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Electro-optical properties of deformed helix ferroelectric liquid crystal (DHFLC) cells are studied by using
a general theoretical approach to polarization gratings in which the transmission and reflection matrices of
diffraction orders are explicitly related to the evolution operator of equations for the Floquet harmonics. In the
short-pitch approximation, a DHFLC cell is shown to be optically equivalent to a uniformly anisotropic biaxial
layer where one of the optical axes is normal to the bounding surfaces. For in-plane anisotropy, orientation
of the optical axes and birefringence are both determined by the voltage applied across the cell and represent
the parameters that govern the transmittance of normally incident light passing through crossed polarizers.
We calculate the transmittance as a function of the electric field and compare the computed curves with the

experimental data. The theoretical and experimental results are found to be in good agreement.
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I. INTRODUCTION

A polarization grating (PG) can generally be described as
an optically anisotropic layer characterized by the anisotropy
parameters that periodically vary in space along a line in
the plane of its input face. Unlike conventional phase and
amplitude diffraction gratings, PGs act by locally modifying
the polarization state of light waves passing through them.
Owing to the one-dimensional (1D) in-plane periodicity,
this introduces periodically modulated changes of the polar-
ization characteristics giving rise to polarization-dependent
diffraction. In particular, the latter implies that a PG di-
vides a monochromatic plane wave into differently polarized
diffracted waves.

Over the past decade PGs have been attracted much atten-
tion due to a unique combination of their optical properties:
(a) it is possible to achieve 100% diffraction into a single
order; (b) diffraction efficiencies are highly sensitive to the
incident light polarization; and (c) the state of polarization of
diffracted orders is determined solely by the parameters of
a PG [1-4]. There are numerous applications in a variety
of fields, including polarimeters, displays, polarizing beam
splitters, beam steering, and polarization multiplexers where
PGs have been found to be useful (for recent reviews, see the
articles [5—7] and the monograph [8]).

There are different technologies to fabricate PGs. For
example, computer-generated subwavelength-period metal-
stripe gratings with spatially periodic fringe orientation [9]
and space-variant dielectric subwavelength gratings formed by
discrete orientation of local subwavelength grooves [10,11]
are produced using advanced photolithographic and etching
techniques. Such gratings were employed to perform real-time
polarization measurements [10-12]. They were also used
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to demonstrate polarization Talbot self-imaging [13] and
Pancharatnam-Berry phase optical elements [14,15].

Polarization holography provides another well-known
method to produce PGs [8]. It uses two differently polarized
light beams to record the spatially modulated polarization state
of the resultant light field on suitable media such as azobenzene
containing polymer systems and silver-halide materials.

The holographic technique has been extensively used to
create PGs in liquid crystal (LC) cells with photosensitive
aligning substrates such as linear photopolymerizable polymer
layers [16,17], azo-dye films [18], azo-dye doped polyimide
[19,20], and azobenzene side-chain polymer layers [21].

In this method, irradiation of the substrate with a holo-
graphically generated polarization interference pattern gives
rise to spatially modulated light induced ordering in the
photoaligning layer. This ordering manifests itself in the
effect of photoinduced optical anisotropy and determines
the anchoring properties of the layer such as its (polar and
azimuthal) anchoring strengths and the easy axis orientation
(see, e.g., Refs. [22-24] and references therein).

The anchoring parameters of the photoaligning film thus
undergo periodic variations across the substrate face leading
to the formation of orientational structures in the LC cells
[25] characterized by spatially periodic distributions of the LC
director, d= (dx,dy,d;), which is a unit vector that defines a
local direction of the preferential orientation of LC molecules.
In LCs, the elements of the dielectric tensor, €, can be expressed
in terms of the LC director [26],

€ =€1(8;j +u.did;y), u,= (e —e€r)/ey, (D
where §;; is the Kronecker symbol, u, is the anisotropy
parameter, and n; =n, = \Jue; (ny =n, = JIE)) is the
ordinary (extraordinary) refractive index (the magnetic ten-
sor of LC is assumed to be isotropic with the magnetic
permittivity w). So, the periodic orientational LC configura-
tions define the so-called liquid crystal polarization gratings
(LCPGsS). These gratings are our primary interest.

©2011 American Physical Society


http://dx.doi.org/10.1103/PhysRevE.83.031703

KISELEV, POZHIDAEYV, CHIGRINOV, AND KWOK

Helix pitch, P

Common methods most generally employed to derive
theoretical results for PGs typically rely on the well-known
Jones matrix formalism and its modifications [1-5,8—-11,21].
These results are limited by their assumptions to large gratings
periods and normal incidence. In addition, using Jones calculus
implies neglecting multiple reflections.

In this work we present the theoretical approach to PGs
that can be regarded as a generalized version of our method
developed in Refs. [27,28] for stratified anisotropic media
and goes beyond the limitations of Jones calculus. We apply
the method for systematic treatment of the technologically
important case of the deformed helix ferroelectric liquid
crystals (DHFLCs) [29,30], where the LC director rotates
about a uniform twist axis parallel to the substrates forming
the ferroelectric LC (FLC) helical structure (see Fig. 1).

In DHFLC cells, the FLC helix is characterized by a
short submicron helix pitch, P < 1 um, and a relatively large
tilt angle, 6, > 30°. Note that, in the case of surface stabilized
FLC cells, the helix pitch of a FLC mixture is typically
greater than the cell thickness, so that the bulk chiral helix
turned out to be suppressed by the boundary conditions at the
substrates [31]. By contrast to this, a DHFLC helix pitch is
5-10 times smaller than the thickness. This allows the helix to
be retained within the cell boundaries.

Electro-optical response of DHFLC cells exhibits a number
of peculiarities that make them useful for LC devices such
as high-speed spatial light modulators [32—-34] and color-
sequential LC display cells [35]. So, in this study, our goal
is to examine electro-optical properties of DHFLCs based on
the general theoretical approach describing PGs.

The layout of the paper is as follows.

In Sec. IT we begin with Maxwell’s equations for the lateral
components of the electric and magnetic fields and derive a set
of equations for the Floquet harmonics representing diffracted
waves. The relations linking the transmission and reflection
matrices of diffraction orders and the evolution operator of the
system for the harmonics are deduced in Sec. IIC.

