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Size and shape of excluded volume polymers confined between parallel plates
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A number of recent experiments have provided detailed observations of the configurations of long DNA strands
under nano-to-micrometer-sized confinement. We therefore revisit the problem of an excluded volume polymer
chain confined between two parallel plates with varying plate separation. We show that the nonmonotonic behavior
of the overall size of the chain as a function of plate separation, seen in computer simulations and reproduced by
earlier theories, can already be predicted on the basis of scaling arguments. However, the behavior of the size in a
plane parallel to the plates, a quantity observed in recent experiments, is predicted to be monotonic, in contrast to
the experimental findings. We analyze this problem in depth with a mean-field approach that maps the confined
polymer onto an anisotropic Gaussian chain, which allows the size of the polymer to be determined separately
in the confined and unconfined directions. The theory allows the analytical construction of a smooth crossover
between the small-plate-separation de Gennes regime and the large-plate-separation Flory regime. The results
show good agreement with molecular dynamics simulations in the presence of a Langevin heat bath and confirm
the scaling predictions.
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I. INTRODUCTION

With the typical length scales in cells ranging from tens of
nanometers to tens of microns, their polymeric constituents
are often spatially constrained. Some of the prominent ex-
amples are the cytoskeletal filamentous protein aggregates
microtubules and F-actin, which can have lengths up to tens
of microns. Recent studies on microtubules in plant cells [1],
DNA packaging in viral capsids [2], and DNA segregation
in bacterial cell division [3–6] focused on properties of
biopolymers strongly influenced by confining geometries.
This has naturally led to increased interest in understanding
the physics of strongly confined polymers. Among all the
polymeric constituents of cells, DNA with its relatively low
bending stiffness in comparison to its extremely long length
has a special place as it can under most circumstances
be described as an classical excluded volume polymer [7].
Important examples of confined DNA are (i) chromosomal
DNA that can have bare lengths up to centimeters trapped
inside the cell nucleus of a size in the range 1–10 μm,
(ii) bacterial DNA of lengths between 0.1 and 100 μm
trapped within a small bacterial volume, which for the case of
E. coli is about 2 μm long and 0.5 μm in diameter, and
(iii) mitochondrial DNA of length about 5 μm for human
beings with the available mitochondrial size between 0.5 and
10 μm. The combined effects of confinement, self-avoidance,
and entropic forces act together in deciding the structure and
properties of confined polymers.

A number of single-molecule fluorescence microscopy
studies have recently investigated the structure and dynamics
of confined DNA trapped between parallel plates [8–11] or
within cylindrical geometries [12–14], with the confining
dimensions typically of the order of, or smaller than, the bulk
radius of gyration of the polymer. In particular, Bonthuis et al.
[10] have recently observed DNA confined to parallel-plate
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nanochannels, showing among other things an interesting
nonmonotonic variation of the two-dimensional (2D) projected
radius of gyration with the distance between channel walls.

Theoretical analyses of confined excluded volume chains
already have a long history, encompassing a number of
different techniques and approaches such as scaling theories
[15,16], renormalization group methods [17–19], computer
simulations [8,20–24], and mean-field theory (MFT) [25].
The qualitative picture that emerges from these analyses is
simple: With increased degree of confinement, the polymer
size shrinks in the confining direction(s) and expands in the
nonconfined direction(s). The expansion in the nonconfined
directions is due to the excluded volume repulsion between
different polymer segments. According to de Gennes’ scaling
theory [15], this expansion in the strongly confined regime
has a power-law dependence on the length scale of the
confinement. On the other hand, in the limit of very weak
or no confinement the polymer is expected to behave as a free
excluded volume polymer approximately obeying the Flory
relationship between polymer length and spatial size in three
dimensions [7].

Monte Carlo (MC) simulations of self-avoiding lattice
random walks trapped within reflecting walls have validated
the de Gennes scaling predictions [20,21]. These simulations
also showed a nonmonotonic variation of the mean size of the
polymer, measured as the full three-dimensional (3D) radius
of gyration, as a function of the interwall separation [20].
This nonmonotonicity in the radius of gyration was later also
captured by a MFT calculation [25]. Recent experiments on
confined DNA [10,11] found nonmonotonicity in the projected
2D size of the polymer, rather than its 3D average. This is in
contradiction to de Gennes scaling prediction of a monotonic
increase of polymer size parallel to the plates with reduced
plate separation. To correctly interpret these results we need
a theoretical approach that explicitly allows us to consider
the behavior of the polymer in the confined and nonconfined
directions separately.

Here we revisit the problem of an excluded volume
polymer confined between two parallel plates with the latter
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desideratum in mind. By reviewing the extant scaling ap-
proaches, we show that the nonmonotonicity of the 3D radius
of gyration with plate separation already follows from a
scaling analysis if due care is given to the details of its
application. We then construct a MFT for the confined polymer
that goes beyond the existing theory, in that it explicitly
takes into account the symmetry breaking induced by the
confinement in the construction of the noninteracting reference
polymer. The MFT agrees with de Gennes scaling at smallest
plate separations and Flory scaling in the limit of large
plate separations, and allows the analytical determination of
the prefactors of the scaling relations. Moreover, this approach
allows for calculation of corrections to de Gennes scaling
for intermediate plate separations. Our main result is that
the size of the polymer transverse to the confining direction,
i.e., parallel to the confining planes, grows monotonically
with decreasing separation between the plates, even after
incorporating corrections to de Gennes scaling. The results of
the MFT approach are then validated by an explicit off-lattice
simulation of a confined polymer. The nonmonotonicity of the
3D radius of gyration therefore is due to the fact that, with
decreasing plate separation, initially the polymer size in the
confining direction decreases more rapidly than it grows in
the unconfined directions, and eventually the latter becomes
dominant.

The paper consists of three main sections. We begin with
by describing the existing scaling approaches in Sec. II. In
Sec. III we present our self-consistent MFT calculation and its
predictions. In Sec. IV we describe the molecular dynamics
simulation scheme and compare the results with our MFT
predictions. Finally we conclude in Sec. V by summarizing our
results and providing an outlook. Several appendices collect
some of the more technical material.

II. SCALING THEORIES

In this section, we briefly review the existing scaling
theories for a polymer confined between parallel plates. We
show that the nonmonotonicity of the mean polymer size
as a function of the plate separation, as observed in earlier
simulations [20], is in fact intrinsic to de Gennes scaling
predictions.

The first scaling theory of self-avoiding polymer behavior is
due to Flory. Because of their simplicity Flory-like arguments
have been extended to other cases, e.g., semiflexible polymers
[26]. Within Flory scaling theory the free energy of an excluded
volume polymer in d dimensions can be written as [27]

βF ∼ R2

Nl2
+ ld

N2

Rd
,

where R is the end-to-end distance of the polymer constructed
of N segments, each of size l, β = 1/kBT , with kB the
Boltzmann constant and T the ambient temperature. The first
term describes the entropic elasticity of a free chain, and
the second term describes the repulsive interaction between
different segments. Minimizing the free energy with respect
to R one obtains the Flory estimate of the equilibrium
polymer size R ∼ N3/(d+2) l. As de Gennes pointed out [7],
the success of Flory’s theory relies on remarkable cancellation
of overestimates in both the terms. For polymers confined

between parallel plates, a Flory-like argument predicts an
equilibrium polymer size in the unconfined directions that
agrees with de Gennes scaling (which we discuss next), but
the free energy it predicts is not extensive in N [23].

