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Density fluctuations of polymers in disordered media
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We study self-avoiding random walks in an environment where sites are excluded randomly, in two and three
dimensions. For a single polymer chain, we study the statistics of the time averaged monomer density and show
that these are well described by multifractal statistics. This is true even far from the percolation transition of the
disordered medium. We investigate solutions of chains in a disordered environment and show that the statistics
cease to be multifractal beyond the screening length of the solution.
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I. INTRODUCTION

In many experimental situations, linear polymers are
present in a disordered medium, for example, a free polymer
chain inside an elastomeric network, or a DNA molecule in an
agarose gel. The properties of single chains in such situations
have been the subject of numerous theoretical and numerical
work [1–9]. From a theoretical perspective, the problem is
of great interest in part because of its strong connection to
the phenomenon of quantum mechanical localization [10].
The Green’s function for a single ideal polymer chain in a
potential is mathematically identical to that of an electron
in the same potential, but in imaginary time [11]. Therefore
a polymer chain is expected to collapse to a small region
in space. However, the presence of excluded volume of the
chain prevents this from occurring. The statistics of a chain
in this case was the subject of much controversy. This was
settled by the work of Cates and Ball [1] who showed that
the statistics of a chain on an infinite lattice with frozen
disorder, that is, the quenched case, was identical to that
of a chain with mobile defects, that is, the annealed case.
They showed this by dividing up the infinite lattice into large
finite regions with frozen disorder. The average properties
of a chain are obtained by averaging over all of these large
finite regions. This is equivalent to performing an annealed
average. It is easy to perform the annealed average over
uncorrelated random disorder and show that this has no
effect of chain statistics. Simulations [4] away from the
percolation threshold bear out this prediction. Work on off-
lattice models of spherical obstacles show more complicated
behavior, because the correlations in the disorder are no longer
pointlike, so this influences the conformation of a chain. For
low obstacle volume fraction, these correlations induce an
effective attraction causing a decrease in chain size. As the
volume fraction gets close to the percolation threshold [8,9],
the exclusion of phase space for finite lattice sizes leads to an
increase in the average chain size.

Although chain statistics in the above situation are not
affected by frozen disorder, there is another important physical
quantity that does change. Consider the density of monomers
for a given background of disorder. If this is averaged over
time, one expects that the density will fluctuate because of the
fluctuations in the random potential. This problem was studied

numerically by Gersappe et al. [7] in two dimensions where it
was shown that this time averaged monomer density (TAMD)
obeyed multifractal statistics [12–14] over the parameter range
studied. The spectrum of multifractal dimensions was com-
puted numerically and gave strong evidence for multifractal
scaling.

More recently [15], the properties of a polymer chain on the
backbone of a percolating cluster were examined numerically
at the percolation transition. They found that it exhibited
multifractal properties in agreement with the theoretical work
of Janssen and Stenull [6]. A measure of bond density for
an ensemble of chains of varying lengths that connect two
points separated by a distance R was calculated numerically.
That measure was analyzed and shown to have a spectrum of
multifractal exponents.

The earlier work of Gersappe et al. [7] in two dimensions
claimed that multifractal statistics were true even far from
the percolation transition where the disorder is dilute. In
other words, the multifractal nature of polymers in disordered
systems is much more general and in fact, a simpler, more
experimentally accessible quantity, namely the time averaged
monomer density, can be used as a measure.

Multifractal distributions are characterized by very large
fluctuations, so in this case, we expect that the TAMD ρ(r) will
have a probability distribution that becomes increasingly broad
as the system size in increased. We also expect multifractal
statistics to be present for scales less than the average radius
of gyration Rg of the chain. On larger scales, the density
fluctuations should saturate so that the distribution P of ρ

should obey [13,14]

P (log ρ) ∝ exp[log(Rg)f (log(ρ)/ log(Rg)]. (1)

In this paper, we study this problem in two dimensions for
different amounts of disorder and show that multifractality is
seen in all cases. The original work of Gersappe et al. only
presented results for one value of disorder. Next we study
this system in three dimensions and show that multifractal
statistics persist for this case as well. Next we consider
many chains at finite concentrations and demonstrate how this
smooths out density fluctuations so that the statistics are no
longer multifractal.
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In Sec. II we describe the model that we will apply
to study this problem. In Sec. III we study the TAMD in
two dimensions. The results are similar to what was found
earlier [7] but with much improved data providing more solid
evidence for multifractality of a range of obstacle densities.
Section IV considers the same problem in three dimensions.
Although box sizes are smaller, this work provides solid
support for the hypothesis that the TAMD is a multifractal
measure as well. In Sec. V this problem is analyzed for a
solution of chains at finite concentration where it is clear that
the system ceases to be multifractal over the scale of the radius
of gyration of a chain. An interesting bimodal distribution for
the distribution of the TAMD is found.

