxic conditions. We
measured the distance that cells had migrated in 24 hours for both
normoxic and hypoxic cells. Averaging over many experimental
runs and over the lateral coordinate shows that normoxic cells
have migrated 1.02 £0.21 mm, and hypoxic cells have migrated
0.73 £ 0.14 mm.

equation for the normalized local density of cells, u(x,?)
[4,17]:

ou 0u

EzDﬁ—qu(l—u). 2)
Here the local cell density u changes in time due to cell motility
(the first term on the right hand side) and cell proliferation
(the second term on the right hand side). For the constant
proliferation rate «, the basic velocity of cell invasion is
v = 2+/Da [4,17], where D is the cell diffusion coefficient.
According to the spheroid experiment, normoxic and hypoxic
cells have migrated the same distance (so that the velocity of
front propagation is the same for both types of cells, Fig. 2).
Since normoxic cells proliferate faster than hypoxic ones,
Qnorm > CQlnyp, the hypoxic cells should have larger motility
(larger D). But then cells should have migrated the same
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distance in the scratch experiment as well. To explain this
controversy, we should take into account the phenomenon of
cell-cell adhesion.

III. DISCRETE STOCHASTIC MODELING

Agent-based modeling of cell migration has become
increasingly popular in recent years [5,18]. Here we
employ a discrete stochastic model for cell migration,
introduced in [12,13]; the modeling incorporates not only
cell proliferation and cell motility, but also cell-cell adhesion.
The basic unit of the model is a single cell. Consider
a two-dimensional square lattice (the same model can be
formulated in three dimensions); each lattice site can be either
empty or occupied by a single cell. The lattice distance is
taken to be 20 um, which is the effective diameter of a
glioma cell. A randomly chosen cell can either proliferate
to an empty neighboring site or migrate there, where the
probabilities for proliferation and migration are determined
from the experimentally measured rates of proliferation and
migration. The probability for proliferation is given by the
rate of proliferation times the characteristic diffusion time
a(n) = a(u = n/4)taug, where the expression for o(u) is
discussed after Eq. (1), t4i is the average time required for
a cell to move the distance equal its own diameter (this time is
of the order of 10 minutes), and 7 is the number of the nearest
neighbors (which can vary between 0 and 4). The probability
for migration is [1 — &(n)](1 — q)", where ¢g is the cell-cell
adhesion parameter. The case g = 0 represents no adhesion.
The probability for migration decreases as the adhesion
parameter g increases, since a cell needs to detach from its
neighbors. The adhesion parameter g can be experimentally
measured since it is related to the shed rate of invasive cells
from the tumor surface [12]. Cells with ¢ = 1 will not detach
from the tumor at all, so any measured shed rate corresponds
to g < 1. After each “single cell step,” the time is advanced
by t4itt/ N, where N is the current number of cells. The model
does not directly incorporate the cell-substrate (or cell-matrix)
adhesion, which is an important factor in cell migration [19];
however, it is taken into account indirectly. Cell-substrate
adhesion is known to affect cell migration [20]; therefore, a
specific migration time #4sr corresponds to a specific strength
of cell-substrate adhesion [21].

This model is now applied to describe the two main
experiments we performed: (1) Cells migrate away from the
spheroid and (2) cells migrate in the scratch wound geometry.
The four unknown parameters of the model are the respective
diffusion times and adhesion parameters for glioma cells under
normoxic and hypoxic conditions: #9™, tgiyff + Gnorms and Ghyp.
The distance r that the cells have migrated depends on these
parameters: r = r(t4ifr,q). We performed extensive numerical
simulations of the model, computing r for different sets of
parameters in the two settings, keeping the proliferation rate
o constant (assuming the experimentally found values for
proliferation). In the scratch wound geometry, we averaged the
results over many simulations and over the lateral coordinate.
In the spheroid geometry, we averaged the results over many
simulations and over the azimuthal direction.