The de Gennes scaling arguments for the size of a polymer
confined between parallel plates can be described as follows
[15]. If the plate separation D � L = N l the polymer contour
length, the size of the polymer in the confining direction
(perpendicular to the confining plates), R⊥, becomes limited
by the confinement, so that R⊥ ∼ D. The size of the polymer
in the unconfined directions (parallel to the confining plates),
R‖, should be entirely decided by the following two length
scales: the 3D Flory size of a polymer R ∼ N3/5 l and the
plate separation D. Thus R‖ = R φ(R/D), so that φ(x) = 1
when x → 0 (3D Flory regime) and φ(x) ∼ xq when x > 1
(de Gennes regime). In the 2D limit (x � 1) Flory scaling
requires R‖ ∼ N3/4 l. This ensures q = 1/4 and therefore
R‖ ∼ N3/4(l/D)1/4 l. This power-law divergence of R‖ with
decreasing D was observed in MC simulations of self-avoiding
lattice random walks [20,21] and also in recent experiments
on confined DNA [10,11]. The excess free energy measured
from the state of an unconfined self-avoiding polymer can be
expressed [15] as βF = ψ(R/D), so that ψ(x) = 0 for x → 0
and ψ(x) = xp in the other limit of small D. Demanding that
the excess free energy has to be an extensive function of N

one obtains p = 5/3 and βF ∼ N (l/D)5/3.
We notice that, in terms of plate separation D, de

Gennes scaling predicts two completely opposite behaviors for
R⊥ ∼ D and R‖ ∼ N3/4(l/D)1/4 l. While R⊥ decreases,
R‖ increases with decreasing D. Therefore, the mean size
of the polymer, averaged over all the three directions, R2

tot =
R2

⊥ + 2R2
‖ ∼ a1D

2 + a2D
−1/2 (a1, a2 are positive constants),

is expected to vary nonmonotonically with D. The R2
tot ∼

D−1/2 behavior at very small D crosses over to R2
tot ∼ D2

at moderately large D via a minimum in R2
tot. This fact is illus-

trated in Fig. 1 and was observed in previous simulations [20].
At large D(� L), the scaling function φ(R/D) = 1, and there-
fore the average size R2

tot becomes independent of D (Fig. 1).

FIG. 1. (Color online) Schematic diagram of the nonmonotonic
behavior of average polymer size R2

tot ∼ a1D
2 + a2D

−1/2 (dark thick
line). In the limit of small D(� L contour length), the combination
of D2 and D−1/2 behavior of the polymer size in the confining and
orthogonal directions, respectively, leads to nonmonotonicity with a
clear minimum in the average polymer size R2

tot. At large D(> L),
R2

tot crosses over to the Flory regime and becomes independent of D.
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It should be noted here that this behavior is not the same as
the nonmonotonicity observed in experimental measurement
of the parallel component of the radius of gyration of a DNA
confined between parallel plates [10,11]. De Gennes scaling
predicts a clear monotonic increase of the component R‖ with
shrinking D.

It is instructive to compare this behavior with that of an
ideal chain confined between parallel plates. For an ideal chain,
in absence of any interaction, the impact of the confinement
remains restricted to the confining direction only. Thus
R⊥ ∼ D for small D and R⊥ ∼ N1/2l in the bulk limit.

However, R‖ ∼ N1/2l is obeyed independently of D.
Therefore the overall size is R2

tot ∼ a3D
2 + 2R2

‖ with a3 a
positive constant. Starting from the bulk value, with shrinking
D, R2

tot reduces to ultimately saturate at 2R2
‖ . The initial

reduction of overall size is thus common to both ideal polymers
and excluded volume polymers. However, the expansion of the
overall polymer size with further reduction of D for excluded
volume polymers is a signature of the repulsion between
polymer segments.

III. MEAN FIELD THEORY

A. Overview

The starting point for our MFT is a description of the
polymer as a space curve r(s), in which s is the arc length
parameter with domain 0 � s � L. The energetics of the
excluded volume (i.e., self-avoiding) polymer is given by the
Edwards Hamiltonian [28]

βH = 3

2l

∫ L

0
ds

[
∂r(s)

∂s

]2

+ 1

2
b

∫ L

0
ds

∫ L

0
ds ′ δ[r(s) − r(s′)]. (1)

The parameter b sets the strength of the repulsive intersegment
interactions.

Edwards and Singh [28] first proposed to determine the size
of a free self-avoiding polymer by mapping it onto an isotropic
Gaussian chain with reference Hamiltonian

βHiso = 3

2l0

∫ L

0
ds

[
∂r(s)

∂s

]2

,

and then choosing the effective segment size l0 self-
consistently by requiring the first-order variation of the mean-
squared end-to-end distance 〈R2〉 in the interaction parameter b

to vanish. This approach relatively simply reproduces the Flory
result R ∼ N

3
5 for the scaling of polymer size with polymer

length. This same idea was later applied by Thirumalai and
co-workers [25,29] to confined polymers. In the latter approach
one first imposes the confinement on an isotropic Gaussian
reference chain and then performs a self-consistent calculation
to determine effective segment length of the reference chain.

The scaling analysis presented in the previous section,
however, shows that in order to understand the behavior of
the confined chain one has to be able to separately address the
effect of the confinement on the longitudinal and perpendicular
size of the polymer. Moreover, on formal grounds one
can pose the question whether an isotropic ideal reference
chain is appropriate to the situation where the presence of

the boundaries already explicitly breaks the bulk rotational
symmetry. Here we propose that both these challenges can
be met by mapping the confined polymer onto an anisotropic
reference chain, composed of bonds whose length depends
on their absolute orientation with respect to the uniaxial
symmetry axis of the confining geometry perpendicular to
the boundary planes. Such an anisotropic Gaussian reference
chain is described by the Hamiltonian

βH0 = 3

2l‖

∫ L

0
ds

[
∂r‖(s)

∂s

]2

+ 3

2l⊥

∫ L

0
ds

[
∂r⊥(s)

∂s

]2

≡ βH‖ + βH⊥. (2)

The two effective segment lengths l‖ and l⊥ are now the
parameters that have to be determined self-consistently.
Apart from the fact that this choice is physically plausible
given the geometry of the system and allows independent
predictions for the behavior of the polymer in the parallel and
transverse directions with respect to the confinement, it has
another potential advantage in that generically multiparameter
MFTs can be expected to yield better approximations to the
underlying physics than single-parameter ones. This is brought
into clear focus when one considers that this two-parameter
theory reduces to the one presented in Ref. [25] when one
imposes the identity l‖ = l⊥ from the outset, for which there
are few a priori arguments, except possibly parsimony.

As an aside, it should be noted that although Ref. [25]
described their approach as a variational MFT, it, its pre-
decessor Ref. [28], and our further generalization are not
variational in the sense of following from the minimization of
an appropriate free energy functional; rather, they constitute
attempts to determine the properties of the polymer self-
consistently on the basis of constraints imposed on a single or
two moments of the chain configuration distribution. Arguably,
a “true” MFT would in fact condition on a necessarily infinite,
complete set of moments of the full distribution.

We assume the z axis of our coordinate system to be
perpendicular to the confining planes. For convenience, we
consider the lateral extent of the system to be finite, defined
by a length W � D, but freely take the limit of an infinite
extent wherever appropriate. The hard-wall confinement is
implemented through the Dirichlet boundary condition by
which the Green’s function corresponding to the reference
Hamiltonian vanishes at the two confining walls. The full
Hamiltonian can be expressed as

βH = βH0 + β�H‖ + β�H⊥ + β�Hb, (3)

where

β�H‖ = 3

2

(
1

l
− 1

l‖

)∫ L

0
ds

[
∂r‖(s)

∂s

]2

, (4)

β�H⊥ = 3

2

(
1

l
− 1

l⊥

)∫ L

0
ds

[
∂r⊥(s)

∂s

]2

, (5)

β�Hb = 1

2
b

∫ L

0
ds

∫ L

0
ds ′ δ[r(s) − r(s′)] (6)

are treated as perturbative corrections.
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Statistical averages with respect to the Hamiltonian H are
defined through a path integral

〈A [r(s)]〉 = 1

ZH

∫
dr (0)

∫
dr (L)

×
∫ r(L)

r(0)
D[r(s)]A [r(s)] exp{−βH[r(s)]} , (7)

where the normalization constant is given by the partition
function

ZH =
∫

dr (0)
∫

dr (L)
∫ r(L)

r(0)
D[r(s)] exp{−βH[r(s)]} .

(8)

We now consider the components of the end-to-end sepa-
ration R‖ = r‖(L) − r‖(0) and R⊥ = r⊥ (L) − r⊥ (0) and the
averages 〈R2

‖〉 and 〈R2
⊥〉.