Electro-optical properties of DHFLC cells with the sub-
wavelength helix pitch are studied in Sec. III. Experimental
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FIG. 1. (Color online) Helical
structure of deformed helix ferro-
electric liquid crystals. The FLC
director, &, lies on the smectic cone
with cone angle 6; and rotates around
the helix axis (the x axis) along
with the vector of the spontaneous
ferroelectric polarization, P;.
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details are given in Sec. III A, where we describe the
samples and the setup employed to perform measurements.
In Sec. III B, the general theory of Sec. II is used to examine
how the optical anisotropy parameters and the transmission
coefficients of the DHFLC cells depend on the applied electric
field. In particular, it is found that in the short-pitch approx-
imation the DHFLC PGs can be represented by uniformly
anisotropic biaxial layers. For the electric field dependence
of the light transmittance through the cell placed between
crossed polarizers, the results of electro-optical measurements
are compared with the theoretically computed curves in
Sec. IIIC.

Finally, in Sec. IV, we present the results and make some
concluding remarks. Technical details on the derivation of
Maxwell’s equations for the lateral (in-plane) components of
the electromagnetic field are relegated to the Appendix.

II. THEORY OF POLARIZATION GRATINGS

In this section we generalize the theoretical approach
developed in Refs. [27,28] so as to treat the light transmission
problem for a PG in the slab geometry shown in Fig. 2. In this
geometry, as is indicated in Fig. 2, the z axis is normal to the
bounding surfaces of the layer: z = 0 and z = D, the grating
with the grating pitch, A, and the grating wave vector,

k, = k,X, —, 2)
where k, is the grating wave number, is characterized by

the condition of in-plane periodicity for the elements of the
dielectric tensor, &:

€i(x + Ay) = €;;(x). 3)

Expression for the grating wave vector (2) defines the x-z plane
as the plane of grating.

Throughout this paper we deal with harmonic electromag-
netic fields characterized by the frequency, o (time-dependent
factor is exp{—iwt}), and the free-space wave number, ky,. =
w/c. So, the starting point of our theoretical considerations is
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FIG. 2. Schematic representation of slab
geometry in the plane of PG with the grating

wave vector k,. The incident wave with the
wave vector k;,. impinges onto the gratings and
the diffraction orders of reflected (transmitted)
waves are characterized by the wave vectors
k% and kG (ki) and k().

refl refl trm trm

the Maxwell equations for a harmonic electromagnetic wave
written in the form

V x E = iukyH, (4a)
V x H = —ikyD, (4b)

where D = ¢ - E is the electric displacement field.
We also assume (see Fig. 2) that the medium surrounding
the layer is optically isotropic with the dielectric constant €y,

the magnetic permittivity n, and the refractive index n, =
JHmém. So, for a plane wave traveling along the wave vector

k=knk =k2+k,, k,=ky[cos(p)k+ sin(¢)¥l,
km - nmkvac’ (5)

the electromagnetic field {E,H} is given by

{E.H} = {E(k),H(k)} expli(k - )], (6a)
Ek) = E, e,(k) + E, e,(k), (6b)
Pm k) = k x ER) = E, e, (k) — E, ex(k),  (60)

Nm

where the unit vectors k = (sin @ cos ¢, sin @ sin ¢, cos H),
ex(ﬁ) = (cosf cos ¢, cosfsing, —sinf), and ey(ﬁ) =
(—sin¢, cos ¢,0), expressed in terms of the polar (f) and
azimuthal (¢) angles form an orthogonal basis.

The incoming incident wave {E;,.,Hj,.} is represented by
a plane wave (6), {E,H} = {Eiyc,Hinc}, propagating along the
wave vector,

K=K = k"2 +Kk,, k"= [k2 -k, (7)

in the half space z < 0 bounded by the input face of the
grating. In this case, the polar angle, 0 < 6 = 6, < /2, is
the angle of incidence, whereas the azimuthal angle, 0 < ¢ =
dinec < 27, 1s the angle between the grating plane and the plane
of incidence.

A. Maxwell’s equations for lateral components
Now we write down the representation for the electric and
magnetic fields, E and H,

E=Ei+Ep, H=H2+12xHp, (8)

where the components directed along the normal to the
bounding surface (the z axis) are separated from the tangential
(lateral) ones. In this representation, the vectors

and

are parallel to the substrates and give the lateral components
of the electromagnetic field. Similar decomposition for the
differential operator that enter the Maxwell equations (4) is
given by

kV =120, +iV,, V=

vac p

=ixV,, 9)

where T = kyoez; V, = —i kL X9, +§9,) = (V,,V,) and
V, = (Vi) = (=Vy. V).

We can now substitute Egs. (8) and (9) into the system (4)
and follow the algebraic procedure described in the Appendix
to eliminate the z components of the electric and magnetic
fields. As a result, the z components, E, and H_, turned out to
be expressed in terms of the lateral components [see Egs. (AS)
and (A6)]. The resultant system of differential equations for
the lateral components, Ep and Hp, can be written in the
following matrix form:

. ' Mll M12 EP
—i3,F=M -F= ("= e , = kyacZ,
id M <M21 Mzz) (HP> T kyacZ

(10)
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where the elements of the matrix differential operators /Vh 5
are given by

11 - 72 -
'A//\lgzﬁ) = —Va . [Gzzlézﬂ], M((xﬂ) = [L(Saﬁ — Va 'EZZI ~Vﬁ,
(11a)
@ - el P _
MG = —eare! Vg, MY =€) —u'VE- vy,
(11b)

and the elements of the effective dielectric tensor (AS8) that
=@l
enter the operator Mz are

P —
e(iﬁ) = €4 — eazezzlezlg, o, B € {x,y}. (12)

B. Floquet harmonics

From Egq. (3), the dielectric tensor is a periodic function of
X, so that it is represented by its Fourier series expansion

£ = Z enexplin(ky - 1)) = Z enexp(ink,x),  (13)

n=—0o0 n=—00

where r, = (x,y,0). A similar representation applies to the
coefficients that enter the differential operators (11).

The representation of Floquet harmonics [36] for solutions
of the system (10),

F(r) =F(r,,1)= Y Fy(n)expli(k, -1,)},

n=—00

kn = kp + nkg = kvacqn’ (14)
Qn = gu(cos d, X +sing, §) = (¢,¢%",0),  (15)

where k, is the tangential component of the wave vector of the
incident plane wave defined in Eq. (7), is another consequence
of the periodicity condition (3).

