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Oscillation propagation in neural networks with different topologies
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In light of the issue of oscillation propagation in neural networks, various topologies of FitzHugh-Nagumo
neuron populations are investigated. External Gaussian white noise is injected into the first neuron only. Before the
oscillation spreads to the other neurons in the network, some of the inherent stochasticity within the noise-induced
oscillation of the first neuron is filtered out due to the neuron’s nonlinear dynamics. Both the temporal and the
spatial coherence of the evoked activity’s propagation are analyzed in conjunction with the network topology
randomness p, the coupling strength between neurons g, and the noise amplitude D. The temporal periodicity of
the global neural network presents a typical coherence biresonance (CBR) characteristic with regard to the noise
intensity. The network topology randomness exerts different influences on the resonance effects for different
coupling strength regimes. At an intermediate coupling strength, the random shortcuts reinforce the interactions
between the neurons, and then more stochasticity in the firings of the first neuron spreads within the network.
Consequently, CBR is decreased with the increase of the network topology randomness. At a large coupling
strength, the random shortcuts assist the nonlinearity in impairing the stochastic components, and consequently
help to enhance the resonance effects, which differed significantly from previous related work. However, the
degree of the spatial synchronization of the systems increases monotonically as the network topology randomness
increases at any coupling strength.
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I. INTRODUCTION

Excitability is a common property of many systems in
nature, such as the retina [1], heart tissues [2], aggregating
amoebae [3], and the Belousov-Zhabotinsky (BZ) reaction
[4,5]. Excitable systems have only one stable steady state but
are highly sensitive to perturbations. Perturbations above a
small threshold can make an excitable system undergo large
excursions in phase space before eventually returning to the
original rest state. Neurons, an important class of excitable
systems, are constitutive elements of the biological brain [6]. In
a neural system, when perturbation is imposed on one neuron,
spikes are accordingly generated in the neuron and transmitted
to other neurons by means of synaptic coupling. Most neurons
communicate with each other by the means of spike trains,
which is believed to support information processing in the
brain. In recent years, many investigations have been devoted
to the propagation of excitation between neurons. For instance,
the mean and standard deviation, as well as the coefficient of
variation, of the interspike intervals in the second element have
been studied when three kinds of noise are added to the first
element in a coupled excitable system through both a computer
simulation and a circuit experiment [7]; Rosa et al. [8] have
observed the arising of a new slow regular rhythm along a chain
of Hindmarsh-Rose neurons which are coupled by inhibitory
connections; Li et al. [9] have reported the spatiotemporal
dynamics of coupled FitzHugh-Nagumo neurons and found
that noise-induced oscillation of the first neuron is propagated
along the chain with noise suppression. However, in these
studies, the connections between the neurons are one-way
or unidirectional. It is known that a real neural system, as
well as many other systems, exhibits much more complex
connectivity.
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Many systems composed of dynamical units can be de-
scribed by networks with nodes representing units and edges
representing interactions among units [10]. The neural network
of the worm Caenorhabditis elegans, the power grid of the
western United States, and the collaboration graph of film
actors have all been shown to share some common “small-
world” network characteristics [11]. The small-world network,
proposed by Watts and Strogatz in 1998, stands for a network
interpolating between a regular network and a completely
random network and was developed in an effort to understand
the high degree of coordination in cricket chirps. The two
main properties of such a small-world network are that it has
a large clustering coefficient like a regular network, while at
the same time having a short characteristic path length similar
to a completely random network. The clustering coefficient is
defined as the extent to which nodes connected to any node
in a network are connected to each other. The characteristic
path length represents the number of edges in the shortest
path between two nodes of a network, averaged over all node
pairs. The topological properties of small-world networks and
the effects of small-world topology on dynamical behavior
in nonlinear networks have been studied intensively [12–17].
For example, it has been reported that a localized transient
stimulus results either in self-sustained persistent activity or in
a brief transient followed by failure at low densities of directed
random connections in a small-world integrate-and-fire neuron
network [14]. It has been shown that a small-world network
is efficient for information exchange [15] and can enhance
the efficiency of associated memory [16]; the storage capacity
and the retrieval time of Hopfield-type neural networks for four
network structures, including small-world network structure,
have also been studied in detail [17].