Expanding the Hamiltonian H in the above expression up
to linear order in �H around the reference Hamiltonian H0,
we obtain

〈R2
‖〉 = 〈R2

‖〉0 − δ‖ + O(�H2), (9)

〈R2
⊥〉 = 〈R2

⊥〉0 − δ⊥ + O(�H2), (10)

where

δ‖ = {〈R2
‖β�H‖〉0 − 〈R2

‖〉0〈β�H‖〉0}
+{〈R2

‖β�H⊥〉0 − 〈R2
‖〉0〈β�H⊥〉0}

+{〈R2
‖β�Hb〉0 − 〈R2

‖〉0〈β�Hb〉0}
≡ δ

‖
‖ + δ⊥

‖ + δb
‖ , (11)

δ⊥ = {〈R2
⊥β�H‖〉0 − 〈R2

⊥〉0〈β�H‖〉0}
+{〈R2

⊥β�H⊥〉0 − 〈R2
⊥〉0〈β�H⊥〉0}

+{〈R2
⊥β�Hb〉0 − 〈R2

⊥〉0〈β�Hb〉0}
≡ δ

‖
⊥ + δ⊥

⊥ + δb
⊥. (12)

Here 〈· · ·〉0 indicates a statistical average taken with respect to
the reference Hamiltonian H0. In the above expressions, δ

‖
‖ ,

δ⊥
‖ , δ⊥

⊥ , and δ
‖
⊥ are the corrections due to the chain anisotropy,

and δb
‖ and δb

⊥ are the corrections from excluded volume
interactions. The MFT approximation requires a choice of l‖
and l⊥ so that 〈R2

‖〉 = 〈R2
‖〉0 and 〈R2

⊥〉 = 〈R2
⊥〉0. Thus, solving

δ‖ = δ⊥ = 0, one can obtain the effective segment lengths l‖
and l⊥ in terms of plate separation D, contour length L, and
intersegment interaction strength b.

Reference [28] obtained Flory scaling within corrections up
to linear order in β�H. The inclusion of higher-order terms
was shown to change the coefficients of scaling form, however,
keeping them stable [28]. We expect the same to hold in the
present problem as well [25], as the nature of interactions used
here is exactly the same.

We now briefly summarize the main results we obtained
using this MFT. In the limit of very large plate separations
(D → ∞) the system becomes isotropic with

l‖ = l⊥ ≡ lB ∼ (bl)2/5L1/5, (13)

and the mean-squared end-to-end separation follows the
relation

〈R2〉 = LlB ∼ (bl)2/5L6/5, (14)

which is independent of D and obeys Flory scaling.
In the limit of strong confinement (D → 0),

l⊥ � l

2

(
1 +

√
1 − 4bD

ll‖

)
� l − 4

√
2π

3

√
b

l

D3/2

L1/2
, (15)

l‖ � l

2

(
1 +

√
1 + 9b

2πl

L

D

)
� 3

2
√

2π

√
bl

√
L

D
. (16)

Using these, we obtain the size of the polymer in the confining
direction

〈R2
⊥〉 �

(
1 − 8

π2

)
D2

2
− D2

8
e−3κL (17)

with κ = (1/6)l⊥(π/D)2, and in the unconfined directions

〈R2
‖〉 � 1

3
Ll

(
1 +

√
1 + 9b

2πl

L

D

)

∼
√

1

2π
(bl)1/2L3/2D−1/2. (18)

With shrinking plate separation D the polymer gets com-
pressed in the confining direction and expands in the free direc-
tions. Up to the leading order (in the small D limit) 〈R2

⊥〉 ∼ D2

and 〈R2
‖〉 ∼ L3/2D−1/2 obeying de Gennes scaling. Beyond

the leading order, the expressions we found describe a smooth
crossover to large D behavior (see Fig. 2).

We now present a detailed derivation of the Eqs. (13)–(18).

B. Formulation

1. Green’s function

In order to determine all the above mentioned averages, we
require the Green’s function corresponding to the anisotropic
reference Hamiltonian H0 [Eq. (2)] defined as

G0(r,L|r′,0) =
∫ r=r(L)

r′=r(0)
D[r(s)] exp{−βH0[r(s)]}. (19)

The Green’s function obeys the following differential equation
[30]: (

∂

∂L
− l‖

6
∇2

‖ − l⊥
6

d2

dz2

)
G0 = 0. (20)

Using the Dirichlet boundary condition in the confining
direction G0(z = 0,D) = 0 and free boundary condition
in the unconfined directions (along the x and y axes), one
obtains a variable separable form of the Green’s function (see
Appendix A)

G0 = G‖(r‖,L | r′
‖,0) G⊥(r⊥,L | r ′

⊥,0), (21)

where

G‖ = 3

2πl‖L
e
− 3

2l‖L
(r‖−r′

‖)2

(22)
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and

G⊥ = 2

D

∞∑
n=1

sin

(
nπ

D
r⊥

)
sin

(
nπ

D
r ′
⊥

)
e−κn2L, (23)

with κ = 1
6 l⊥( π

D
)2.

2. Partition function

The partition function corresponding to the reference
Hamiltonian H0 can also be written in a variable-separable
form

Z =
∫

dr(L)
∫

dr(0)G0(r(L),L | r(0),0) = Z‖Z⊥, (24)

where

Z‖ =
∫

dr‖
∫

dr′
‖G‖(r‖,L | r′

‖,0) = W 2 (25)

and

Z⊥ =
∫

dr⊥
∫

dr ′
⊥G⊥(r⊥,L | r ′

⊥,0)

=
∞∑

n=0

8D

(2n + 1)2π2
e−κL(2n+1)2

. (26)

Remember that W 2 denotes the area of the unconfined
xy plane, and we freely take the limit W → ∞ wherever
appropriate.

3. End-to-end separation: Contribution from
reference Hamiltonian

Using the above mentioned Green’s function G0 one can
calculate the end-to-end separations

〈R2
‖〉0 =

∫
dr‖

∫
dr′

‖(r‖ − r′
‖)2G‖(r‖,L|r′

‖,0)∫
dr‖

∫
dr′

‖G‖(r‖,L|r′
‖,0)

= 2

3
l‖L (27)

and

〈R2
⊥〉0 =

∫ D

0 dr⊥
∫ D

0 dr ′
⊥(r⊥ − r ′′

⊥)2G⊥(r⊥,L|r ′
⊥,0)∫ D

0 dr⊥
∫ D

0 dr ′
⊥G⊥(r⊥,L|r ′

⊥,0)

= D2

2

ν

ξ
, (28)

where

ν =
∞∑

n=0

1

(2n + 1)2

[
1 − 8

(2n + 1)2 π2

]
e−κ(2n+1)2L

−
∞∑

n=1

1

(2n)2 e−κ(2n)2L (29)

and

ξ =
∞∑

n=0

1

(2n + 1)2 e−κ(2n+1)2L. (30)

4. End-to-end separation: Corrections from chain anisotropy

We now calculate the first-order contributions δ
‖
‖, δ⊥

‖ , δ
‖
⊥

and δ⊥
⊥ that are due to the anisotropy of the reference chain.

Using the definition of the mean-squared end-to-end distance

〈R2
‖〉0

=
∫

dr‖
∫

dr′
‖(r‖ − r′

‖)2
∫ r‖=r‖(L)

r′
‖=r‖(0) D[r‖(s)] exp{−βH‖[r(s)]}∫

dr‖
∫

dr′
‖
∫ r‖=r‖(L)

r′
‖=r‖(0) D[r‖(s)] exp{−βH‖[r(s)]}

along with the identity

βH‖[r(s)] =α‖
2

3

(
1

l
− 1

l‖

)−1

β�H‖[r(s)],

where α‖ = 3/2l‖, we obtain

−3

2

(
1

l
− 1

l‖

)
∂

∂α‖
〈R2

‖〉0 ={〈R2
‖ β�H‖〉0 − 〈R2

‖〉0〈β�H‖〉0}

or δ
‖
‖ = 2

3

(
1

l
− 1

l‖

)
Ll2

‖ . (31)

Similarly, one can show that (with α⊥ = 3/2l⊥)

δ⊥
‖ = −3

2

(
1

l
− 1

l⊥

)
∂

∂α⊥
〈R2

‖〉0 = 0, (32)

δ
‖
⊥ = −3

2

(
1

l
− 1

l‖

)
∂

∂α‖
〈R2

⊥〉0 = 0, (33)

δ⊥
⊥ = −3

2

(
1

l
− 1

l⊥

)
∂

∂α⊥
〈R2

⊥〉0, (34)

where the last derivative can be explicitly evaluated by
considering Eq. (28). This leads to the following expression:

δ⊥
⊥ = − π2

12ξ
l2
⊥L

(
1

l
− 1

l⊥

)

×
{ ∞∑

n=0

[
1 − 8

(2n + 1)2π2
− ν

ξ

]
e−κL(2n+1)2

−
∞∑

n=1

e−κL(2n)2

}
, (35)

where ν and ξ are defined by Eqs. (29) and (30), respectively.

5. End-to-end separation: Corrections from excluded
volume interactions

Now we evaluate δb
‖ and δb

⊥. Note that the presence
of δ(r(s) − r(s′)) in the self-avoidance interaction β�Hb

[Eq. (6)] couples the transverse and the longitudinal modes
of the Green’s function. This is the term through which 〈R2

‖〉
becomes dependent on the plate separation D.