Let us now plot curves r = const in the phase plane (¢4ir,q),
where the value of the constants is taken from experiments.
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Consider, for example, the scratch experiment with cells
under normoxic conditions. In the experiment, cells migrated
r = 1020 pum in 24 hours. In the model, we choose a value
of cell-cell adhesion parameter ¢ and compute r for various
diffusion times t4;r. Then we find the value of t4; for which
r = 1020 um. This gives a pair (¢4r,q). Choosing a different
value of g we get a different value of #4i¢. This procedure gives
the curve r = const in the (¢4r,q) phase plane. Figure 4 shows
four such curves. The upper panel describes simulations for
cells under normoxic conditions: The dotted line corresponds
to the spheroid experiment (Fig. 2), r = 1300 um; the
solid line corresponds to the scratch experiment (Fig. 3),
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FIG. 4. (Color online) Constant distance curves r(gifr,q) = Fexp
obtained from numerical simulations of the discrete stochastic model.
The distance that the cells have migrated depends on two parameters:
the diffusion time 74 and the adhesion parameter g. Shown are
four constant distance curves r = reyp, Which correspond to spheroid
(dotted lines) and scratch (solid lines) experiments for normoxic
(upper panel) and hypoxic (lower panel) cells. The region of probable
intersection between the two curves in each panel (shown by circles)
determines the cell parameters: #4;;r and g. Comparing the two regions,
one can see that rgx™ < sziyf? and Gporm > Gnyp- The experimental
parameters are 7e,, = 1.30 mm for spheroid experiments for both
normoxic and hypoxic cells (Fig. 2); for the scratch experiment
(Fig. 3) rexp = 1.02 mm and re, = 0.73 mm for normoxic and
hypoxic cells, respectively.
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r = 1020 um. The lower panel describes simulations for cells
under hypoxic conditions: The dotted line corresponds to the
spheroid experiment (Fig. 2), r = 1300 wm; the solid line
corresponds to the scratch experiment (Fig. 3), r = 730 pum.
Notice that the role of adhesion in the scratch wound geometry
is not high: The distance r depends on g rather weakly. In the
case of spheroid experiment, the role of adhesion is higher,
since cells first need to detach from the spheroid.

We seek parameters of the model that give the experimen-
tally observed values of distance that cells have migrated.
The region of probable intersection between the two curves
on the upper panel of Fig. 4 determines parameters (Z4is,q)
for normoxic cells; the respective region on the lower panel
of Fig. 4 determines parameters (Z4ifr,q) for hypoxic cells.
Comparing the two regions in the parameter space, one can
see that 13x™ < t;yf? and norm > Ghyp- The model suggests
therefore that hypoxia not only suppresses cell motility (in
contrast to our naive expectations), but it also substantially
reduces the strength of cell-cell adhesion. We find this result
to be quite important: The decreased cell-cell adhesion allows
hypoxic cells to detach from the tumor much easier, which
leads to an enhanced invasion, despite the decreased cell
motility.

Theoretical modeling is successful when it not only
describes the existing experimental observations, but also
can produce an experimentally testable hypothesis. One of
the main theoretical predictions of our model is that the
strength of cell-cell adhesion decreases due to hypoxia. To
test this hypothesis, we performed a Western blot to measure
expression of E-cadherin, an important transmembrane protein
that positively regulates the strength of cell-cell adhesion, for
example, in carcinomas [22] and gliomas [23]. E-cadherin is
known to act as an invasion suppressor molecule [22,23]. Our
western blot experiments showed a clear down-regulation of
E-cadherin 24 hours after cells had been placed under hypoxic
conditions. This finding clearly confirms our theoretical
prediction, and is consistent with a recent evidence that
hypoxia down-regulates E-cadherin in breast cancer cells [24],
see also [25]. Another important cell-cell adhesion molecule is
N-cadherin, the expression of N-cadherin is known to correlate
with the ability of cells to form aggregates [19]. We performed
another experiment to study the effect of hypoxic conditions
on the expression level of N-cadherins. Western blot showed a
clear downregulation of N-cadherins, similarly to what was
observed for E-cadherins. Thus, we verified that hypoxia
down-regulates cadherin expression decreasing the strength
of cell-cell adhesion.

IV. SUMMARY AND DISCUSSION

In summary, we demonstrated a successful application of a
physically inspired approach to complex biological multicellu-
lar dynamics. Using discrete stochastic modeling, we explored
the correspondence between the “microscopic” characteristics
of a cell (cell diffusion coefficient, cell proliferation rate,
and the strength of cell-cell adhesion) and the emerging
macroscopic collective behavior of these cells. Specifically,
we reproduced the experimental findings on migration of
glioma cells under normoxic and hypoxic conditions in two
different geometries and predicted a decrease both in cell
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motility and in the strength of cell-cell adhesion due to
hypoxia. We further confirmed the theoretical prediction on
decrease of cell-cell adhesion in independent experiments. As
we mentioned above, one can directly estimate the adhesion
parameter ¢ by measuring the shed rate of invasive cells from
the tumor surface; this was done in Ref. [12]. It is known
that cell-cell adhesion acts as a tissue surface tension [26],
it would be interesting to find a relation between g and the
surface tension of a tumor spheroid.

