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Phase-field-crystal methodology for modeling of structural transformations
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We introduce and characterize free-energy functionals for modeling of solids with different crystallographic
symmetries within the phase-field-crystal methodology. The excess free energy responsible for the emergence of
periodic phases is inspired by classical density-functional theory, but uses only a minimal description for the modes
of the direct correlation function to preserve computational efficiency. We provide a detailed prescription for
controlling the crystal structure and introduce parameters for changing temperature and surface energies, so that
phase transformations between body-centered-cubic (bcc), face-centered-cubic (fcc), hexagonal-close-packed
(hcp), and simple-cubic (sc) lattices can be studied. To illustrate the versatility of our free-energy functional, we
compute the phase diagram for fcc-bcc-liquid coexistence in the temperature-density plane. We also demonstrate
that our model can be extended to include hcp symmetry by dynamically simulating hcp-liquid coexistence
from a seeded crystal nucleus. We further quantify the dependence of the elastic constants on the model control
parameters in two and three dimensions, showing how the degree of elastic anisotropy can be tuned from the
shape of the direct correlation functions.
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I. INTRODUCTION

The properties of materials are controlled by microstruc-
tures that evolve in the material during thermal and mechan-
ical processing. These microstructures can coarsen in time
and create a network of defects and grains that ultimately
depends on the elements of a material, bond strength, crystal
symmetry, and the phase transformation kinetics that govern
microstructure evolution. In metallurgical processes, metals
typically form body-centered-cubic (bcc), face-centered-cubic
(fcc), or hexagonal-close-packed (hcp)lattices. These lattice
symmetries influence grain boundary energies, triple lines,
junction points, as well as the motion of defects such as
dislocations, which move through crystals and interact with
each other and grain boundaries. These processes are exploited
to improve the strength of metals.

Large-scale simulations of defect evolution in microstruc-
ture are challenging due to their interactions through long-
range elastic fields. To accurately represent such a situation, a
model must resolve features ranging from individual defects
and their interactions to those large enough to incorporate
multiple grains on the mesoscale. Two modeling schemes that
have emerged for capturing these opposing levels of interaction
are the phase field methodology [1–4] and molecular-dynamics
simulations [5–7]. These two approaches have distinct advan-
tages and limitations on large and small spacial and time scales.

Phase field methods are able to capture mesoscale structure
and kinetics by washing out atomic-scale details. Order
parameters are introduced to describe uniform bulk prop-
erties of phases and the free energy of interfaces between
them. However, since atomic scale interactions are omitted,
dislocations, crystal structure, and grain boundary structure
are ignored. These effects can thus only be integrated into a
phase field model through effective coefficients or additional
fields [8–12]. At the other end of the spectrum, molecular
dynamics (MD) explicitly incorporates atomic interactions
through appropriate atomic potentials. A number of these
potentials have been presented to reproduce atomistic and

bulk properties of materials [13–15]. MD simulations make
it possible to self-consistently capture elastic interactions,
defects, and crystalline symmetries. However, since MD
simulations must track all atoms on time scales of atomic
vibrations, they are limited to very small spacial and time
scales.

A third approach is classical density-functional theory
(CDFT), which models atomic properties of liquids or solids
using information from liquid state particle correlation func-
tions [16–19]. At the heart of the CDFT formalism is a free
energy written in terms of an atomic number density field. The
free energy is typically expanded in a truncated functional
series about a reference density, where the terms in the
expansion represent contributions from different interparticle
correlations. Implicit in CDFT is a temporal coarse graining
that removes the time-scale limitation of molecular dynamics.
On the other hand, CDFT resolves structure at the atomic
scale through a continuum field, thus requiring sufficiently
fine numerical meshes to resolve atomic features. As crystals
in CDFT emerge from the liquid state, density peaks can
become quite sharp, leading to prohibitively large memory
requirements for practical simulations [20].