II. MODEL

We consider a cubic lattice in d = 2 and 3 dimensions, with
m self-avoiding walks of unit step length of N monomers. The
monomers move in a cubic box of width L. Skew boundary
conditions are employed [16]. Obstacles are randomly placed
on sites which are excluded from occupation by polymer
chains. We denote the average fraction of excluded sites
as no.

The chains are moved using “reptation dynamics” [17].
Briefly, the head or chain of a chain is picked at random and
an attempt is made to move it to the other end. The attempt
fails if the site is occupied by a chain or an obstacle, otherwise
it succeeds. After equilibrating, statistical properties of the
chains are measured, such as the radius of gyration and the time
averaged monomer density. To test this method, we checked
that the internal chain statistics of a single chain with random
disorder were identical within statistical error to that of a self-
avoiding walk with no disorder.

Next we considered density fluctuations. Moments of
the normalized time averaged monomer density ρr can be
calculated by summing moments of the density over all lattice
sites and inferring how this depends on lattice size,〈

Ld∑
r

ρq
r

〉
∼ L−τ (q). (2)

The average is over different realizations of the disorder.
However, it is more accurate to obtain the exponents τ (q)
by coarse graining, making use of the self-similar nature of
multifractals. If we coarse grain over boxes of width l, and
define ρ̃r as the density measure coarse grained over that length
scale, then it is straightforward to show that

Tq(l) ≡
〈

(L/l)d∑
r

ρ̃q
r

〉
∼ lτ (q)−dq . (3)

By analyzing how this sum depends on l, τ (q) can then be
determined.

III. SINGLE CHAINS IN TWO DIMENSIONS

The above model was studied for a single chain in two
dimensions for different values of the disorder and chain
lengths. The TAMD ρr is plotted in Fig. 1. Figure 1(a) shows
a chain of length N = 512 in a box of length L = 128 with
an obstacle density of no = 0.1. The self-similar nature of

(a)

(b)

FIG. 1. (Color online) Time averaged monomer density ρ for
a self-avoiding random walk in two dimensions: (a) N = 512,
L = 128, and no = 0.1; (b) N = 256, L = 64, and no = 0.3. The
horizontal axes are labeled x and y.

the measure is apparent. Figure 1(b) shows the TAMD for
N = 256 and L = 64, with no = 0.3.

The density shows a self-similar structure with different
regions appearing statistically quite similar but differing by an
overall multiplicative constant as expected for a multifractal
measure. For distances larger than the radius of gyration, one
expects multifractal scaling to no longer hold. Similarly, for
distances smaller than some cutoff distance l0, related to the
density of obstacles, the density should become smooth so that
multifractal scaling no longer applies. But over intermediate
scales, as can be seen, the density appears self-similar. This
will be now quantified below.

Coarse graining of ρ is done by recursive decimation of the
original lattice into 2 × 2 blocks. This implies that the coarse
graining length is a power of 2, l = 2m, where m is the number
of times the lattice is decimated. Good fits to power laws were
obtained between the lower and upper cutoffs for Eq. (3),
as shown in Fig. 2. This plots the left hand side of Eq. (3)
as a function of coarse graining m = log2 l. Figure 2 shows
the case N = 512, L = 128, and no = 0.2 for q = −1,0,1,2.
The results were averaged over 200 different realizations of
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FIG. 2. (Color online) Scaling of moments of the coarse grained
density Tq as defined in Eq. (3) as a function of the amount of coarse
graining m in two dimensions. The top line is data for q = −1, the
middle, q = 2, and the bottom is for q = 1.

the random obstacles, and each simulation was run for a
total of 8 × 109 steps. This is strong evidence of self-similar
multifractal behavior far away from the percolation threshold
in two dimensions.

Using these fits, τ (q) defined in Eq. (3) was calculated. The
results are shown in Fig. 3. For clarity we plot the difference
in τ defined as �τ (q) ≡ τ (q) − τ (q − 1/2). This is shown for
three different sets of parameters, n0 = 0.1, 0.2, and 0.3. The
data give strong evidence for multifractal behavior for a range
of different obstacle densities.