On substituting the expansion over the Floquet harmonics
(14) into the system (10), we derive a set of matrix equations
for the Floquet harmonics,

—id:Fp(1) = Y Myun(7) - Fp(r), (16)

m=—00
11 12
(M,%m) MEM)
21 11
M) ML)

Ag o
= L/ exp{—i(k, - )}[Mexp{i(k, - r)}ldx, (17)
Ag Jo

Mnm =

where the 2 x 2 block matrices MY, are given by

11 (n—m) 22 —m)  (m)
[M;m)]aﬁ = _qtgzn)ﬁzﬂ ’ [Mflm)]aﬂ = _'322 m)qﬂ ’

(18a)

[Mgllrs)]aﬂ = M(saﬂanm - q,i") ngl,im) qgn), (18b)
[MOV],s = cop ™ — 1" 8un P PS”, Pw =12 qu,

(18¢)

and 0, ,3,-(;[), and e;’}; are the Fourier coefficients for €',
-1, d (P) tivel
€., €ij» and €4, respectively.
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General solution of the system (16),

F,(0) = Y Upn(r.70) - Fou(20), (19)

m=—0oQ

can be conveniently expressed in terms of the evolution
operator defined as the matrix solution of the initial value
problem,

o0
—i0:Upn(t.70) = Y My(0) - U (7,70),  (202)
k=—00

Unm (‘[07 TO) = I4 8nm P (20b)

where I, is the n x n identity matrix.

The Floquet harmonics, F,, represent the electromagnetic
field of the diffracted waves with the integer n € Z giving the
diffraction order. From the system (16), it can be inferred
that the effect of interharmonics coupling responsible for
diffraction is solely caused by the periodic modulation of the
dielectric tensor (13).

In the ambient medium with €;; = €,6;; and © = iy, the
harmonics are decoupled and, for the nth diffraction order,
represent plane waves propagating along the wave vectors with
the tangential component (15). The Floquet harmonics of such
waves, F'™ is given by

n

(m) _ eXP{iQm(CIn) 7:} 0
P <r>_vm(qn)( ; exp{—iQm(qn)t}>

E(")
x (E<+">> : (21)
Qm(Qn) = CIm(Qn)IZ, Qm(qn) =4/ nrzn - ql%’ (22)

where V(q,) is the eigenvector matrix for the ambient
medium given by

Vm (qn ) - Trot (¢n )Vm (Qn )

~ (men) 0 ) (Em
B 0 Rrot(¢n) Hm

_ qu(gn)/fm O _ [ Pm 0
Em‘( 0 1)’ “mHm‘<0 qm<qn>>’ @4

—sin qb) ’ 25)

cos @

—03E,
Jar). e

cos ¢
sin ¢

and {01,0,,03} are the Pauli matrices

(1) e (F) e 0) e

From Eq. (21), the vector amplitudes E(f) and E™
correspond to the forward and backward eigenwaves with
kT = tkyacgm and k) = —kyacgm, respectively. In the half
space z < 0, these describe the incident and reflected waves,

Rrol(¢) = <

(inc)
Eg-”)|z<0 = Efﬁg = 6,0 Einc = 810 (Ep ) s (27)

(inc)
s
E(reﬂ)
(n) _ o _ p.n
E” |Z<0 - Ereﬂ = (E(reﬂ) : (28)

s,n
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Clearly, Eq. (27) implies that the incident wave is the forward
eigenwave of the zeroth order.

In the half space z > D after the exit face of the grating,
the only wave of the nth order is the transmitted plane wave:

E(trm)
EQ|op =K = (Efm,‘:)) . E”p=0. (29
s, n
Note that, at sufficiently large diffraction order with g, > ny
and gy, = i|qm| [see Eq. (22)], the reflected and transmitted
waves become evanescent. In this case, the z components
of the wave vectors, k(eﬂ = kyae(—gm Z + q,,) and kggl =

kvac(gm Z + q,,), are imaginary.

C. Computational procedure

We can now define the transmission and reflection matrices
through the linear input-output relations

E!) =T, Ep, E”)=R,-Eiq, (30)

linking the nth order for the transmitted and reflected waves
to the incident wave and, following the line of reasoning pre-
sented in Refs. [27,28], relate these matrices and the evolution
operator given by Eq. (20). To this end, we use the boundary
conditions requiring the tangential components of the electric
and magnetic fields to be continuous at the boundary surfaces
F,(0) = F™(0 — 0) and F,(h) = F™(h + 0) and apply the
relation (20) to the anisotropic layer of the thickness D to
yield the following result:

FO(h+0) =Y Up(h.0)-F™(0 = 0). h = kycD.

k

€2y
By using Eq. (21), Eq. (31) can be conveniently recast into the

form
E®™ E®
inc | _ Wn trm i 32
(o) == o

where W, is given by

Wi = [Vin(g)]™" - U (1,01t - Vin(qr)
Wi Wi
= @1 22) (33)
Wnk Wnk

and defines the so-called linking matrix.
At n # 0, the relation (32) gives the system for the
transmitted wave orders

(1 1) (0) (1 D k)
: trm Z W Etrm’
k0

n#0. (34)

By solving this system we obtain the diffracted waves
Eq =T, Eq, (35)
linearly related to the zeroth~ order (nondiffracted wave)
through the efficiency matrices T, . Obviously, Eq. (35) implies
that, by definition, Ty = I,.
From Eq. (32) at n = 0, we derive the relation
Ene =y W5 Ef. (36)
k
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linking the vector amplitudes of the incident and transmitted
waves. Substitution of the matrices from Eq. (35) into Eq. (36)
provides the transmission matrix (30) in the following form:

—1
T, = Tﬂ : |:Z Wz)lkl) ’ Tk:| : 37

k

From the relation (32) applied to the case of reflected waves,
we derive the reflection matrix

R, = Zw@” (38)

expressed in terms of the transmission matrices (37).

In the limiting case of uncoupled harmonics, where W,;, =
Sk Wi, 1t is not difficult to recover the results for stratified
media obtained in Refs. [27,28]. It suffices to note that, at
ngnl = 0, the system (34) gives the efficiency matrices T, =

8,0 I, indicative of the absence of diffracted waves.

III. DEFORMED HELIX FERROELECTRIC LIQUID
CRYSTAL CELLS

In this section we present the experimental results on
the transmittance of light passing through crossed polarizers
measured as a function of the applied electric field in DHFLC
cells. In order to interpret the experimental data, the theoretical
approach of Sec. II is applied to chiral smectic helical
configurations with the subwavelength helix pitch.

A. Experiment
1. Material and sample preparation

In our experiments we used the FLC mixture FLC-576A
(from P. N. Lebedev Physical Institute of Russian Academy
of Sciences) as a material for the DHFLC layer. Following
the procedure described in Ref. [37], we have measured the
temperature dependence of the helix pitch shown in Fig. 3.
It can be seen that, at room temperature, this mixture has the
helix pitch, P, around 200 nm.