The calculation of these two terms are lengthy but straight-
forward. Here we quote only the final results deferring the
details of the calculations to Appendix B:

δb
‖ = −Z−1 b

π
W 2

∞∑
nL,n′,n0=1

M(nL,n′,n0; κ)

× (2δn0,nL
+ δn′,(n0+nL)/2 − δn′,(n0−nL)/2

− δn′,(nL−n0)/2)J0(nL,n0), (36)
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where

M(nL,n′,n0; κ)

= e−κLn2
L

∫ L

0
ds ′

∫ L

s ′
ds

(
e−κs(n′2−n2

L)e−κs ′(n2
0−n′2)

)
, (37)

J0(nL,n0) = 1

n0nLπ2
[1 − (−1)nL ][1 − (−1)n0 ], (38)

and

δb
⊥ = b

Z
W 2 3

2πl‖

∞∑
nL,n′,n0=1

D2 K(nL,n′,n0; κ)

× (2δn0,nL
+ δn′,(n0+nL)/2 − δn′,(n0−nL)/2 − δn′,(nL−n0)/2)

×
[
J (nL,n0) − 〈R2

⊥〉0

D2
J0(nL,n0)

]
, (39)

where

K(nL,n′,n0; κ) = e−κLn2
L lim

a→0

∫ L

0
ds ′

∫ L

s ′
ds

×
[

e−κs(n′2−n2
L)e−κs ′(n2

0−n′2)

(s − s ′) + a

]
, (40)

J (nL,n0)

= − 1

n3
Ln0π4

{
(−1)nLn2

Lπ2 + 2[1 − (−1)nL ]
}
[1 − (−1)n0 ]

− 2

nLn0π2
(−1)n0 (−1)nL − 1

nLn3
0π

4

{
(−1)n0n2

0π
2 + 2[1

− (−1)n0 ]
}
[1 − (−1)nL ]. (41)

C. Results

1. Large plate-separation limit: D → ∞
Here we demonstrate that the MFT scheme naturally leads

to Flory scaling in the bulk limit of D → ∞. This limit is
better appreciated, in a shifted coordinate system in which
the confining hard walls are at z = ±D/2. In this coordinate
system, the transverse component of Green’s function is

G⊥ = 1

D

∑
n,even

sin
nπz′

D
sin

nπz

D
e−κn2L

+ 1

D

∑
n,odd

cos
nπz′

D
cos

nπz

D
e−κn2L.

In the continuum limit of D → ∞

G⊥ =
√

3

2πl⊥L
exp

[
−3

2

(z − z′)2

l⊥L

]
. (42)

Here δ
‖
‖ is independent of D and is given by Eq. (31). The

details of the calculation of δb
‖ , δb

⊥, and δ⊥
⊥ in this bulk limit

are presented in Appendix C. In this limit the equations, δ‖ =
δ

‖
‖ + δb

‖ = 0 and δ⊥ = δ⊥
⊥ + δb

⊥ = 0 imply

Ll2
‖

l
∼ b

l⊥1/2 L3/2 (43)

and

Ll2
⊥

l
∼ bl

1/2
⊥
l‖

L3/2, (44)

respectively. Equations (43) and (44) lead to l‖ = l⊥ ≡ lB , the
isotropy expected in the limit of D → ∞. This also implies

lB ∼ (bl)2/5L1/5 (45)

and

〈R2〉 = LlB ∼ (bl)2/5L6/5, (46)

i.e., Flory scaling in three dimensions.

2. Narrow plate-separation limit: D → 0

In the limit of D → 0, κ = l⊥(π/D)2/6 → ∞, and only
the small n eigenfunctions contribute to the calculation of
perturbative corrections to end-to-end distance. The simplest
approximation in this limit is the ground-state approximation
(only the minimum value of n’s contribute).

Ground-state approximation. We first calculate δb
‖ within

the ground-state approximation. Using n0 = n′ = nL = 1,
we get M(1,1,1; κ) = (L2/2) exp(−κL) and Z = W 2(8D/

π2) exp(−κL), which leads to δb
‖ = −(3b/4π )(L2/D) [using

Eq. (36)]. Within MFT, l‖ satisfies the condition δ‖ = δ
‖
‖ +

δb
‖ = 0, which implies that

2

3

(
1

l
− 1

l‖

)
Ll2

‖ = 3b

4π

L2

D
.

The solution of this equation gives

l‖ = l

2

(
1 +

√
1 + 9b

2πl

L

D

)
,

which is Eq. (16). Therefore, we find the relation given in
Eq. (18):

〈R2
‖〉 = 2

3
l‖L = 1

3
Ll

(
1 +

√
1 + 9b

2πl

L

D

)

∼
√

1

2π
(bl)1/2L3/2D−1/2.

In the last step, the diverging part of 〈R2
‖〉0 in the limit of

D → 0 is extracted. Thus, up to the leading order in the

limit of D → 0 we find de Gennes scaling R‖ =
√

〈R2
‖〉 ∼

(1/
√

2π )(bl)1/4L3/4D−1/4.
Now we calculate the perpendicular component 〈R2

⊥〉
within the ground-state approximation nL = n′ = n0 = 1.
Thus Eq. (39) reduces to

δb
⊥ = 9b

2πl‖ Z
W 2 D2K(1,1,1; κ)

[
J (1,1) − 4

π2

〈R2
⊥〉0

D2

]
.

In the expression of 〈R2
⊥〉0 [Eq. (28)] we retain only the

n = 0 terms, within the ground-state approximation, to obtain
〈R2

⊥〉0 = 1 − 8/π2. This leads to J (1,1) − (4/π2)〈R2
⊥〉0 = 0

and therefore δb
⊥ = 0. It can be easily seen that within the

ground-state approximation δ⊥
⊥ = 0 too. Thus l⊥ remains
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indeterminate. We need to go up to the first excited-state ap-
proximation (next higher values of n) to obtain the expression
for l⊥.

First excited-state approximation. Within this approxima-
tion, we can write Eq. (39) as

δb
⊥ = 3b

2πl‖ Z
W 2D2 [3K(1,1,1; κ) T1 + 2K(1,2,1; κ) T1

+ 2K(2,1,2; κ)T2 + 3K(2,2,2; κ)T2] ,

where

T1 = J (1,1) − 〈R2
⊥〉0

D2
J0(1,1) = 1

2π2
e−3κL,

T2 = J (2,2) − 〈R2
⊥〉0

D2
J0(2,2) = − 1

2π2
.

We find

K(1,1,1; κ) � Le−κL

[
log

(
L

a

)
− 1

]
.

We observe that the leading-order behavior of K(1,1,1; κ) ∼
L exp(−κL) apart from a weak logarithmic divergence
coming from the δ-function nature of the intersegment re-
pulsion (a → 0). Therefore, K(1,1,1; κ)T1 ∼ L exp(−4κL).
Similarly one can show that all the terms in the above
expression of δb

⊥ has the same leading-order behav-
ior. Using Z = W 2 (8D/π2) exp(−κL) we find that, δb

⊥ ∼
(bLD/l‖) exp(−3κL).

Within the first excited-state approximation, we can write
Eq. (35) as

δ⊥
⊥ = π2

16
e−3κLl2

⊥L

(
1

l⊥
− 1

l

)
.

Thus the mean field condition, δ⊥ = δ⊥
⊥ + δb

⊥ = 0 implies

l⊥ � l

2

[
1 +

√
1 − 4bD

ll‖

]
,

which is Eq. (15). In the limit of D → 0 we can write l⊥ � l −
2bD/l‖ � l − (4

√
2π/3)

√
b/lD3/2L−1/2. Thus the leading-

order behavior is l⊥ ∼ l with correction vanishing as D3/2.
Using this l⊥ in κ = (1/6)l⊥(π/D)2, we find

〈R2
⊥〉 � D2

2

[(
1 − 8

π2

)]
− D2

8
e−3κL,

which is Eq. (17). The above expression means that, the
leading-order behavior (at smallest D values) of

〈R2
⊥〉 = D2

2

[(
1 − 8

π2

)]

has corrections in the next order (at larger D), which
has a complicated functional dependence on intersegment
interaction strength b, plate separation D and polymer contour
length L.