It is a fact that real neurons are usually exposed to external
or inherent noise and work in noisy conditions. Noise plays
an important role in the dynamical behavior of neurons. At
an optimal noise intensity the regularization of noise-induced
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response in the form of spike trains is maximized in a neural
system without an external drive, which is known as coherence
resonance (CR) [18]. Experimental evidence of CR has been
reported in the coherence between spinal and cortical neurons
in the somanosensory system of an anesthetized cat [19].
In this study, the constructive role of noise is discussed
concerning networks composed of FitzHugh-Nagumo (FHN)
excitable cells with varying topological structures, where only
the first neuron is subject to the external noise. The results
show that noise-induced oscillation of the first neuron can
be transmitted to the others with noise suppression. The
specific propagation case in each neuron depends strongly
on the coupling between neurons and the network topology.
The temporal coherence of the network presents a typical
coherence biresonance characteristic. Increasing randomness
of the network structure decreases the temporal coherence
at not large coupling strength, while it promotes the spatial
synchronization of the networks at any coupling.

II. MODEL DESCRIPTION

The model used here consists of FHN neurons in which a
small-world network topology is constructed as follows. First,
a regular ring of N neurons is considered, and each neuron
connects to its nearest k neighbors by undirected edges; thus,
there are 1

2Nk edges in the entire graph. A neuron is selected
at random as the first neuron and the other neurons are marked
clockwise by their numbers. Next, each edge is visited once
and, with the rewiring probability p, removed and reconnected
to a randomly chosen neuron. It should be noted that many
network realizations exist for a given p. Herein, that N = 100
and k = 4 is set, and p takes different values between 0 and
1. For clarity, taking N = 40 and k = 4 as an example, three
realizations of this process for different values of p are shown
in Fig. 1. For p = 0, only local connections are present; the
graph becomes more random with the increase of p until p =
1; any two neurons in the network are connected with the same
probability (global connectivity). The FHN model investigated
in this work is simplified from the Hodgkin-Huxley (HH)
model and is amenable to analysis, although it does not have as
firm an experimental basis as the HH model. The FHN model
has been widely used in neuroscience to study various neural
activities, such as spiral waves [20], synchronization [21],
stochastic resonance [22,23], and CR [24,25]. The dynamics

Increasing randomness 
p=0 p=1.0

Regular Small-world Random

FIG. 1. The illustration of network topology transformation,
starting from a regular network via a small-network network to a
completely random network.

0 20 40 60 80 100

-2
-1
0
1
2

0 20 40 60 80 100

-2
-1
0
1
2

0 20 40 60 80 100

-2
-1
0
1
2

0 20 40 60 80 100

-2
-1
0
1
2

x 1

t (arb. units)

t (arb. units)

t (arb. units)

t (arb. units)

(a)

x 2

t

(b)

x 25

t

(c)

x 50

t

(d)

FIG. 2. The time series of x1,x2,x25, and x50 at ε = 0.01, a =
1.02, p = 0, g = 0.01, and D = 0.05.

of the FHN neuron are described by the following equations:

ε
dxi

dt
= xi − x3

i

3
− yi + gij (xj − xi), (1)

dyi

dt
= xi + ai. (2)

Here i and j running from 1 to N are the numbers of
the neurons. xi(t) is a fast voltage variable representing the
membrane voltage of the ith neuron, and yi(t) is a slow

0 20 40 60 80 100

i

t (arb. units)

51

100
1

2

50

FIG. 3. The spatiotemporal evolution of all 100 neurons at ε =
0.01, a = 1.02, p = 0, g = 0.01, and D = 0.05.
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recovery variable. The time constant ε = 0.01 determines
the speed of the firing process. The parameter ai is a control
parameter of the ith neuron. For a single FHN model, if
|ai | > 1, the system only has a stable fixed point, whereas if
|ai | < 1 then a limit cycle appears. The system with fixed-point
dynamics (|ai | slightly larger than unity) is excitable because it
will return to the fixed point only after a large excursion when
perturbed away from the fixed point. Herein, ai , the control
parameter, is set to 1.02 and is supposed to be the same for
each neuron. gij is the coupling parameter between the two
neurons i and j, and its value is determined by the coupling
pattern of the system. If these two neurons are coupled to
each other, gij is a determinate value g; otherwise, gij = 0.
When a noise source term is inserted into Eq. (1) of the first
neuron, the dynamical equations of the first neuron are as
follows:

ε
dx1

dt
= x1 − x3

1

3
− y1 + g1j (xj − x1) + ξ (t), (3)

dy1

dt
= x1 + a1, (4)

where ξ (t) is Gaussian white noise with 〈ξ (t)〉 = 0, and
〈ξ (t)ξ (t ′)〉 = 2Dδ(t − t ′). D is the strength of ξ (t).