- e {700
- . . }\Ic N
. ° 600
ot ° ]
=l ]
s ° 1500
ol ]
< [ (m] i
o - o —400
e ] ]
= B 1300
L. 9 v 200
20 30 40 50

Temperature (°C)

FIG. 3. (Color online) Maximum selective reflection wavelength,
A, measured as a function of temperature and the FLC helix pitch
evaluated from the formula P = 2X./(n, + n,).

031703-5



KISELEV, POZHIDAEYV, CHIGRINOV, AND KWOK

FIG. 4. Geometry of a DHFLC cell of thickness D. The applied
electric field, E, is normal to both the substrates and the FLC
helix axis.

Hence, in the visible spectral range, the light scattering turns
out to be completely suppressed [37], except that the applied
voltage is close to the critical voltage of the helix unwinding.
So, such mixtures exhibit pronounced effects of electrically
controlled phase retardation and birefringence An.g(E) that
can be clearly detected.

The photoalignment technique described in Refs. [38,39]
was used for producing the FLC cells. Following the method
of Ref. [38], indium tin oxide (ITO) surfaces of FLC cells
were covered with a 10-to-20-nm photoaligning substance,
azobenzene sulfonic dye SD-1 layers. The azo-dye solution
was spin coated onto an ITO electrode and dried at 155 °C.

The surface of the coated film was illuminated with linearly
polarized UV light using a super-high-pressure Hg lamp
through an interference filter at the wavelength 365 nm and a
polarizing filter. The intensity of light irradiated normally on
the film surface during 30 min was 6 mW /cm?.

The geometry of the cells is schematically depicted in
Fig. 4. We used the cells with the size of 13 x 13 mm?,
the thickness of the glass substrate 1.1 mm, electrode area
10 x 10 mm?, and the cell thickness (gap) 52 and 130 um.
The FLC mixture was injected into the cells in the isotropic
phase by capillary action. As in Ref. [40], in order to obtain
a nearly defectless DHF structure, the cells were subjected to
an alternate electrical training.

2. Experimental setup

The measurements of the light transmittance in relation to
the applied voltage were performed at wavelength A = 650 nm
in the automatic regime. For this purpose, the measurement
complex device was built whose principal scheme is shown
in Fig. 5. The basic element of this experimental setup is
computer data acquisition (DAQ) board NIPCI 6251 from
National Instruments. This board has two analog outputs and
16 analog inputs. The operating voltage is =10 V and the
maximal registration speed is 1 us. The board has independent
output and input buffers for 4000 points. In our experiments,
the output signal, 10 V, was not sufficient and the wideband
power amplifier KH model 7600 from Krohn-Hite Corporation

PHYSICAL REVIEW E 83, 031703 (2011)

Amplifier

HDFLC cell

Ga-As Laser

Polarizer

FIG. 5. (Color online) Experimental setup for electro-optical
measurements of DHFLC cells. A cell placed between crossed
polarizers is illuminated with light from a semiconductor Ga-As laser
(A = 650 nm) and the output is collected by a photodetector.

with amplification coefficients 5 and 25 times was used. It
gives a possibility to have the output signal up to £250 V.
For the input signal this board has an internal amplifier
with coefficients 1, 2, 4, 8, 16, 32, 64, and 128 times. A
photodetector was connected to input board plate for optical
measurements.

The software for experimental setup has built-in functions
for analog output-input. The program has three functional
blocks that make operations with the setup highly effective.
The first block is a programmable generator capable of
producing any form of signal with a duration of 2000 points.
The duration of one point can be set from 1 us to 1 s. The
second block is a measuring block, which saves 4000 values
of the input voltage with step from 1 us to 1 s. The operation of
the first and the second blocks is synchronized inside the DAQ
board and cannot be disturbed by computer interruptions. The
third block is used to accumulate the experimental data during
the working period.

B. Theory

In this section we apply our general theoretical approach
described in Sec. II to the special case of DHFLC PGs. As is
schematically shown in Figs. 1 and 4, in DHFLCs, the director

d = (d,,d,,d;) = cos 6, X +sin6, cos®§ + sin6, sind%
(39)

lies on the smectic cone with the smectic tilt angle 0, and
rotates in a helical fashion about a uniform in-plane twist axis
(the x axis) forming the FL.C helix.

In the presence of weak electric field, E = E Z, which is
well below its critical value at the helix unwinding transition,
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E « E., the azimuthal angle around the cone, ®, can be
written in the form [30,32,35]

. 27
X¢+apsing, ¢ = ?x, 40)

where the electric field induced distortion A ® linearly depends
on E through the electric field parameter op proportional to
the ratio of the applied and critical electric fields: E/E..

From Eq. (40), it is clear that in the regime of a weak
electric field, the helix pitch P defines both the grating period,
Ag = P, and the grating wave number, k, = 27/ P. For the
LC dielectric tensor (1) with the DHF helical configuration
(39), the anisotropy parameters that enter the matrices M,,,
whose block structure is described in Eq. (18) are given by

1 1

O =¢+ AD(Q)

. 2
€ = = , =u,sin“6;, (41
LTz 1 +u,d? 14 vsin?® v o (4D
Bue = fro = —adel 42)
T T 4 usin2 @
~1_(P) Uadodg
€€ =68, _ 43
L “ap P T Fvsin2 @ “43)

According to the computational procedure developed in
the previous section, after inserting the above parameters into
the matrices of the system (16) for the Floquet harmonics,
we need to find the evolution operator by solving the initial
value problem (20). Then computing the transmission and
the reflection matrices (30) involve the following steps:
(a) evaluation of the linking matrix (33); (b) calculation of
the efficiency matrices (35) by solving the system of linear
equation (34); (c) computing the matrices T,, and R,, from the
formulas (37) and (38), respectively.

As a consequence of the anisotropy induced mode coupling,
there are an infinite number of coupled matrix equations in the
system (16). So the evolution operator cannot be generally
computed in the closed form without resorting to the methods
of the perturbation theory or numerical analysis.