Before ending this section, we briefly discuss the pure 2D
limit of the above-mentioned calculation. The self-consistent
MFT calculation for pure two dimensions leads to the mean-
squared end-to-end distance

〈R2
2D〉 ∼ (b0l)

1/2L3/2, (47)

which obeys 2D Flory scaling. In the above expression b0

measures the strength of the intersegment repulsion and is
dimensionless, in contrast to the same parameter in three
dimensions denoted by b, which has the dimension of length.
This indicates that l is the only intrinsic microscopic length
scale in the system. Requiring b = b0l, we find that 〈R2

‖〉
reaches the 2D limit of 〈R2

2D〉 when D ∼ l (see Appendix D).

3. Nonmonotonicity in overall polymer size: Crossover

Clearly, the mean-squared end-to-end distance 〈R2
tot〉 =

2〈R2
‖〉 + 〈R2

⊥〉 should show a minimum as a function of
changing plate separation D. This comes about because of
the completely opposing behaviors of the two components:
While the size in the confining direction 〈R2

⊥〉 shrinks with
decreasing D, the polymer size in the unconfined directions
〈R2

‖〉 expands. Keeping up to the leading-order behavior in
〈R2

⊥〉 [= (1 − 8/π2)D2/2] one can easily find the crossover
plate separation [using Eqs. (17) and (18)]

Dc = (2π )−1/5

(
1 − 8

π2

)−2/5

(bl)1/5L3/5, (48)

where 〈R2
tot〉 reaches the minimum. With enhanced degree of

confinement (reduced D) the total size of the polymer 〈R2
⊥〉

first shrinks, and when D < Dc the size starts to grow.
Dc follows the same 3D Flory scaling form as the size of an

excluded volume polymer freely floating in three dimensions.
Thus the position of this minimum scaled by the bulk polymer
size (end-to-end distance or radius of gyration) Dc/L

3/5

should be independent of polymer contour length L. The MC
simulation results shown in Fig. 1 of Ref. [20] corroborate this
fact.

IV. SIMULATIONS

In the previous two sections we demonstrated scaling
arguments and a MFT to obtain estimates for the size and
shape of confined excluded volume polymers. To validate our
mean field picture, we present the results of a full numerical
simulation for such a system.

A. Method

We perform molecular dynamics (MD) simulations of an
excluded volume bead-spring chain trapped between two soft
walls in the presence of a Langevin heat bath. All the beads
interact via the fully repulsive part of shifted Lennard-Jonnes
potential V

rep
LJ (r) = 4ε[(σ/r)12 − (σ/r)6 + 1/4], with a cutoff

distance set to rc = 21/6σ so that V
rep

LJ (r � rc) = 0. Here ε

and σ set the energy and length scales, respectively. The
bond between two neighboring beads are modeled by a
shifted harmonic potential Vsp(r) = (A/2)(r − σ )2 with spring
constant A = 100ε/σ 2 such that the equilibrium bond length,
in the absence of any other forces, is σ . Here r denotes
the center-to-center distance between a pair of beads. We
assume that the polymer is confined within two parallel walls
placed at z = −D/2,D/2. The repulsive potential due to the
walls is assumed to be the integrated and shifted Lennard-
Jones potential Vwall(δz) = ε[(σ/δz)10 − (σ/δz)4 + g] with
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g = (5/2 − 1)(2/5)5/3 and a cutoff distance zc = (5/2)1/6σ ,
so that Vwall(|δz| � zc) = 0. Here δz is the z separation of a
bead from any one of the walls (top or bottom). MD simulations
were performed using the standard velocity-Verlet algorithm
[31] with a time step δt = 0.01τ , where τ = σ

√
m/ε is the

characteristic timescale. We choose the mass of each bead
m = 1. The temperature is kept constant at T = 1.0 ε/kB

by using a Langevin thermostat [32] characterized by an
isotropic friction coefficient γ = 1/τ . Similar methods have
been successfully used earlier for MD simulation of polymers
in various contexts [24,33].

B. Results

The quantity we are interested in is the equilibrium size and
shape of the polymer. In the model we simulate, the polymer is
made of i = 1, . . . ,N beads with a mean contour length L =
(N − 1) in units of σ . We follow the mean-squared end-to-end
distance in the confining z direction 〈Z2〉 = 〈(zN − z1)2〉 as
well as in the unconfined xy plane 〈X2〉 = 〈(xN − x1)2〉,
〈Y 2〉 = 〈(yN − y1)2〉. The time evolution of these quantities
allows us to identify the equilibration of the system. In order
to test the validity of our simulation scheme, in a separate
simulation of the bulk system (using periodic boundary
conditions in all three directions) we measured 〈R2

bulk〉 =
〈X2〉 + 〈Y 2〉 + 〈Z2〉 as a function of polymer contour length
L = 8, 16, 32, 64, 128, 256 to obtain Flory scaling 〈R2

bulk〉 ∼
L6/5 (data not shown).

For the simulations of confined system we used an N = 64
bead polymer. The simulations were equilibrated for 106τ

before collecting data over further 3 × 108τ . We used periodic
boundary conditions in x and y directions with the lateral
extent of the simulation box in these directions W = 2L. In
Fig. 2 we have plotted the three components of mean-squared

FIG. 2. (Color online) Components of mean-squared end-to-end
distance 〈R2

i 〉 as a function of plate separation D. All lengths are
expressed in units of σ . We have plotted the components 〈X2〉′ =
〈X2〉 − λ‖, 〈Y 2〉′ = 〈Y 2〉 − λ‖, and 〈Z2〉′ = 〈Z2〉 + λ⊥ where λ‖ and
λ⊥ are offset polymer sizes (see main text). With decreasing D, 〈X2〉
and 〈Y 2〉 increases in the same manner while 〈Z2〉 decreases. All
the components obey de Gennes scaling, up to the leading order:
〈X2〉′ = 〈Y 2〉′ = μ/D1/2, and 〈Z2〉′ = γD2 where μ = 306 and γ =
0.12. The fitted values of offsets are λ‖ = 12.8 ± 4.2 and λ⊥ = 1.4.
At larger D, 〈Z2〉′ shifts from the scaling form [Eq. (17)] as χ (D) =
γD2 − c1D

2 exp(−c2/D
2 + c3/D

1/2) where c1 = 0.1, c2 = 970, and
c3 = 2.06 ± 0.36. The fitting error in all the parameters is less than
5%, unless specified otherwise.

end-to-end distance 〈X2〉′ = 〈X2〉 − λ‖, 〈Y 2〉′ = 〈Y 2〉 − λ‖,
and 〈Z2〉′ = 〈Z2〉 + λ⊥ where λ‖ and λ⊥ are offset polymer
sizes, which comes about for reasons discussed in the
following.

The mean-squared end-to-end distance in the confining
direction 〈Z2〉′ shrinks with increasing degree of confinement
(decreasing D) as γD2 (Fig. 2). Apart from an additive
offset λ⊥, this is consistent with the leading-order behavior
predicted by our MFT [Eq. (17)] and de Gennes scaling.
Due to a finite nonzero range of repulsion zc coming from
the soft-wall confinement (not incorporated in the MFT as in
the MFT we assumed hard-wall confinement for simplicity),
simulated 〈Z2〉 gets suppressed by an extra amount λ⊥. This
indicates that λ⊥ should be a function of zc, which vanishes as
zc → 0 (hard-wall limit). The fitting procedure in Fig. 2 gives
λ⊥ = 1.4 ± 0.06, which is numerically indistinguishable from
z2
c = 1.36. At larger D, we find a saturation of 〈Z2〉 that obeys

the functional form (Fig. 2)

χ (D) = γD2 − c1D
2 exp(−c2/D

2 + c3/D
1/2).

Notice that this form of χ (D) is obtained from the expression
of 〈R2

⊥〉 obtained from Eqs. (17) and (15).
Figure 2 clearly shows that with increasing degree of

confinement, the components of mean-squared end-to-end
separation in the unconfined directions expands 〈X2〉′ =
〈Y 2〉′ = μ/D1/2, in agreement with de Gennes scaling. Note
that an offset like λ‖ was expected from our MFT [see the first
line of Eq. (18)]. Further, the excess compression of 〈Z2〉 by λ⊥
requires an extra bit of expansion in the parallel components.
Here λ‖ contains this contribution too. At large enough plate
separations 〈X2〉, 〈Y 2〉 saturate to their bulk value.