III. RESULTS AND DISCUSSION

The differential equations (1)–(4) are numerically inte-
grated using the Euler scheme with a fixed time step of 0.002.
Figures 2(a)–2(d) show the time series of x1,x2,x25, and x50,
respectively. Spikes are generated in these four neurons. The
dispersion of the interspike intervals of x1 is less regular than
for the others and the oscillation amplitude of x1 is slightly
larger compared with the other neurons. It is indicated that
noise-induced oscillation of the first neuron transmits to the
others by coupling with noise suppression. The spatiotemporal
evolution of the membrane voltage of all 100 neurons in the
network is shown in Fig. 3.

To quantitatively characterize the temporal coherence of the
firings in a neuron, the coherence factor Ri of the oscillation
of the variable xi is obtained by the following formula:

Ri =
√

var (Tk)

〈Tk〉 . (5)

Here Tk = tk+1 − tk , and tk is the time of the kth pulse in
the time series of xi . A smaller Ri corresponds to a better
spiking regularity. This quantity is of biological importance
because it is related to the timing precision of the information
processing in neural systems [26]. Note that a pulse occurs

10
-3

10
-2

10
-1

0.00

0.15

0.30

0.45

0.60

0.75

R

D (arb. units)

p=0

p=0.05

p=0.2

p=0.5

p=1.0

(a)

10
-3

10
-2

10
-1

0.00

0.15

0.30

0.45

0.60

0.75

R

D (arb. units)

p = 0

p = 0.05

p = 0.2

p = 0.5

p = 1.0

(b)

FIG. 4. The coherence factor R versus the noise intensity D at different rewiring probabilities p with (a) g = 0.0075; (b) g = 0.01; (c) g =
0.015; (d) g = 0.03. ε = 0.01, a = 1.02.
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when the state variable x exceeds a certain threshold value
x0 (here taken arbitrarily as x0 = 1.0) and it turns out that
the threshold value can vary in a wide range without altering
the results. The temporal coherence of the whole network is
measured by the average factor R,

R = [〈Ri〉] , (6)

where 〈·〉stands for the average of all the neurons except for the
first one and [·] denotes averaging over 30 different network
realizations for each p.

To measure the spatial synchronization of the system
quantitatively, the standard deviation σ is defined as in Eq. (7):

σ = [〈σ (t)〉] , σ (t) =

√√√√√√
[

1
N

N∑
i=1

xi(t)2 −
{

1
N

N∑
i=1

xi(t)

}2
]

(N − 1)
,

(7)

where 〈·〉 stands for the average over time and [·] has the
same meaning as in Eq. (6). Larger σ (t) corresponds to larger
deviation between the neurons, and smaller σ (t) represents
better synchronization.

Figures 4(a)–4(d) plot the coherence factor R against the
input noise intensity D achieved at different rewiring probabil-
ities p and coupling strengths g. Each curve in Figs. 4(a)–4(d)
presents a typical coherence biresonance (CBR) characteristic;
that is, two optimal coherence factors, Ropt1 and Ropt2, exist
which correspond to two optimal noise intensities, Dopt1 and
Dopt2, respectively. When g = 0.0075, the curves trend to
overlap, indicating that the effect of the topological structure on
the system’s dynamical behavior is feeble at a weak coupling
strength. When g increases to 0.010, one can see that the two
minima of R rise as the rewiring probability p increases, which
suggests that the increase of the disorder of the network plays
a negative role in enhancing CBR under these circumstances.
When the coupling strength increases further to g = 0.015
[see Fig. 4(c)], the damaging effect of the randomness of the
network on the spiking regularity of the neurons becomes more
obvious compared to Fig. 4(b). It is shown that CBR is greatly
suppressed in the case of p = 0.05. With the increase of the
network topology randomness (see the curves for p = 0.20
and p = 0.50), CBR is decreased even more. However, when
the network becomes completely random (p = 1.0), CBR is
not decreased any further and the corresponding curve almost
overlaps with the one representing p = 0.50. The dynamical
behavior of the neurons at g = 0.030 clearly differs from those
at the other three coupling intensities. As shown in Fig. 4(d),
increasing the disorder of the network enhances CBR instead
of suppressing it. However, when comparing the values of
Ropt1 and Ropt2 at the same rewiring probability but different
coupling strengths, it is obvious that Ropt1 and Ropt2 are the
largest at g = 0.030, as shown in Fig. 5.