A simpler class of continuum atomic scale models are
phase field crystal (PFC) models [21]. The PFC technique
also incorporates atomic scale effects, such as elastoplasticity
and polycrystalline grain boundary interactions [22–24]. At
the heart of the PFC formalism is a free-energy density that
is constructed to be minimized by periodic density states
with the symmetries of crystal phases, a principle originally
inspired by the periodic solutions of the Swift-Hohenberg
equation [25]. It has been shown that PFC models arise
naturally from CDFT by retaining only a crude approximation
of the two-point correlation function and reference free energy
that enters CDFT [26]. This type of simplification maintains
only the salient features found in CDFT, but has the benefit
of representing atoms as low-amplitude periodic modulations
that are simple to simulate efficiently.
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The free energy of the first PFC model for pure materials
[21] was constructed in gradients of an order parameter n to
fourth order, given by

�F =
∫

d�r{n[(
q2

o + ∇2
)2 − ε

]
n/2 + n4/4

}
, (1)

where the parameter qo sets in the relevant length scale of
the problem and ε shifts the energy between a single and
double well, making possible transitions between periodic and
constant phases. This minimal model was shown to capture
elastic and plastic effects self-consistently while maintaining
broad, low-amplitude density peaks [21,22,27,28]. The time
evolution of a system described by this free-energy functional
can be obtained from conservative dissipative dynamics,

∂n(�r)

∂t
= �∇ ·

(
M �∇ δ�F

δn(�r)

)
, (2)

where M is a kinetic mobility parameter [21]. Conserved noise
can also be added to facilitate nucleation from metastable
states [19,21]. For the case of a constant M , these dynamics
can be efficiently evolved in reciprocal space using a semi-
implicit technique [22,29]. This makes possible significantly
larger simulation time steps than usual finite differencing.
Including an extra inertial term in the time evolution of Eq. (2)
also makes it possible to model quasi-instantaneous elastic
relaxation [23].

With the free energy of the above PFC model, it is only
possible to simulate simple crystal structures such as two-
dimensional (2D) hexagonal and three-dimensional (3D) bcc
lattices. While it has been shown that the 3D PFC free energy
contains fcc and hcp phases [20,30], the energy difference
between the phases may be too small to exhibit structural
transformations [31], particularly in the presence of noise. It is
also not possible to easily manipulate coexistence between the
fcc, bcc, and liquid phases in a manner corresponding to real
materials. A great deal of research in this area is presently
focusing on the development of a methodology to expand
the original PFC formalism to better control the physical
parameters of PFC models and to simulate a broader range
of crystal structures, all while maintaining the computational
advantage of broad density peaks.

Jaatinen et al. [20] recently developed an eighth-order
extension of the original PFC free energy that can be used
to better fit the surface energy properties of bcc iron. The
same work showed that a kernel strictly input from a CDFT
functional leads to fcc crystals with numerically unmanage-
ably sharp density peaks. Wu et al. [32–34] expanded upon
the original PFC model [21] by including secondary modes in
their correlation kernels, and succeeded to stabilize fcc (3D)
and square (2D) lattices. The phase diagram produced this way,
however, does not allow for structural transformation directly
between the fcc and bcc crystals. We have recently developed
a formalism for constructing multiple-mode correlation func-
tions that allows triangular, square, simple-cubic (sc), bcc, and
fcc lattices to be simulated efficiently [35]. Our approach gives
rise to realistic materials phase diagrams that make it possible
to conduct temperature quenches between various phases of
various crystal structures (e.g., bcc-fcc transformation).

This paper further expands upon these ideas, showing
how to produce multimode correlation function kernels that

stabilize the major crystal symmetries of metals, and how
these can be parametrized to independently tune anisotropy
in the elastic modulus tensor (or the crystal-melt surface
tension) in different phases. Section II introduces the new
free-energy functional, showing how to construct peaks in its
correlation kernel. This is achieved first by an examination of
the local part of the free-energy functionals used in different
PFC models. The second portion of this section analyzes the
free-energy contribution of different modes of our correlation
kernel, demonstrating how to stabilize a particular lattice.
Section III details the construction of a phase diagram for a
model system exhibiting structural transformations between
fcc-bcc-liquid phases. We also show that our method can
model an hcp-bcc-liquid system. Section IV characterizes the
elastic coefficients for square and fcc phases, and shows how
to tune the anisotropy in the elastic moduli.