The total mean-squared end-to-end distance of the confined
〈R2

tot〉 = 〈X2〉 + 〈Y 2〉 + 〈Z2〉 shows a nonmonotonic depen-
dence on D (Fig. 3). 〈R2

tot〉, starting from its bulk value at
large D, first reduces to reach a minimum and then expands
as we reduce the plate separation. The initial decrease in size
is mainly governed by the shrinkage in 〈Z2〉. At small D

values, the large increase of the polymer size in the unconfined
directions 〈X2〉 and 〈Y 2〉 takes over. The crossover between
these two different behaviors takes place at the minimum of
〈R2

tot〉, a feature predicted by the MFT [Eq. (48)] as well as by
de Gennes scaling (Sec. II). Figure 3 shows that the scaling

FIG. 3. (Color online) Mean squared end-to-end distance 〈R2
tot〉 =

〈X2〉 + 〈Y 2〉 + 〈Z2〉 as a function of plate separation D. The line is
a plot of 2(μ/D1/2 + λ‖) + (γD2 − λ⊥) where we used the same
values of μ, γ , λ‖, and λ⊥ as in Fig. 2.
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forms added with the offset parameters in the three components
of the mean-squared end-to-end distance does capture the
nonmonotonicity as well as the approximate position of the
minimum in 〈R2

tot〉.
In Ref. [21] a MC simulation of self-avoiding lattice random

walk confined within two parallel reflecting planes was used to
show that the total 3D radius of gyration varies nonmonoton-
ically with the separation between the reflecting planes. This
behavior is similar to the nonmonotonicity we obtained for the
end-to-end distance 〈R2

tot〉. We have also explicitly calculated
the 3D radius of gyration from our simulation (data not shown).
This quantity showed the same nonmonotonic behavior as in
Ref. [21]. The MFT calculation in Ref. [25] could reproduce
the nonmonotonicity in 3D averaged end-to-end distance of a
confined excluded volume polymer. However, Ref. [25] could
not determine the components 〈R2

‖〉 and 〈R2
⊥〉 separately, and

as a result the method could not be used to show that the
nonmonotonicity in 〈R2

tot〉 is actually expected from de Gennes
scaling of these two components. Recently, an off-lattice MD
simulation of confined excluded volume polymers explicitly
verified de Gennes scaling for 〈R2

‖〉 and 〈R2
⊥〉 [24].

Our simulations showed that 〈R2
‖〉 (〈X2〉, 〈Y 2〉) and 〈R2

⊥〉
(〈Z2〉) separately obey de Gennes scaling at small D limit.
For 〈R2

⊥〉, we have explicitly shown that the corrections to
de Gennes scaling predicted by our MFT correctly captures
our simulation results. The nonmonotonicity in 〈R2

tot〉 and the
prediction of the minimum at a specified plate separation D

as obtained from our MFT is also validated by our simulation.
Moreover, the simulations clearly showed that 〈R2

‖〉 varies
monotonically with D, in agreement with de Gennes scaling,
and in contrast to experimental observations in Refs. [10,11].

V. DISCUSSION AND OUTLOOK

In this paper we have presented a mean-field approach
to calculate the mean-squared end-to-end distance of a self-
avoiding polymer confined between two purely repulsive
parallel plates. The method allowed us to calculate all the
components of this quantity separately as a function of plate
separation. Up to the leading-order calculation, we recovered
Flory scaling in the limit of large plate separations (bulk
limit) and de Gennes scaling in the limit of small plate
separations. The next to leading-order correction allows a
smooth transition from de Gennes regime toward Flory regime.
We believe that higher-order perturbation calculations using
our MFT framework will further bridge the gap between the
two regimes. We showed that the nonmonotonicity of the
overall polymer size as a function of the increased degree
of confinement, as clearly captured by our MFT, was already
inherent to de Gennes scaling. The numerical results from
MD simulations showed good agreement with our MFT
predictions.

It is, however, hard to make quantitative comparisons
between the theoretical calculations and the simulations for
quantities such as actual prefactors of scaling laws. There are
two reasons behind this. First, these nonuniversal quantities
depend on the detailed nature and strength of the interactions.
Second, as was already discussed in Ref. [28], the effective
values of the prefactors in the scaling forms depend on up to

which order the perturbative calculations are performed in the
MFT.

It is important to note the simple fact that an excluded
volume polymer (with repulsive intersegment interaction)
confined between purely repulsive plates can only shrink in the
transverse direction R⊥ and expand in the direction parallel
to the plates R‖ with reducing channel width D. A linear
superposition of these two monotonic but opposing features
leads to nonmonotonicity in the total 3D size 〈R2

tot〉. Thus, this
behavior is perfectly explainable by de Gennes scaling, as was
shown in Sec. II. This is the reason behind the nonmonotonicity
observed for the total 3D radius of gyration obtained from
earlier simulations of a repulsively confined self-avoiding
polymer [20]. Note that earlier literature [20,25] failed to
notice this fact and described the nonmonotonicity in the 3D
radius of gyration as a behavior beyond the scope of de Gennes
scaling.

Let us now briefly discuss our results vis-à-vis two recent
experiments on DNA confined between parallel plates [10,11].
In Ref. [10] the average radius of gyration of confined DNA
was measured from configurations projected onto a plane
parallel to the confining glass plates. This experiment showed
that upon reducing the plate separation D, the projected
radius of gyration first shrank to reach a minimum before
expanding in accordance with de Gennes scaling D−1/4. A
similar nonmonotonic feature in the projected size of confined
DNA was reported again in a more recent experiment [11]. We
emphasize that this nonmonotonicity observed in the projected
size (∼ R‖) should not be confused with the nonmonotonicity
seen in 〈R2

tot〉 (Fig. 3). The nonmonotonicity observed in
R‖ in experiments [10,11] is not expected from de Gennes
scaling. Our MFT results agree with de Gennes scaling for
very small D and allowed us to calculate corrections to
de Gennes scaling for larger D. However, these corrections do
not lead to nonmonotonicity in R‖ (or R⊥). Our MD simulation
of a polymer made of purely repulsive segments confined
within a purely repulsive channel showed good agreement
with our MFT and also did not show nonmonotonicity in
R‖ or R⊥ with changing D. Using our simulations, we have
also evaluated the projected radius of gyration of the polymer
exactly in the same manner as described in Ref. [10]. This
quantity showed a clear monotonic increase with decreasing
plate separation as D−1/4 (data not shown). This is in contrast
to the observed behavior in Refs. [10,11], and in agreement
with our assertion that polymer size in the unconfined direc-
tions can only monotonically grow with increasing degree of
confinement. The fact that both our MFT and our simulations
unequivocally show that the behavior of R‖ and R⊥ of excluded
volume polymers is monotonic with the channel width, and
thus at variance with the experimental findings, implies that
other effects must play a role.

Reference [11] speculated that the nonmonotonicity in R‖
observed in experiments might be due to an effective attractive
interaction between the polymer segments and the confining
walls, as the detailed nature of polymer-wall interaction is both
hard to control and determine in experiments. Various other
factors might also impact the outcome of the experiments in
a nontrivial manner; e.g., the finite focal depth of microscope
used to observe the conformations (this depth is within the
range of D [34] used in Ref. [10]), possibility of a nonzero
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angle between the confining walls, imperfect screening of
the negative charge on the DNA, accumulation of charge on
the confining plates, remnant fluid flow in the flow channel
used in Ref. [10], etc. It is, however, beyond the scope of the
present paper to identify which conditions might have led to
the nonmonotonicity observed in the experiments.

Finally, we note that the MFT approach used in this
paper can be easily extended to other confining geometries,
e.g., cubic or cylindrical pores. The cylindrical confinement
is a natural choice for the study of bacterial chromosomes
[5]. Within a biological cell, binding of proteins on DNA
may enhance (or reduce) the effective persistence length of
DNA. Thus it would be interesting to examine the effect of
varying bending stiffness on confined polymers. A similar
MFT method may potentially also be used to describe tethered
polymers. For this case one may need to self-consistently
determine the step size of the effective Gaussian polymer
as a function of distance from the tethered end. Thus, this
mean-field approach has the potential to provide analytical
access to many situations of biological relevance.
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APPENDIX A: CALCULATING GREEN’S FUNCTION

A separation of variable G0 = f (L)ψ(r‖)φ(z) in Eq. (20)
leads to

1

f

df

dL
= l‖

6

1

ψ
∇2

‖ψ + l⊥
6

1

φ

d2φ

dz2
≡ −E, (A1)

where E is an arbitrary constant. Further, let us assume

(
d2

dz2
+ k2

z

)
φ(z) = 0, (A2)

(∇2
‖ + k2

‖)ψ(r‖) = 0. (A3)

The Dirichlet boundary condition G0(z = 0,D) = 0 re-
quires the solution φn(z) = √

2/D sin(kn
z z)