In this paper, we restrict ourselves to the case where the
helix pitch is smaller than the wavelength, P < A, so as to
interpret the experimental data measured in DHFLC cells with
the subwavelength pitch. In our experiments, the incident light
travels in the air with and normally impinges on the cell. At
nm = 1 and k, = 0, the condition

qe = ko/kyae =A/P > 1 (44)

implies that g, > np,. In this case, from the above discussion
after Eq. (29), there are no diffracted waves propagating in
the air and nonzero orders of the transmitted and reflected
beams are evanescent. In the zero-order approximation, where
M., = 8m0dn0Moo, the evanescent waves are neglected and the
DHFLC cell appears to be effectively described as a uniformly
anisotropic layer characterized by the matrix

M M
Moot = (Q00 Q)@
2
where (--+) = 2m)"! .- d¢. The elements of the 2 x 2
block matrices (M);; arg given by
M) = =g (Bp). (MG = —(Baz)qy”.  (46)
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Mg’ = ndap — 4 (n:2) ag” (47)
Mg = e’ —n' PPy Pp=2xq, (48
where ky,cq, = Kk, and e(eff) (€ (2)) is the averaged effective

dielectric tensor.

1. Effective dielectric tensor
Our next step is to evaluate the averages that enter the matrix
(45). We note that, from Eq. (42) and the result
(sin®[1 +vsin®>®]7 1) =0
= (sin ® cos ® [1 + vsin® ®]71),
(49)
the averages (By;) are zero. When the averaged matrix (45)
at (B,;) =0 is compared with the matrix of a uniformly
anisotropic layer (see, e.g., Eq. (25) in Ref. [28]), where
(Baz) = €az/€:2,(Nzz) = 1/€;; ande(e”) ( ) ,itimmediately
follows that the effective anisotropic medlum is biaxial. In this
medium, the diagonal element
eV =ni/u= ()" (50)

gives the principal value of the effective dielectric tensor for
the optic axis normal to the cell (parallel to the z axis).

For our purposes, it suffices to expand the averages up to
second-order terms in the field parameter,

([1+vsin? ®]7") ~ [1+v] (1 +vylel), (51

(cos”> D [1 +vsin® @]7') ~ y, (1 +[1 +v]"?pp0z),  (52)
(cos @ [1 + vsin® @] 1) ~ —y,ap,

w=Wl+v—-1)/v, (53)

so that the in-plane components of the dielectric tensor are
given by

€y ap, yy = —cosOysinfiyale) — €), (S4a)
€D =2+ Ae =€ 4y 0z, (54b)
G;eyff) =é—Ae= 6;(;) + Vyy“Ev (54c)
where

eV =e (I+ - +v]™"?), ) =ell+v]7"2,
(55)

Var = €1y — W[+ 017 2y2, yyy = e[l +0]V2y7
(56)

Similar to the LC dielectric tensor (1), the tensor (54) can be
expressed in terms of the “director” (the in-plane optical axis)
deir = (d,d*™,0) = (cos ¢, sin ¢g,0) with the azimuthal
angle, ¢4, defined by the relation

tan(2¢q) = nyOlE/AG (57)

and its eigenvalues

€x =ni/pn =&+ Aey/1+ tan’(2¢y) (58)

as follows:

(eff) —c s

e up + (€4 — e )dSVd™. (59)
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2. Light transmittance

In the case of normal incidence, the transmission and
reflection matrices can be easily obtained from the results of
Refs. [41,42] in the limit of the wave vectors with vanishing
tangential component, k, = 0. For our purposes, we need to
write the resultant expression for the transmission matrix as

tex by 41 ty —1_
T(%)E( y>: : L+ = Rioi(2¢4) - 03,

Lyx  lyy 2 2
(60)
1-p2
ty = exp(inth),
£ = T2 7 expQingh) PN
e = Ni/W — N/ 1)

N ni/ﬂ‘i‘nm/ﬂm.
When the incident wave is linearly polarized along the x axis
(the helix axis), the transmittance coefficient

|ty —1_|?

Ty = |tyl* = sin?(2¢q),

") oF

sin“(2¢q) oe% +(A€/yxy)2, (62)
where h = ky,.D is the thickness parameter, describes the
intensity of the light passing through crossed polarizers.
Note that, under certain conditions such as |p+| K 1, t1 =
exp(inyh) and the transmittance (62) can be approximated by
the simpler formula

T,y & sin*(§/2) sin*(2¢y), (63)

where § = Aneg h = (n — n_)h is the difference in optical
path of the ordinary and extraordinary waves known as the
phase retardation.

In the general case when the incident light is elliptically
polarized with the circular components,

E{™ exp[Fi ¢SI‘C)]( 1+ ES?C)) (64)

expressed in terms of the polarization azimuth, (])S“C), and the

ellipticity, eéiﬁm), the expression (60) gives the components of

the transmitted wave that can be written in the following form:
2exp[£ig™ES™ = (14 +1)(1 £ )
+exp [ F2i(¢a — o)ty —1)(1F€5).  (65)

where E{ = (E@ F iE;,“))/«/z.

C. Experimental results and modeling

Now we turn back to the electro-optical measurements in
the DHFLC cells described in Sec. III A. The transmittance
versus electric field curve shown in Fig. 6 presents the results
measured at the wavelength of light generated by the Ga-As
laser with A = 650 nm in the cell in which the thickness of the
DHFLC layer, D, was about 130 pm.

The formula for the transmittance (62) can be combined
with the expressions for the principal values of the effective
refractive indices (58) to evaluate dependence of T, on the
applied electric field, E. The known parameters characterizing
the FLC mixture FLC-576A that enter our formulas are the
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0.3
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Transmittance, T
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FIG. 6. (Color online) Transmittance of light passing through
crossed polarizers, Ty,, as a function of the applied electric field
for the DHFLC cell of thickness D = 130 um filled with the
FLC mixture FLC-576A. Parameters of the mixture are as follows:
n, = 1.5 (n, = 1.72) is the ordinary (extraordinary) refractive index
and 0, = 32° is the tilt angle. The experimental points are marked by
squares. The solid line represents the theoretical curve computed for
the electric field parameter oy = yg E with yg &~ 0.64 um/V.

ordinary (extraordinary) refractive index and the tilt angle
estimated at n, = 1.5 (n, = 1.72) and 6, = 32°, respectively.
So, for the anisotropy parameters, u, and v, we have u, ~
0.315 and v = u, sin? 6, ~ 0.09.

From the discussion after Eq. (40), the electric field
parameter og is proportional to the electric field, g = ygE,
and thus is determined by the coefficient of proportionality yg.
This coefficient is the sole fitting parameter in our calculations.

Figure 6 shows that, when the cell thickness is 130 pm,
the theoretical curve computed at yr ~ 0.64 um/V and the
experimental data are in close agreement. Similarly, in Fig. 7,
the transmittance T, is plotted against the applied electric
field, E, for the case where the cell thickness is about 52 pm.