In this paper we investigated the effect of hypoxia employ-
ing discrete stochastic modeling. A promising approach in
modeling biological systems is connecting the “microscopic”

Pmnom+1)— P(n,m) =

Nl@l
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agent-based models and “macroscopic” continuum approach
[5,27]. Let us consider the discrete model employed in the
paper in case of zero adhesion, g = 0. Let us assume that the
probability for proliferation is much smaller than the probabil-
ity for migration. This is a reasonable biological assumption
for glioma cells, since the typical time for migration is much
smaller than the typical time for proliferation. In this case, the
probability that the site n is occupied, P (n), and the probability
that the neighboring site n + 1 (or the site n — 1) is occupied,
P(n + 1), are independent. Therefore, the master equation for
cell dynamics (in one dimension) can be written in the form

{P(n — 1,m)[1 — P(n,m)]} + % {P(n + 1,m)[1 — P(n,m)]} — g{P(n,m)[l — P(n—1,m)]}

—g {P(n,m)[1 — P(n + 1,m)]} + % {P(n — 1,m)[1 — P(n,m)]} + % {P(n + 1,m)[1 — P(n,m)]}

= %{D + &l — P(n,m)]} x [P(n — 1,m) —2P(n,m)+ P(n+ 1,m)]+ & P(n,m)[1 — P(n,m)], (3)

where P(n,m) is the probability that the site n is occupied
at a time step m, D is the probability to migrate to the
empty neighboring site, and & is the probability to proliferate
to an empty neighboring site. Neglecting the contribution
of proliferation to the diffusion term, we get the Fisher-
Kolmogorov equation for P(x,t) [and then Eq. (2) for the
normalized density u(x,?)] in the continuum limit.

The situation for a nonzero adhesion parameter is more
complicated. First, one can take a similar approach, writing
down the master equation, see Ref. [28] for more detail.
The resulting macroscopic equation is an elegant nonlinear
diffusion equation. However, this procedure is valid only for
small g, since for larger g, one cannot neglect correlations
between the neighboring sites, and the probabilities P(rn,m)
and P(n + 1,m) are not independent. It turns out that regime of
large ¢g is quite intriguing since the system may exhibit a phase
transition, see Refs. [12,13]. Using the analogy with Ising
model, we showed that the uniform system becomes unstable
for g > g., which leads to cell clustering [12]. Carrying
this analogy further, one can formulate a phenomenological
equation, which describes cell dynamics for any value of ¢,
and predicts a phase transition when g becomes larger than
a critical threshold [27]. The equation is the modified Cahn-
Hilliard equation with an extra proliferation term. In the limit
of zero adhesion, this equation tends to the Fisher-Kolmogorov
equation. The modified Cahn-Hilliard equation with an extra
proliferation term can describe front propagation [27]. The
propagating fronts are qualitatively similar to the Fisher-
Kolmogorov fronts for ¢ < ¢., but for ¢ > ¢g., a secondary
density peak can be observed in the “tail” region, which
represents cell clustering in the invasive zone [27]. There exist
other (more complicated) models of Cahn-Hilliard type that
incorporate the effects of cell-cell adhesion; see, for example,
Ref. [29].

In this paper, we studied cell migration on a substrate.
Although this in vitro setting allows investigation of the

behavior of glioma cells (for example, various aspects of cell
motility [30], cell spreading [31], or cell aggregation [12]),
the real in vivo geometry is three dimensional. To mimic
in vivo tumor growth, the dynamics of multicellular tumor
spheroids in gel can be considered [11,19,32]. Investigation of
cell invasion in these systems should take into account matrix
degradation [33]. This is an interesting direction of future
research.

The concept of emergence and emergent behavior in
biological systems has become increasingly popular in recent
years [1,34]. This concept addresses self-organization of
complex biological systems and emphasizes the qualitative
difference between the collective (macroscopic) behavior of
a large number of microscopic agents and the behavior of
individual agents. It is often claimed that complex biological
systems are irreducible, and emergent macroscopic behav-
ior cannot be predicted or deduced from the microscopic
behavior [35]. Here we show that this is not always the
case. In our model, the “microscopic” objects are individ-
ual glioma cells, 10-20 um in diameter (this is actually
a mesoscopic scale with respect to scales inside a cell).
Using the model, we successfully predicted the collective
cell behavior on a “macroscopic” scale, of the order of
millimeters, formulating a minimalist model with relatively
small number of parameters that nevertheless captures the
essential physics and biology. The model provides a con-
nection between the “microscopic” properties of individ-
ual cells (like the strength of cell-cell adhesion) and the
“macroscopic” properties of the emergent system (like the
velocity of propagation of cell density fronts). Importantly,
the model provided theoretical predictions that were further
tested in experiments. We demonstrated that employing
minimalist models (where their formulation is possible)
can substantially simplify the analysis and understanding of
the emergent collective behavior of complex multicellular
systems.
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