√
2/D sin(kn

z z
′)

with kn
z = (nπ/D), n being a positive integer. The solution

in the x and y directions gives ψ(r‖) = exp(ik‖ · r‖) with a
continuum of k‖ modes in the presence of an open boundary
condition. Equation (A1) leads to the identity

E = l‖
6

k2
‖ + l⊥

6

(nπ

D

)2
. (A4)

Thus the solution of the differential equation Eq. (20) has the
form exp(−EL) exp(ik‖ · r‖) sin(kn

z z) sin(kn
z z

′). The general
solution is obtained by summing (integrating) over all possible

modes n (k‖)

G0 = 2

D

∫
dk‖

(2π )2

∞∑
n=1

e−(l‖/6)k2
‖L−(l⊥/6)(nπ/D)2Leik‖·(r‖−r′

‖)

× sin

(
nπ

D
z

)
sin

(
nπ

D
z′

)

= 3

2πl‖L
e−3(r‖−r′

‖)2/2l‖L 2

D

∞∑
n=1

e−(l⊥/6)(nπ/D)2L

× sin

(
nπ

D
z

)
sin

(
nπ

D
z′

)
≡ G‖ G⊥. (A5)

APPENDIX B: CONTRIBUTIONS FROM EXCLUDED
VOLUME INTERACTIONS

In this Appendix we calculate δb
‖ and δb

⊥. The first-
order contributions due to the excluded volume term in the
Hamiltonian are of the form

〈A (r (0) ,r (L)) β�Hb〉0

= 1

Z

1

2
b

∫
dr (0)

∫
dr (L) A [r (0) ,r (L)]

∫ L

0
ds

∫ L

0
ds ′

×
∫ r(L)

r(0)
D[r(s)]δ[r(s) − r(s ′)] exp{−βH0[r(s)]}

≡ 1

Z

1

2
b

∫
dr (0)

∫
dr (L) A [r (0) ,r (L)]

×
∫ L

0
ds

∫ L

0
ds ′E[s,s ′|r (0) ,r (L)],

where the integration over end points is performed for all
possible r(0) and r(L). We consider the evaluation of the kernel
E(s,s ′|r(0),r(L)) of the inner integration, assuming for the
moment that s > s ′. The Chapman-Kolmogorov property

G
(
r,L|r′,0

) =
∫

dr′′G
(
r,L|r′′,L − s

)
G

(
r′′,s|r′,0

)
(B1)

then allows us to write

E(s,s ′ | r(0),r(L)) =
∫

dr′G0(r(L),L | r′,s)

×G0(r′,s | r′,s′) G0(r′,s′ | r(0),0).

(B2)

We also use the fact that since the Green’s function factorizes
as G0 = G‖G⊥, the separation of variable works for E =
E‖[s,s ′ | r‖(0), r‖(L)] × E⊥[s,s ′ | r⊥(0), r⊥(L)] as well.

As the longitudinal part is unaffected by the constraints, it
is the simplest case. Indeed, as

G‖
(
r′,s|r′,s ′) = 3

2πl‖ (s − s ′)
(B3)

does not depend on the intermediate position r′
‖ we immedi-

ately find that

E‖[s,s ′ | r‖(0),r‖(L)]

= 3

2πl‖(s − s ′)
G‖(r‖(L),L − (s − s ′) | r‖(0),0). (B4)

031803-10



SIZE AND SHAPE OF EXCLUDED VOLUME POLYMERS . . . PHYSICAL REVIEW E 83, 031803 (2011)

A similar simplification does not hold for the transverse
component as

G⊥(r ′
⊥,s|r ′

⊥,s ′) = 2

D

∞∑
n=1

sin2
(nπ

D
r ′
⊥
)

e−κn2(s−s ′) (B5)

[with κ = (l⊥/6)(π/D)2] does depend on r ′
⊥. We therefore

find that

E⊥[s,s ′ | r⊥(0),r⊥(L)]

= 1

D2

∞∑
nL,n′,n0=1

e−κLn2
Le−κs(n′2−n2

L)e−κs ′(n2
0−n′2)

× [
2δn0,nL

+ δn′,(n0+nL)/2 − δn′,(n0−nL)/2 − δn′,(nL−n0)/2
]

× sin
[nLπ

D
r⊥(L)

]
sin

[n0π

D
r⊥(0)

]
. (B6)

Again, we can write

〈R2
‖β�Hb〉0 = Z−1 1

2
b

∫ L

0
ds

∫ L

0
ds ′

∫
dr(0)

∫
dr(L)

× [r‖(L) − r‖(0)]2E(s,s ′ | r(0),r(L))

= Z−1 1

2
b

∫ L

0
ds

∫ L

0
ds ′

×
{∫

dr‖(0)
∫

dr‖(L)[r‖(L) − r‖(0)]2E‖

}

×
{∫

dr⊥(0)
∫

dr⊥(L)E⊥

}

≡ Z−1 1

2
b

∫ L

0
ds

∫ L

0
ds ′I 2

‖ (s,s ′)I 0
⊥(s,s ′). (B7)

Similarly,

〈R2
⊥β�Hb〉0 = Z−1 1

2
b

∫ L

0
ds

∫ L

0
ds ′I 0

‖ (s,s ′)I 2
⊥(s,s ′),

(B8)

〈β�Hb〉0 = Z−1 1

2
b

∫ L

0
ds

∫ L

0
ds ′I 0

‖ (s,s ′)I 0
⊥(s,s ′). (B9)

In the above, we used the definitions

I 0
‖ (s,s ′) =

∫
dr‖(0)

∫
dr‖(L)E‖[s,s ′ | r‖(0),r‖(L)],

(B10)

I 2
‖ (s,s ′) =

∫
dr‖(0)

∫
dr‖(L)E‖[s,s ′ | r‖(0),r‖(L)]

× [r‖(L) − r‖(0)]2, (B11)

I 0
⊥(s,s ′) =

∫
dr⊥(0)

∫
dr⊥(L)E⊥[s,s ′ | r⊥(0),r⊥(L)],

(B12)

I 2
⊥(s,s ′) =

∫
dr⊥(0)

∫
dr⊥(L)E⊥[s,s ′ | r⊥(0),r⊥(L)]

× [r⊥(L) − r⊥(0)]2. (B13)

We can now evaluate the integrals over the end points. The
longitudinal ones are easier to compute:

I 0
‖ (s,s ′) = W 2 3

2πl‖(s − s ′)
,

I 2
‖ (s,s ′) = W 2 3

2πl‖(s − s ′)
× 2

3
l‖[L − (s − s ′)]. (B14)

The only r⊥(0) and r⊥(L)-dependent term present in
E⊥[s,s ′ | r⊥(0),r⊥(L)] is q[r⊥(L),r⊥(0)] = sin[nLπr⊥(L)/
D] × sin[n0πr⊥(0)/D]. To evaluate the integration in I 0

⊥(s,s ′)
we use the identity∫ D

0
dr⊥ sin

(nπ

D
r⊥

)
= D

nπ
[1 − (−1)n]. (B15)

Thus,

I 0
⊥(s,s ′) =

∞∑
nL,n′,n0=1

e−κLn2
Le−κs(n′2−n2

L)e−κs ′(n2
0−n′2)

× [
2δn0,nL

+ δn′,(n0+nL)/2

− δn′,(n0−nL)/2 − δn′,(nL−n0)/2
]
J0(nL,n0), (B16)

where

J0(nL,n0) = 1

n0nLπ2
[1 − (−1)nL ][1 − (−1)n0 ]. (B17)

To calculate I 2
⊥(s,s ′) one requires to use the integration

of sine function with powers, such as,
∫ D

0 dr sin(nπr/D),∫ D

0 dr r sin(nπr/D), and
∫ D

0 dr r2 sin(nπr/D). This gives us

I 2
⊥(s,s ′) = D2

∞∑
nL,n′,n0=1

e−κLn2
Le−κs(n′2−n2

L)e−κs ′(n2
0−n′2)

× [
2δn0,nL

+ δn′,(n0+nL)/2 − δn′,(n0−nL)/2

− δn′,(nL−n0)/2
]
J (nL,n0), (B18)

where

J (nL,n0) = − 1

n3
Ln0π4

{(−1)nLn2
Lπ2 + 2[1 − (−1)nL ]}

× [1 − (−1)n0 ] − 2

nLn0π2
(−1)n0 (−1)nL

− 1

nLn3
0π

4

[
(−1)n0n2

0π
2 + 2(1 − (−1)n0 )

]
× [1 − (−1)nL ]. (B19)

We used s > s ′ above. Now, using the identity

1

2

∫ L

0
ds

∫ L

0
ds ′ =

∫ L

0
ds ′

∫ L

s ′
ds, (B20)

we have

δb
‖ = Z−1b

∫ L

0
ds ′

∫ L

s ′
dsI 0

⊥(s,s ′)[I 2
‖ (s,s ′) − 〈R2

‖〉0I
0
‖ (s,s ′)],

(B21)

δb
⊥ = Z−1b

∫ L

0
ds ′

∫ L

s ′
dsI 0

‖ (s,s ′)[I 2
⊥(s,s ′) − 〈R2

⊥〉0I
0
⊥(s,s ′)].