IV. SINGLE CHAINS IN THREE DIMENSIONS

The simulation was run in three dimensions and analyzed
for the possibility of multifractal scaling, following the same
procedure as in two dimensions. We first plot 〈ρ̃q〉 as a function
of the coarse grained length scale l, as is defined in relation to
Eq. (3). Figure 4 shows the case N = 128, L = 32, and no =
0.3. Because the box size and the chain length are smaller than
in two dimensions, power law scaling can only be seen over

FIG. 3. (Color online) The results of simulations to determine
the multifractal dimensions for different obstacle densities n0 =
0.1 (triangles), 0.2 (squares), and 0.3 (diamonds) in two dimensions.

FIG. 4. (Color online) Scaling of moments of the coarse grained
density Tq as defined in Eq. (3) as a function of the amount of coarse
graining m in three dimensions for n0 = 0.3. The top line is data for
q = −1, the middle, q = 2, and the bottom is for q = 1.

a more limited range, however, it does support the hypothesis
that the TAMD is multifractal. For q = 2 a slight curvature can
be seen in the log-log plot which is to be expected from finite
size effects. Overall the fits to power laws over this range are
very good. Similarly good fits are also seen for n0 = 0.2. In
Fig. 5, we display fits for �τ as a function of q for n0 = 0.1,
0.2, and 0.3. Therefore is appears that in three dimensions, our
simulations and analysis also support the idea that the TAMD
is multifractal for obstacle densities away from the percolation.

V. MANY CHAINS

The internal statistics of a self-avoiding walk (SAW) in
a much larger lattice of quenched random obstacles was
shown to be equivalent to that of an annealed average and
hence that of a SAW without disorder [1]. For the case of a
many chain solution, extending this result is not completely
straightforward. The difficulty in this case is that the polymer
solution extends throughout the entire lattice.

We could considered the problem of an infinite lattice with
a set of chains that were mobile but were required to always be

FIG. 5. (Color online) The results of simulations to determine
the multifractal dimensions for different obstacle densities n0 =
0.1 (triangles), 0.2 (squares), and 0.3 (diamonds) in three dimensions.
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close to each other. In other words, one can add the constraint
that all chains are within a finite size box whose center of mass
is arbitrary. In this case the argument of Cates and Ball [1]
could be extended to this many chain case. Therefore with
an infinite size lattice and with this many chain problem,
the annealed and quenched averages should be equivalent.
Unfortunately this does not give any indication of the size
of the lattice where these two types of averages become
equivalent.

However, this problem is easily amenable to numerical
simulation. Various equilibrium internal averages for chains
were calculated and found to be almost entirely unaffected by
the disorder. As an example, we considered m = 40 chains
each of length N = 128 with an obstacle density of n0 = 0.2
in a box of size L = 32. Excluding obstacles, this corresponds
to a chain filling fraction of 20%. R2

g = 49.190 ± 0.013 in this
case. In comparison R2

g = 48.785 ± 0.006 when run with no
obstacles. The difference between these two cases is less than
1%. As the obstacle density approaches the percolation point,
one would expect the difference between these two cases to
increase due to the increasing likelihood of islands that are
inaccessible, similar to the single chain case [4,8].

In contrast to internal chain statistics, such as the average
radius of gyration, we expect the TAMD for the many chain
case to be greatly affected by the presence of disorder, as it
was for the single chain case.

For a system of chains at finite density in three dimensions,
the fluctuations in chain density will be quite different than
for a single chain. Above the correlation length, correlations
in density will decrease rapidly. Therefore the distribution of
the TAMD is no longer expected to be multifractal over these
scales. This problem was simulated using the same approach
as above.

The distribution of the TAMD was averaged over lattice
sites and different realizations of the obstacle density in three
dimensions. This is displayed in Fig. 6 for the same system
as discussed above: m = 40 chains each of length N = 128
with an obstacle density of n0 = 0.2 in a box of size L = 32.
The distribution is plotted with logarithmic axes (base e). The
results were averaged over 155 different realizations of the
random obstacles, and each simulation was run for a total of
8 × 109 steps. The TAMD ρ was normalized so that 〈ρ〉 = 1.