Combining the viewpoints of Li and Lang [9] and
Miyakawa et al. [27], the oscillation propagation phenomenon
above might be understood in this way: The original firings
transmitted from the first neuron to the others are more or
less irregular; however, the nonlinearity of the neurons can act
as a “filter” and eliminate partly stochastic components in the
firings. Therefore, the coherence of the firings in other neurons

FIG. 5. The optimal coherence factors Ropt1 (solid lines) and Ropt2

(dotted lines) versus the rewiring probability p at different coupling
strengths at ε = 0.01, a = 1.02.

increases as a result of the cooperation of the coupling and
nonlinearity. Of course, the transmission instances differ when
considering various network topologies and coupling strength
regimes. When the coupling strengths are intermediate such
as g = 0.01, in a regular network, except that the coherence of
the firings in the neuron closest to the first one is excessively
poor at strong noise intensities, the firings exhibit relatively
periodic activity, as shown in the solid lines in Fig. 6(a).
Figure 6(b) denotes a case with small-world topology (p =
0.2); it can be seen that the whole CBR effect decreases
compared with that of when p = 0, which is reflected more
clearly in completely random networks [see the solid lines
in Fig. 6(c)]. This behavior can be explained by the L(p)-p
plot in Fig. 7. The characteristic path length L(p) decreases
rapidly as p increases; thus, the first neuron could potentially
have a higher number of “close neighbors” and then take
this opportunity to spread more stochastic components to the
neural network. Consequently, with the increase of the network
topology randomness, the overall CBR of the system is reduced
at the intermediate coupling strengths.

In the case of strong coupling, that is, g = 0.03, the neurons’
interaction is enhanced and the other neurons tend to show
the dynamical behavior more similar to the first neuron. In
a regular neural network, it can be observed from the dotted
lines in Fig. 6(a) that, except for the neuron farthest from
the first one, the coherence factors of most neurons at any
noise intensity are large; even the curve of R2 versus D simply
presents CR instead of CBR characteristics. In networks with
small-world topology, improved CBR or CR is demonstrated
in most neurons, and CBR of the neuron farthest apart from the
first one decreases inversely. In the case of p = 1, the integrated
resonance effects are optimal in the three sets of dotted lines
in Figs. 6(a) to 6(c), which is consistent with the fact that
the temporal coherence of the collective firings is enhanced
with the increase of the disorder of the network topological
structure in Fig. 4(d).

From the plots in Fig. 6 it can be found that long-range
connection in the systems has the opposite impact on the
resonance effects in different coupling strength regimes. When
the coupling strength is not large, the random shortcuts
reinforce the interactions between neurons. As a result, more
stochasticity in the firings is transmitted from the first neuron
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FIG. 6. The coherence factor Ri versus the noise intensity D at
two different coupling strengths (solid line g = 0.01, and dotted line
g = 0.03) with (a) p = 0; (b) p = 0.2; (c) p = 1.0. ε = 0.01, a = 1.02.

to the others, and the collective coherence motion is suppressed
with the increase of the rewiring probability p. In the case of
strong coupling, all the neurons tend to behave as a single one,
and the random shortcuts, in turn, assist the nonlinearity in
filtering out some stochastic components in the firings of the
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FIG. 7. Characteristic path length L as a function of the rewiring
probability p for WS small-world networks with N = 100 and K = 4.
It is normalized by each value at p = 0.

first neuron. Therefore, randomness of the network topology
plays a positive role in enhancing the resonance effects of the
neurons at g = 0.030.

In order to better understand the global dynamical behavior
of the neural networks with different topological structures,
while still considering cases of g = 0.010 and g = 0.030
as examples, the dependence of Ri on i for various noise
intensities in regular, small-world, and completely random
networks is portrayed in Figs. 8 and Figs. 9, respectively. In
Fig. 8(a), at low levels of noise (D = 0.004 and D = 0.006),
the further the ith neuron is away from the first one, the worse
the coherence of the firings. At moderate noise intensities
(D = 0.020 and D = 0.035), noise-induced oscillation of the
first neuron propagates along both sides with slightly improved
coherence. At a high noise level (D = 0.100), unless the
coherence of the firings in the neurons closest to the first one
is seriously damaged, the law of oscillation transmission to
other neurons functions similarly to situations involving the
weak noise intensities. In a neural network with small-world
topological structure, it can be seen from Fig. 8(b) that Ri as
a function of i is disordered and fluctuating regardless of the
noise strength. In a completely random network, the value of
the coherence factor Ri demonstrates larger ups and downs,
as shown in Fig. 8(c). In addition, most of Ri in the plots of
Figs. 8(b) and 8(c) is larger than shown in Fig. 8(a) at a fixed
noise intensity. The cases for g = 0.0075 and g = 0.015 (not
shown) are similar to that for g = 0.010, whereas the difference
between the values of Ri at the same noise strength is smaller
for the former, and is larger for the latter compared to that
when g = 0.010.