LA B L B I Nl
B o——a experiment 1
i —— theory 1
= o.1_— 7
o
bt L ]
[=
8 L ]
E I ]
E 0.05-— —-
|_ - -
A ..~ =
0 -1 -0.5 0 0.5 1

Electric field, E (V/um)

FIG. 7. (Color online) Light transmittance, 7T,, of the DHFLC
cell versus applied electric field, E. The cell is filled with the
FLC mixture FLC-576A and its thickness is estimated at about
D =52 pm so that sin[§(0)/2] ~ 0. The experimental points are
marked by squares. The theoretical curve (solid line) is computed at
ap = ypE and yg = 0.64 um/V.
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———————— 71— 0.02
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FIG. 8. (Color online) Electrically controlled birefringence,
Aneg(E) — Aneg(0), and refractive index difference, n_(E) — n (E),
as a function of electric field. The theoretical curves (solid and
dashed lines) are computed from Egs. (58) and (41), respectively,
at oy = yp E with yp ~ 0.64 um/V.

Referring to Figs. 6 and 7, the transmittance oscillates with
the magnitude of the applied field. From Egs. (61) and (62),
this is the dependence of the effective refractive indices, n
and n_, on the electric field parameter, «g, that manifests
itself in these oscillations. More precisely, as is evident from
the approximate expression for the transmittance (63), they
are due to variations in the phase retardation, §, arising from
the electric field induced birefringence, Anegr = ny — n_. So,
loci of extrema (minima and maxima) of the transmittance,
T.,, can be used to obtain dependence of the birefringence on
the applied electric field (more details on this method can be
found, for example, in Refs. [40,43]).

Figure 8 shows the results for the field dependence of
the electrically controlled birefringence, Ancg(E) — Aneg(0),
measured for the mixture FLC-576A. As can be seen from the
figure, there is a remarkable accord between the experimental
points and the curve evaluated from the principal values (58)
of the effective dielectric tensor (59). From Eq. (58), it follows
that, when the electric field parameter, ag, is sufficiently
small, the principal refractive indices ny and n_ exhibit
the Kerr-like quadratic nonlinearity: n.(E) — n+(0) oc E2. A
similar representation applies to the refractive index difference
n_(E) — n (E) characterizing biaxiality. Referring to Fig. 8,
the electrically controlled birefringence is nearly twice as
much as the biaxility difference, n_ — n,.

In addition to the birefringence, the transmittance (62)
depends on the azimuthal angle, ¢4, given in Eq. (57). This
angle describes the electric field induced rotation of the optical
axes of the dielectric tensor (59) and, under the action of the
electric field, E, its magnitude varies in the range between zero
and 7 /4.

A quick inspection of the formula (62) shows that the
transmittance will always vanish in the zero-field limit with
E =0, so that ¢g < E at small E [see also Eq. (57)]. Such
behavior, however, comes as no surprise if we recall that the
electric field of the incident wave is assumed to be parallel to
the helix axis, Ej,. || X, which is the zero-voltage optical axis.
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FIG. 9. Electric field dependence of transmitted light ellipticity
for the two DHFLC cells with (a) D =52 um and (b) D =
130 um. The curves are computed at ¢ = 0 and e} = 0 (linearly

polarized incident light).

Interestingly, the transmittance versus electric field curve
will flatten in the vicinity of the origin when the cell thickness is
chosen in such way that, in addition to sin ¢4, the birefringence
dependent factor equals zero at E = 0. The latter is the case
for the curves shown in Fig. 7, where sin§(0)/2 ~ 0 at D ~
52 pm.

So, we have found that the value of the sole fitting
parameter yg is about 0.64 um/V. This value has been used
to estimate effective biaxiality by computing the refractive
index difference, n_ — n_, as a function of electric field (see
Fig. 8). As another prediction of the theory, the ellipticity of
transmitted light is plotted against the electric field in Fig. 9.
Note that this dependence is calculated from the formula (65)
and can, in principle, be tested experimentally. Additional
experimental studies dealing with the effects of biaxiality and
ellipticity are under progress and the results will be presented
elsewhere.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have formulated the theoretical approach
to the optical properties of PGs that can be regarded as
an extension of the method developed in Refs. [27,28] for
stratified anisotropic media. Mathematically, in this approach,
the key formulas (37) and (38) give the transmission and
reflection matrices of diffraction orders, T,, and R,,, expressed
in terms of the linking matrix (33) which is related to the
evolution operator (20) of the system of matrix equations (16)
for the Floquet harmonics (14) derived from the Maxwell’s
equations for the lateral components of the electric and
magnetic fields (10).

This method goes beyond the well-known limitations of
the Jones matrix formalism at the expense of simplicity. To
some extent it can be regarded as a version of the coupled
mode analysis and our derivation of equations for the Floquet
harmonics bear some similarity to the differential theory of
light diffraction [44], which is based on the integration of a
differential set of equations derived from Maxwell’s equations
projected onto some functional bases. In particular, as was
pointed out in Refs. [45,46], this theory can be applied to the
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special case of crossed anisotropic gratings that were analyzed
by using the Fourier modal method in Ref. [46].

In contrast to a theoretical method recently suggested in
[47] for a reverse twisted nematic LC grating, our approach is
formulated without recourse to the vector theory of scattering
for a far field. It also does not rely on the assumptions behind
averaging procedure for the transmittance used in Ref. [48].

Note that the optical properties of PGs were also analyzed
numerically using the finite-difference time-domain method in
Ref. [49]. Although such analysis is general and useful, it can
be very computationally intense so as to produce the results of
sufficiently high accuracy.

We have used the method described in Sec. II as a tool of
theoretical investigation into the electro-optical properties of
DHFLC gratings with subwavelength pitch. It was previously
demonstrated that a short helix pitch FLC (P = 0.4-0.8 yum)
provides an effective phase shift change of a transmitted
polarized light beam as a function of the applied electric field
intensity [29]. The new mixtures with the helix pitch being in
UV region [37] make it possible to get rid of complications
related to the light scattering effects.

So, in such mixtures, we deal with a pure electrically
controlled phase shift plate based on the electro-optical mode
called DHF. DHF is a convenient operation mode able to
ensure both low voltage and fast switching liquid crystalline
light shutters (the response time is less than 100 us at
driving electric field around 1 V/um). For these reasons, it
is important to understand the behavior of the electrically
controlled birefringence in such DHFLC cells.

We have shown that, in the short-pitch approximation,
DHFLC cells are equivalent to uniformly anisotropic biaxial
layers with the optical axis normal to the substrate plane. The
latter implies that normally incident light feels only uniaxial
in-plane anisotropy in agreement with the recent results on the
ellipticity of light transmitted through a DHFLC cell [40].