(B22)
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We now have all the ingredients to calculate the perturbation
corrections.

A. Parallel component δb
‖

We have

[I 2
‖ (s,s ′) − 〈R2

‖〉0I
0
‖ (s,s ′)]

= 3W 2

2πl‖(s − s ′)
×

{
2

3
l‖[L − (s − s ′)] − 2

3
l‖L

}
= −W 2

π
.

(B23)

Thus in evaluating the integral in δb
‖ [Eq. ((B21)], we need to

do the following integration:

M = e−κLn2
L

∫ L

0
ds ′

∫ L

s ′
dse−κs(n′2−n2

L)e−κs ′(n2
0−n′2), (B24)

where the only function of (s,s ′) in the integrand comes from
I 0
⊥(s,s ′).

Thus, we obtain

δb
‖ = − b

Z
W 2 1

π

∞∑
nL,n′,n0=1

M(nL,n′,n0; κ)

× [
2δn0,nL

+ δn′,(n0+nL)/2

− δn′,(n0−nL)/2 − δn′,(nL−n0)/2
]
J0(nL,n0),

i.e., Eq. (36).

B. Perpendicular component δb
⊥

The only function of (s,s ′) in Eq. (B22) is exp[−κs(n′2 −
n2

L)] exp[−κs ′(n2
0 − n′2)] due to the function [I 2

⊥(s,s ′) −
〈R2

⊥〉0I
0
⊥(s,s ′)] and 1/(s − s ′) due to I 0

‖ (s,s ′). Thus we have to
evaluate the integration

K = e−κLn2
L

∫ L

0
ds ′

∫ L

s ′
ds

e−κs(n′2−n2
L)e−κs ′(n2

0−n′2)

(s − s ′)
. (B25)

The term by term calculation of this quantity for each (n0,n
′,nl)

encounters a pole at s = s ′. To avoid the pole, the integration
to evaluate Eq. (B25) can be rewritten as

K(nL,n′,n0; κ) = e−κLn2
L lim

a→0

∫ L

0
ds ′

∫ L

s ′
ds

×
[

e−κs(n′2−n2
L)e−κs ′(n2

0−n′2)

(s − s ′) + a

]
. (B26)

Note that this is equivalent to replacing the delta-function
overlap interaction by its Gaussian representation but keep-
ing a nonzero variance a2. Thus we obtain the expression
(Eq. (39))

δb
⊥ = b

Z
W 2 3

2πl‖

∞∑
nL,n′,n0=1

D2 K(nL,n′,n0; κ)

× [
2δn0,nL

+ δn′,(n0+nL)/2 − δn′,(n0−nL)/2 − δn′,(nL−n0)/2
]

×
[
J (nL,n0) − 〈R2

⊥〉0

D2
J0(nL,n0)

]
.

APPENDIX C: BULK LIMIT OF D → ∞
In this Appendix we calculate δb

‖ , δb
⊥ and δ⊥

⊥ in the bulk
limit of D → ∞.

It is clear that, since in this limit G⊥ itself is independent of
D, δb

‖ and δb
⊥ are also independent of D. Using the continuum

approach at D → ∞,

E⊥ =
√

3

2πl⊥(s − s ′)
G⊥(z(L),L − (s − s ′) | z(0),0)

=
√

3

2πl⊥(s − s ′)
×

√
3

2πl⊥[L − (s − s ′)]

× exp

{
−3

2

[z(L) − z(0)]2

l⊥[L − (s − s ′)]

}
. (C1)

Then using Eq. (B12) we get

I 0
⊥(s,s ′) =

∫
dz(0)

∫
dz(L)E⊥[s,s ′ | r⊥(0),r⊥(L)]

= D

√
3

2πl⊥(s − s ′)
. (C2)

Remember that, now, the orthogonal component of partition
function has also been redefined to Z⊥ = D. Then using
Eq. (B21),

δb
‖ = Z−1b

∫ L

0
ds ′

∫ L

s ′
dsI 0

⊥(s,s ′)[I 2
‖ (s,s ′) − 〈R2

‖〉0I
0
‖ (s,s ′)]

= (W 2D)−1b(−W 2/π ) D

√
3

2πl⊥

∫ L

0
ds ′

∫ L

s ′
ds

√
1

(s − s ′)

= − b

π
×

√
3

2πl⊥
× 4

3
L3/2; (C3)

where we also used Eqs. (B14) and (27). Using Eq. (B13) we
find

I 2
⊥(s,s ′) =

∫ ∞

−∞
dz(0)

∫ ∞

−∞
dz(L)

√
3

2πl⊥(s − s ′)

×
√

3

2πl⊥[L − (s − s ′)]
e
− 3(z(L)−z(0))2)

2l⊥(L−(s−s′ ))

=
√

3

2πl⊥(s − s ′)
D

l⊥[L − (s − s ′)]
3

, (C4)

and using Eq. (28) we get

〈R2
⊥〉0 =

∫ ∞
−∞ dz

∫ ∞
−∞ dz′(z − z′)2e

− 3(z(L)−z(0))2)
2l⊥L∫ ∞

−∞ dz
∫ ∞
−∞ dz′e− 3(z(L)−z(0))2)

2l⊥L

= l⊥L

3
. (C5)

Therefore,

I 2
⊥(s,s ′) − 〈R2

⊥〉0I
0
⊥(s,s ′) = −D

l⊥
6π

(s − s ′)1/2, (C6)
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and

I 0
‖ (s,s ′)[I 2

⊥(s,s ′) − 〈R2
⊥〉0I

0
⊥(s,s ′)]

= −W 2 3

2πl‖(s − s ′)
D

√
l⊥
6π

(s − s ′)1/2

−W 2 Dl
1/2
⊥

l‖
(s − s ′)−1/2. (C7)

Since in this limit Z = W 2D, using Eq. (B22) we find

δb
⊥ = Z−1b

∫ L

0
ds ′

∫ L

s ′
dsI 0

‖ (s,s ′)[I 2
⊥(s,s ′) − 〈R2

⊥〉0I
0
⊥(s,s ′)]

� −bl
1/2
⊥
l‖

L3/2. (C8)

Similarly, using Eq. (C5) in Eq. (34), we obtain

δ⊥
⊥ = −3

2

(
1

l
− 1

l⊥

)
∂

∂α⊥
〈R2

⊥〉0 = 1

3

(
1

l
− 1

l⊥

)
Ll2

⊥.

(C9)

APPENDIX D: 2D LIMIT OF CONFINED SYSTEM

In pure two dimensions, the perturbative contribution due
to the intersegment interactions takes the form

δb
2D = Z−1

2Db0

∫ L

0
ds ′

∫ L

s ′
ds[I 2

‖ (s,s ′) − 〈R2
‖〉0I

0
‖ (s,s ′)],

where Z2D = W 2. Thus,

δb
2D = − b0

2π
L2,

where b0 plays the role of interaction strength. Thus, δ‖ =
δ

‖
‖ + δb

‖ = 0 implies

Ll2
2D

l
∼ b0

2π
L2 or l2D ∼ (b0l)

1/2L1/2,

which leads to the scaling form,〈
R2

2D

〉 ∼ Ll2D ∼ (b0l)
1/2L3/2. (D1)

We expect that the polymer would behave like a pure 2D
polymer in the limit of extremely small plate separation D.
This limit is achieved when 〈R2

‖〉 = 〈R2
2D〉. We have seen

that the strength of the interaction b in three dimensions
has the dimension of length, whereas the same strength b0

is dimensionless in two dimensions. This shows that the only
intrinsic microscopic length scale in the system is segment
length l. Thus we need to express b = b0l to search for the
pure 2D limit of confined systems. With this substitution,

〈R2
‖〉 ∼ (b0l)

1/2L3/2

(
l

D

)1/2

. (D2)

Therefore, 〈R2
‖〉 equates 〈R2

2D〉 when D ∼ l, i.e., when the
plate separation D becomes as small as the polymer segment
length l.
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