II. FREE-ENERGY FUNCTIONAL

The PFC free-energy functional can be broken down into
three components. First is a purely entropic local energy �Fid

responsible for driving the system to a stable uniform field.
This also ensures that the system does not become numerically
unstable when the other components drive the system to
become periodic. Second is an excess energy �Fex that drives
the system to a nonuniform periodic structure and is typically
responsible for anisotropy in the system as well as for creating
topological defects such as dislocations and interfaces. The
third component that can enter into the PFC model is a source
of energy �Fext due to an external source potential. The total
free-energy difference �F relative to a uniform reference state
with density ρ0 is written as

�F

ρ0kBT
= �Fid + �Fex + �Fext. (3)

This work will focus only on the first two of these energies
and their interaction.

A. Local free-energy functional �Fid

In the CDFT formalism, the local free energy arises from
an entropically driven ideal gas or fluid. The ideal component
of the PFC free energy can be treated as an expansion of this
energy about a reference state or, alternatively, as a polynomial
fit to a local free energy,

�Fid =
∫

{[1 + n(�r)] ln[1 + n(�r)] − n(�r)}d�r

≈
∫ [

n(�r)2

2
− ν

n(�r)3

6
+ ξ

n(�r)4

12

]
d�r, (4)

where n(�r) = ρ(�r)/ρo − 1 is the dimensionless probability
density of atomic occupancy normalized to the reference
density, and ν and ξ are parameters that correspond to
an expansion about a particular reference density. These
parameters are treated as adjustable in various models in the
literature to help stabilize particular systems of interest.

The first variant of the PFC model used the parameters
ν = 0 and ξ = 3 in Eq. (4), which results in the lowest order
of entropic energy that produces a liquid state in the absence of
excess energy [O(n2)] and that caps the amplitude of emergent
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(a)

(b)

(c)

FIG. 1. (Color online) Plots of �Fid, where in all plots the ideal-
gas energy is plotted with a solid line, and the expansion point for the
polynomial form of the free energy is n(�r) = 0. Equation (4) with
(a) ν = 0 and ξ = 3 (dash-dot) and ν = 1 and ξ = 1 (dash);
(b) ξ = 1 and ν = 1 (dash-dot), ν = 1.5 (dash), and ν = 2.45 (dot);
and (c) ν = 1 and ξ = 1 (dash-dot), ξ = 0.5 (dash), and ξ = 0.1675
(dot).

periodic structures [O(n4)] in the presence of an excess energy
of O(n2) [21–24,28,36–38]. This produces an ideal component
to the free energy that is symmetric about the reference density,
as illustrated in Fig. 1(a). This symmetry limits the emergence
of more complicated periodic structures.

In subsequent extensions of the PFC model, cubic terms
in the expansion of the ideal energy were retained (i.e., ν = 1
and ξ = 1 in [26]). The addition of this cubic term breaks
the symmetry of the energy well around the reference density
(n̄ = 0) and aids in the stabilization of density fields which
contain multiple modes. This expansion is formally only valid
for density fields that have small amplitudes, but the emergent
structures in the model may exhibit large amplitude variations.
The parameters ν and ξ have been varied phenomenologically
to further stabilize particular phases of interest. Deviations
from ν = 1 and ξ = 1 can be physically argued to be either ex-
pansions about a different reference state, a better polynomial
fit to the entropic energy of the material, or to incorporate the
lowest-order component of higher-order particle correlation
functions [27,39–41]. Tuning ν [see Fig. 1(b)] and ξ [see
Fig. 1(c)] leads to better (or worse) approximations of the
ideal-gas energy as a function of the local density and can also

be used to aid in mapping to particular physical parameters
[20,42]. When constructing �Fex in the next section, it will
be seen how the symmetry breaking of the free energy around
the reference density due to these terms is also crucial in
stabilizing certain lattices modes. All of our simulations and
energy calculations in later sections use ν = ξ = 1.