In the case of g = 0.030, the curves of Ri versus i are very
different from those for when g = 0.010. In a regular neural
network, unless the coherence of the firings in the neurons
in the vicinity of the first one is destroyed significantly, Ri

first decreases very slowly and then suddenly declines rapidly
with an increase of the distance from the ith neuron to the first
one, as depicted in Fig. 9(a). Moreover, most of the values of
Ri are very high, and only the regularity of the firings in the
neurons farthest from the first one is preferable. In the plots of
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FIG. 8. The coherence factor Ri versus the neuron number i at
different noise intensities D with (a) p = 0; (b) p = 0.05; (c) p = 1.0.
ε = 0.01, a = 1.02, g = 0.01.

Figs. 9(b) and 9(c), Ri begins to fluctuate, and the fluctuation
range increases with the network topology, changing from
small-world to completely random. Furthermore, the symbols
representing Ri at different noise intensities in the two plots
mingle together, implying that the effects of the external noise
is weakened. At this moment the main role of the external
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FIG. 9. The coherence factor Ri versus the neuron number i at
different noise intensities D with (a) p = 0; (b) p = 0.05; (c) p = 1.0.
ε = 0.01, a = 1.02, g = 0.03.

noise is as an “igniter” and the characterizations of the firings
in each neuron are less influenced by the noise intensity.

Figures 10(a) to 10(d) depict how the spatial coherence
between neurons changes with the noise intensity at various
rewiring probabilities p and coupling strengths g. It is
interesting to note that similar to the curve of R versus D,
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FIG. 10. The standard deviation σ versus the noise intensity D at different rewiring probabilities p with (a) g = 0.0075; (b) g = 0.01;
(c) g = 0.015; (d) g = 0.03. ε = 0.01, a = 1.02.

each curve of σ against D has two extrema. The difference lies
in the fact that the two minimums of R represent the optimal
temporal coherence, while the two maximums of σ stand for
the worst spatial synchronization. Moreover, it can be observed
that at a fixed noise intensity, σ decreases monotonically
as p increases regardless of the coupling strength, which is
similar to the findings of several previous studies [28,29].
Comparing the four plots in Fig. 10, it can be found that the
system becomes more synchronized as the coupling strength g
becomes larger. Therefore, strengthening the coupling between
neurons or adding random shortcuts in the system is an
effective way for the system to achieve a periodic spatial
state.

IV. SUMMARY

In this paper, numerical simulations are presented for both
population and individual dynamical behavior of an array of
coupled FitzHugh-Nagumo neurons with various topological
networks. It is demonstrated that noise-induced oscillation
of the first neuron can be transmitted to the others with
noise suppression. The transmission instances are strongly
dependent on the network topology and the coupling strength.
At not very high levels of coupling, in a regular network the
coherence of the firings in a neuron is gradually improved

as the distance from this neuron to the first one increases,
and the coherence factor Ri as a function of the number of
the neuron i demonstrates highs and lows in small-world and
completely random networks. In the case of strong coupling,
the regularity of the firing in the neurons is mostly destroyed
as a whole. The temporal coherence of the systems presents
a typical coherence biresonance characteristic. Increasing the
randomness of the network topology plays a negative role in
enhancing coherence biresonance at an intermediate coupling
strength, which is opposite to the situation at a strong coupling
strength. The worst spatial synchronization of the neurons
appears twice in the selected range of the noise intensity, and
the spatial coherence improves with the increase of the disorder
of the network topology and the coupling strength.

Unlike some previous results [30,31], the phenomenon of
CBR instead of CR occurs in the neural networks. Moreover,
the temporal coherence of the networks does not show any
superiority but instead some disadvantages as a whole when
introducing long-range connection into the original regular
networks. The basic reason for this situation is that each
neuron is subject to an independent source of noise in those
cases, while the external noise is only injected to the first
neuron here. The study reconfirms that the brain is a complex
and fascinating processor and that the neuron activity in
the brain is controlled by many factors such as the noise
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intensity, the procedure of introducing a noise, the coupling
between neurons, and the network topology. The influence
of each control factor on the dynamical behavior of the neural
networks is unique on the one hand and modulated by the other
factors on the other hand. These individual factors constitute
an integrated system, and the neural networks show different
dynamical characteristics under the interplay of these factors.
It is anticipated that these results will provide further insight

into information transmission and processing taking place in
real neural systems.
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