We have computed the averaged dielectric tensor as a
function of the applied electric field and have used the results to
evaluate the light transmittance measured in our experiments.
A comparison between theoretical and experimental results
presented in Figs. 68 shows that the predictions of the theory
are in good agreement with the experimental data.

Note that our calculations of the averaged dielectric
tensor rely on the approximate expression for the azimuthal
angle (40) which is applicable for sufficiently low voltages.
A more accurate description of the DHFLC orientational
structure is required when the voltage increases approaching
the unwinding transition [50].
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APPENDIX: DERIVATION OF EQUATIONS FOR LATERAL
COMPONENTS

In this section we discuss how to exclude the z components
of the electromagnetic field, E, and H,, that enter the
representation (8) from the Maxwell equations (4). Our task
is to derive the closed system of equations for the lateral
(tangential) components, Ep and Hp.

We begin with substituting Eqs. (8) and (9) and have
Maxwell’s equations (4) recast into the form

—id; [2xEp] =pH -V, xE,
—i3;Hp =D+ V, x H,

(Ala)
(Alb)

where the explicit expressions for the last terms on the right-
hand side of the system (A1) are as follows:

V,xE=-V,E +(V, Ep)i,
V,xH=-V H +(V, -Hp)i

(A2a)
(A2b)

We can now substitute the electric displacement field
written as a sum of the normal and in-plane components,

D= D.2+Dp, (A3)

into Eq. (Alb) and derive the following expression for its z
component:

D, =€ E .+ (e, -Ep)= _(Vp -Hp), (A4)

where €, = (€,,,€;y).
From Eqgs. (A1) and (A4), it is not difficult to deduce the
relations

(A5)
(A6)

. =u"'(Vy - Ep),
E, =—¢.'"[(e.-Ep) +(V, -Hp),

linking the normal (along the z axis) and the lateral (perpen-
dicular to the z axis) components.

By using the relation (A6), we obtain the tangential
component of the field (A3),

Dp = GZ/EZ +é&,-Ep=¢€p-Ep— fz/ G;I(Vﬂ “Hp), (A7)

€xx  €xy ).
€= (6 € ’
yx yy

€] = (€,;,€,;) and the effective dielectric tensor, &p, for the
lateral components is given by

where

ep=¢6—¢. € Q€. (A8)

Maxwell’s equations (A1) can now be combined with the
relations (A2) to yield the system

~id; Ep = uHp + V E.,
—id; Hp =Dp — V, H.,

(A9a)
(A9Db)

where H,, E,, and Dp are given in Eq. (AS), Eq. (A6), and
Eq. (A7), respectively.
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So, this system immediately gives the final result

—id: Ep = =V, [e /(€. - Ep)] + uHp

—V,[eZ'(V, -Hp)], (A10a)

PHYSICAL REVIEW E 83, 031703 (2011)

—id: Hp = ep - Ep =V, [(V, -Ep)/u]
—€ e '(V, Hp),

722

(A10b)

which can be easily rewritten in the matrix form (10) used in
Sec. II.

[1] T. Todorov, N. Tomova, and L. Nikolova, Appl. Opt. 23, 4309
(1984).

[2] E. Gori, Opt. Lett. 24, 584 (1999).

[3] J. Tervo and J. Turunen, Opt. Lett. 25, 785 (2000).

[4] J. Tervo and J. Turunen, Opt. Commun. 190, 51 (2001).

[5] G. Cincotti, IEEE J. Quantum Electron. 39, 1645 (2003).

[6] S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R.
Kimball, J. Nonlinear Opt. Phys. Mater. 18, 1 (2009).

[7] N. V. Tabiryan, S. R. Nersisyan, D. M. Steeves, and B. R.
Kimball, Opt. Photonics News 21, 40 (2010).

[8] L. Nikolova and P. S. Ramanujam, Polarization Holography
(Cambridge University Press, Cambridge, 2009), p. 239.

[9] Z. Bomzon, V. Kleiner, and E. Hasman, Opt. Commun. 192, 169
(2001).

[10] Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett.
27, 188 (2002).

[11] G. Biener, A. Niv, V. Kleiner, and E. Hasman, J. Opt. Soc. Am.
A 20, 1940 (2003).

[12] Y. Gorodetski, G. Biener, A. Niv, V. Kleiner, and E. Hasman,
Opt. Lett. 30, 2245 (2005).

[13] Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, Appl. Opt.
41, 5218 (2002).

[14] Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett.
27, 1141 (2002).

[15] Y. Yirmiyahu, A. Niv, G. Biener, V. Kleiner, and E. Hasman,
Opt. Lett. 31, 3252 (20006).

[16] J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and
G. P. Crawford, Appl. Phys. Lett. 85, 1671 (2004).

[17] G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones,
and R. A. Pelcovits, J. Appl. Phys. 98, 123102 (2005).

[18] V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, Opt.
Express 14, 10558 (2006).

[19] C. Provenzano, P. Pagliusi, and G. Cipparrone, Appl. Phys. Lett.
89, 121105 (2006).

[20] C. Provenzano, P. Pagliusi, and G. Cipparrone, Opt. Express 15,
5872 (2007).

[21] H. Choi and J. W. Wu, J. Opt. Soc. Am. B 26, 1 (2009).

[22] V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, in Optical
Applications in Photoaligning edited by L. Vicari (Institute of
Physics, Bristol, UK, 2003), pp. 201-244.

[23] A. D. Kiselev, V. G. Chigrinov, and D. D. Huang, Phys. Rev. E
72, 061703 (2005).

[24] V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalign-
ment of Liquid Crystalline Materials: Physics and Applica-
tions, Series in Display Technology (Wiley, Chichester, 2008),
p- 219.

[25] R. K. Komanduri and M. J. Escuti, Phys. Rev. E 76, 021701
(2007).

[26] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals
(Clarendon Press, Oxford, 1993), p. 596.

[27] A. D. Kiselev, J. Phys. Condens. Matter 19, 246102 (2007).

[28] A. D. Kiselev, R. G. Vovk, R. I. Egorov, and V. G. Chigrinov,
Phys. Rev. A 78, 033815 (2008).

[29] L. A. Beresneyv, V. G. Chigrinov, D. I. Dergacheyv, E. P. Poshidaev,
J. Fiinfschilling, and M. Schadt, Liq. Cryst. 5, 1171 (1989).

[30] V. G. Chigrinov, Liquid Crystal Devices: Physics and Applica-
tions (Artech House, Boston, 1999), p. 357.