B. Excess energy �Fex

The nonlocal excess free energy can be constructed to create
an energy minimum for a desired periodic structure. This
energy has to be properly balanced with the local entropic
component of the free energy to produce stable minima of the
total free energy for a desired crystal symmetry. The amplitude
of the periodic density peaks must also be capped as much
as possible to maintain the numerical advantage of the PFC
methodology. We will show here how the excess energy can
be constructed to stabilize triangular and square lattices in 2D,
and bcc, fcc, hcp, and sc lattices in 3D.

In the expansion of the total free energy, the lowest order of
particle interactions can be included by an excess energy term
that incorporates simple two-particle correlations. This direct
correlation function ignores local contributions to the free-
energy density and assumes only inter-particle interactions,
temporally averaged over all particles. This interaction is
represented by a convolution of the density field with the direct
correlation function C2(|r − r ′|) computed at a mean reference
density state ρo,

�Fex = −1

2

∫
n(�r)

∫
C2(|�r − �r ′|)n(�r ′) d�r ′ d�r. (5)

Real space convolutions are conveniently multiplicative in
Fourier space, and as such our kernels will be constructed
in a Fourier space representation at the mean reference density
corresponding to the bulk solid state. To understand how to
select Ĉ2(|�k|) in such a way that the free energy has a minima
corresponding to a specific lattice, we will first show how the
density field behaves due to changes in crystallography.

1. Density field and the reciprocal lattice

At any finite temperature, atoms in a perfect crystal vibrate
about their lattice positions. If we assume that the probability of
atomic occupancy about any lattice site can be represented by
a Gaussian probability distribution, then the entire probability
field of the crystal can be represented as a sum over all lattice
sites. For example, a 1D lattice representation would be

ρ(r) =
∑

i

ρi(r) =
∑

i

1

σv

√
2π

e
− 1

2σ2
v

(r−ri )2

, (6)

where σv is the Gaussian width, representing the vibrational
amplitude of atoms due to temperature, and ri is the mean
position of lattice point i. The Fourier space representation of
the Gaussian lattice site probability has an analytic form

ρ̂i(k) ≈ cos(kri)e
− 1

2 σ 2
v k2

. (7)

The two components of this transform are quite instructive
to understand the stabilization of structures in the PFC
formulation. When summed over lattice sites, the components
cos(kri) interfere to produce successive δ-peaks corresponding
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(a)

(b)

(c)

FIG. 2. Fourier space representation of 3D lattices, where the
wave vector k is given in units of the inverse lattice spacing a = 1.
Spectral peaks for (a) bcc, (b) fcc, and (c) sc lattices are plotted for
σv = 0.05.

to periodic planes. For an infinite lattice, families of peaks
emerge, each corresponding to a set of planes. Each family’s
peaks occur at integer multiples of that family’s fundamental
planar frequeny. Figure 2 shows examples of such peaks for
bcc, fcc, and sc lattices. The factor e− 1

2 σ 2
v k2

causes these peaks
to decay at a rate corresponding to the Gaussian width and
is known as the Debye-Waller coefficient. For high tempera-
tures (large σv) close to melting, this term cuts off the higher
modes in each family. A modification of this peak structure is
used below to construct an effective correlation kernel for the
excess free energy. Successively higher frequency modes can
be used to progressively reduce the excess energy and stabilize
a crystal structure. However, the tradeoff for this additional
small stabilization is a large decrease in grid spacing to resolve
the resultant sharp density peaks. Therefore, we will include
only the first and most dominant peak corresponding to each
family. For example, for the Fourier space representation in
Fig. 2(a), there are two peaks for the {110} family of planes.
Only the first of these two peaks will be considered.