The results show that the distribution P (log ρ) has two
peaks. One peak is close to ρ = 1 and most values of the
density are clustered around that value. However, there is
another peak for very small values of the obstacle density
ρ = 0.003. The second peak is unexpected because it implies
that there are intermediate values of the density that are much
less probable.

The same feature persists when the obstacle density n0 is
reduced to 0.1 and in both cases it is clear that this second
peak is not due to random statistical fluctuations. This is likely
due to the presence of some particular local configurations of
obstacles, for example, a cul-de-sac. In this case there will be
entropic exclusion of the chain for such a region leading to a
lower monomer density.

The distribution in Fig. 6 is is not compatible with the
prediction of multifractal statistics [Eq. (1)] as the distribution
must be convex. In addition, the coarse graining analysis of
the last two sections does not yield a spectrum of exponents.

FIG. 6. (Color online) Distribution of the TAMD natural loga-
rithm of ρ for 40 chains, an obstacle density of n0 = 0.2 in three
dimensions with N = 128, L = 32. The vertical axis the natural
logarithm of the probability distribution.

�τ (q) over the same range as Fig. 5 varies by less than 0.05.
The lack of large fluctuations is to be expected due to the
presence of a screening length. Although it is likely that the
TAMD is multifractal below this scale, it is not possible to
investigate this numerically because the accessible sizes only
cover a small range in scales.

VI. DISCUSSION

This work has studied the problem of polymer chains in
a disorder medium using a lattice model for self-avoiding
walks with some sites excluded. Many of the statistics for the
polymer are exactly the same as if there were no disorder,
for a single chain in the limit of an infinite lattice. For a
finite sized lattice quantities such as average radius of gyration
appear to be almost unaffected by the presence of disorder.
In contrast, the time average monomer density (TAMD) in
both two and three dimensions becomes very heterogeneous.
For a single polymer chain, our results provide evidence
that this density obeys multifractal statistics for length scales
smaller than the radius of gyration of the chain. This ap-
pears to be true for disorder far away from the percolation
transition.

The fact that the statistics of the average density are multi-
fractal suggests that the dynamics are even more complex. And
because a spectrum of exponents govern the density correlation
functions, the extensions to dynamical properties must take
this into account. Certain properties such as the diffusion
coefficient of a self-avoiding chain in a disordered environment
have been previously investigated [18,19] indicating that the
diffusion coefficient, and hence the relaxation time, have a
power law scaling.

In the case of many chains, it is known that the effects of
screening lead to a slowing down in the dynamics of chains and
that for long enough chains, the relaxation time is proportional
to exp(const × Np) [20,21], where p is believed to be 2/3.
The effects of the random environment are screened out for
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distances longer than the correlation length, therefore such
long relaxation times are also expected in the many chain case
studied here.

The fact that even a low amount of disorder causes the
TAMD to become highly fluctuating should be taken into
account when considering other processes that often occur
in polymeric systems. For example, if a low concentration
of polymeric solution has not phase separated, considering
a similar situation but in a disordered medium, such as a
gel, could have significant consequences. As the above results
imply, the polymers will all be attracted to the same regions of
the gel. This will mean that the effective concentration in those
regions will be considerably higher. This could then enhance
the degree of phase separation.

A disordered medium should have an interesting effect on
a polymer moving in an applied field, for example, as is seen
during electrophoresis [22]. If we consider the field to be very
weak, the chain will tend to spend most of its time in a small
subset of the volume available to it, even for low disorder,
as a consequence of the large fluctuations in density found
here. It would be interesting to explore how the mobility
varies as a function of the applied field in this case. Even
very weak applied fields are capable of stretching long chains
[23,24]. This should dramatically change the TAMD in this
situation.

Another potential application of this work concerns the
positions of macromolecules inside a living cell. We have
seen that a self-avoiding walk will be much more likely to
be found in some disordered regions rather than in others,
despite the fact that the chain is capable of sampling almost all
regions. This is despite a lack of complex chemical interactions
and is entirely due to excluded volume effects. There are
situations where molecules such as DNA plasmids move in
a heterogeneous environment that has much in common with
our much simpler problem. For example, DNA plasmids in
prokaryotic cell nucleoids move in what is effectively a highly
disordered networklike environment [25]. It appears that the
diffusion of these plasmids is restricted to certain regions in
the bacteria nucleoid [26] suggesting that there are regions
not readily accessible to chains. It would be interesting to
investigate further to what extent phenomena such as these are
a result of the mechanism studied here.
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