[31] N. A. Clark and S. T. Lagerwall, Appl. Phys. Lett. 36, 899
(1980).

[32] I. Abdulhalim and G. Moddel, Mol. Cryst. Liq. Cryst. 200, 79
(1991).

[33] E. Pozhidaev, S. Pikin, D. Ganzke, S. Shevtchenko, and
W. Haase, Ferroelectrics 246, 1141 (2000).

[34] G. B. Cohen, R. Pogreb, K. Vinokur, and D. Davidov, Appl.
Opt. 3, 455 (1997).

[35] G. Hedge, P. Xu, E. Pozhidaev, V. Chigrinov, and H. S. Kwok,
Lig. Cryst. 35, 1137 (2008).

[36] P. Kuchment, Floguet Theory for Partial Differential Equa-
tions, Operator Theory, Advances and Applications, Vol. 60
(Birkhiduser Verlag, Boston, 1993), p. 350.

[37] E. P. Pozhidaeyv, S. I. Torgova, V. E. Molkin, M. V. Minchenko,
V. V. Vashchenko, A. I. Krivoshey, and A. Strigazzi, Mol. Cryst.
Liqg. Cryst. 509, 1042 (2009).

[38] E. Pozhidaev, V. Chigrinov, D. Huang, A. Zhukov, J. Ho, and
H. S. Kwok, Jpn. J. Appl. Phys. 43, 5440 (2004).

[39] E. Pozhidaev, V. Chigrinov, and L. Xihua, Jpn. J. Appl. Phys.
45, 875 (20006).

[40] E. Pozhidaev, S. Torgova, M. Minchenko, C. A. R. Yednak,
A. Strigazzi, and E. Miraldi, Liq. Cryst. 37, 1067 (2010).

[41] A. D. Kiselev, V. G. Chigrinov, and H.-S. Kwok, Phys. Rev. E
80, 011706 (2009).

[42] A. D. Kiselev and R. G. Vovk, JETP 110, 901 (2010).

[43] E. Pozhidaev, A. Bobrovsky, V. Shibaev, G. Elyashevich, and
M. Minchenko, Liq. Cryst. 37, 517 (2010).

[44] M. Neviere and E. Popov, Light Propagation in Periodic Media:
Differential Theory and Design, Optical Engineering, Vol. 81
(Dekker, New York, 2003), p. 410.

[45] E. Popov and M. Neviére, J. Opt. Soc. Am. A 18, 2886 (2001).

[46] L. Li, J. Opt. A: Pure Appl. Opt. 5, 345 (2003).

[47] G. Kreymerman, Opt. Express 18, 15513 (2010).

[48] V. G. Chigrinov, V. A. Baikalov, E. P. Pozhidaev, L. M. Blinov,
L. A. Beresnev, and A. I. Allagulov, Sov. Phys. JETP 61, 1193
(1985).

[49] C. Oh and M. J. Escuti, Phys. Rev. A 76, 043815 (2007).

[50] S. Suwa, H. Hoshi, Y. Takanishi, K. Ishikawa, H. Takezoe, and
B. Zeks, Jpn. J. Appl. Phys. 42, 1335 (2003).

031703-11


http://dx.doi.org/10.1364/AO.23.004309
http://dx.doi.org/10.1364/AO.23.004309
http://dx.doi.org/10.1364/OL.24.000584
http://dx.doi.org/10.1364/OL.25.000785
http://dx.doi.org/10.1016/S0030-4018(01)01093-8
http://dx.doi.org/10.1109/JQE.2003.819526
http://dx.doi.org/10.1142/S0218863509004555
http://dx.doi.org/10.1016/S0030-4018(01)01196-8
http://dx.doi.org/10.1016/S0030-4018(01)01196-8
http://dx.doi.org/10.1364/OL.27.000188
http://dx.doi.org/10.1364/OL.27.000188
http://dx.doi.org/10.1364/JOSAA.20.001940
http://dx.doi.org/10.1364/JOSAA.20.001940
http://dx.doi.org/10.1364/OL.30.002245
http://dx.doi.org/10.1364/AO.41.005218
http://dx.doi.org/10.1364/AO.41.005218
http://dx.doi.org/10.1364/OL.27.001141
http://dx.doi.org/10.1364/OL.27.001141
http://dx.doi.org/10.1364/OL.31.003252
http://dx.doi.org/10.1063/1.1789578
http://dx.doi.org/10.1063/1.2146075
http://dx.doi.org/10.1364/OE.14.010558
http://dx.doi.org/10.1364/OE.14.010558
http://dx.doi.org/10.1063/1.2355456
http://dx.doi.org/10.1063/1.2355456
http://dx.doi.org/10.1364/OE.15.005872
http://dx.doi.org/10.1364/OE.15.005872
http://dx.doi.org/10.1364/JOSAB.26.000001
http://dx.doi.org/10.1103/PhysRevE.72.061703
http://dx.doi.org/10.1103/PhysRevE.72.061703
http://dx.doi.org/10.1103/PhysRevE.76.021701
http://dx.doi.org/10.1103/PhysRevE.76.021701
http://dx.doi.org/10.1088/0953-8984/19/24/246102
http://dx.doi.org/10.1103/PhysRevA.78.033815
http://dx.doi.org/10.1080/02678298908026421
http://dx.doi.org/10.1063/1.91359
http://dx.doi.org/10.1063/1.91359
http://dx.doi.org/10.1080/00268949108044233
http://dx.doi.org/10.1080/00268949108044233
http://dx.doi.org/10.1080/00150190008230071
http://dx.doi.org/10.1364/AO.36.000455
http://dx.doi.org/10.1364/AO.36.000455
http://dx.doi.org/10.1080/02678290802398226
http://dx.doi.org/10.1080/15421400903054667
http://dx.doi.org/10.1080/15421400903054667
http://dx.doi.org/10.1143/JJAP.43.5440
http://dx.doi.org/10.1143/JJAP.45.875
http://dx.doi.org/10.1143/JJAP.45.875
http://dx.doi.org/10.1080/02678292.2010.486482
http://dx.doi.org/10.1103/PhysRevE.80.011706
http://dx.doi.org/10.1103/PhysRevE.80.011706
http://dx.doi.org/10.1134/S1063776110050213
http://dx.doi.org/10.1080/02678291003681386
http://dx.doi.org/10.1364/JOSAA.18.002886
http://dx.doi.org/10.1088/1464-4258/5/4/307
http://dx.doi.org/10.1364/OE.18.015513
http://dx.doi.org/10.1103/PhysRevA.76.043815
http://dx.doi.org/10.1143/JJAP.42.1335