2. Correlation function peak selection

The question of which peaks to represent in the excess
free-energy kernel can be answered from an analysis of the
energy contribution of each density peak to the total excess

energy. To illustrate this, the energy contributions from the
first two peaks of an fcc phase are calculated explicitly and
compared to the corresponding energies from a two-peak bcc
energy kernel. Consider an approximation to the density field
for an fcc lattice that contains modes corresponding to the
(111) and (200) planes, the two most dominant peaks shown
in Fig. 2(b). The density field of the fcc lattice is approximated
by

n(x,y,z) = n111 + n200,

n111 = A111

∑
h,k,l=±1

cos[ko(hx + ky + lz)], (8)

n200 = A200{cos(2ko x) + cos(2ko y) + cos(2ko z)},
where ko = 2π sets the fcc lattice parameter a = 1, h,k,l are
the Miller indices, and A111 and A200 are amplitudes to be
solved for by energy minimization.

In this approximation, the total excess energy in Eq. (5) can
be broken down into four contributing parts by substituting
Eq. (8). We neglect the cross density terms since integration
over the unit cell results in zero contributions to the energy
for these terms, and we are left with independent energy
components that depend strictly on n111 and n200, respectively.
Specifically, the energy per unit volume becomes

�Fex

V
= − 1

2a3

∫
n111(�r)

∫
C2(|�r − �r ′|)n111(�r ′) d�r ′ d�r

− 1

2a3

∫
n200(�r)

∫
C2(|�r − �r ′|)n200(�r ′) d�r ′ d�r. (9)

First we consider the contribution from the dominant plane
for the fcc lattice, the (111) plane illustrated in Fig. 2(b).
The convolution is calculated using the Fourier transform of
C2(|�r − �r ′|), denoted Ĉ2(|�k|), and the Fourier transform of
n(x,y,z), denoted n̂(�k). The correlation function contributes
a constant multiplier to the total free energy for each mode
in a perfect lattice and is factored out of the sum. Since the
cross terms over the Miller indices integrate out to zero over
the unit cell, the resulting free-energy change per unit volume
integrates to

�Fex(111)

V
= − 1

2a3
β111A

2
111Ĉ2(k1), (10)

where k1 = √
3ko and β111 = 8 is the degree of symmetry of

that plane about a reference lattice position. Repeating this
procedure for the (200) plane leads to an energy of

�Fex(200)

V
= − 1

2a3
β200A

2
200Ĉ2(k2), (11)

where k2 = 2ko and β200 = 6 due to lattice symmetry.
Repeating the above process for a bcc lattice and with

correlation peak maxima corresponding to the bcc density
modes leads to energies of

�Fex(110)

V
= − 1

2a3
β110A

2
110Ĉ2(k1),

(12)
�Fex(200)

V
= − 1

2a3
β200A

2
200Ĉ2(k2),

where k1 = √
2ko, k2 = 2ko, β110 = 12, and β200 = 6.

We next minimize the sum of ideal and excess free energies,
assuming correlation kernels satisfying Ĉ2(k1) = Ĉ2(k2) = 1
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for the modes of both bcc and fcc phases (i.e., the particles are
completely correlated). This leads to the amplitudes A110 =
0.132 37 and A200 = 0.055 73 for bcc and A111 = 0.142 74
and A200 = 0.106 48 for fcc. These numbers yield relative
energy contributions �F111/(�F111 + �F200) = 0.706 for fcc
and �F110/(�F110 + �F200) = 0.919 for bcc. The fcc and bcc
correlation functions can be compared by substituting these
amplitudes into the energy [Eqs. (10)–(12)]. In the present
approximation, about 92% of the bcc excess energy is stored
in the first correlation peak, while the excess free energy of
the fcc structure is split about 70%–30% between its first two
correlation peaks.

Stabilization of the sc phase requires three peaks in the
correlation kernel. These peaks correspond to the (100), (110)
and the (111) planes. The first two density peaks in Fig. 2(c)
for the sc kernel are shared with a bcc kernel, with a different
lattice spacing. In the bcc phase, 98% of the free energy is
stored in these two peaks. The addition of the third peak
stabilizes the sc lattice, but the energy difference between
the two phases is only about 2%. The sc structure (and other
higher mode structures) can be further stabilized by making the
well of the local free-energy density (Fig. 1) more asymmetric
about the reference density. This, however, leads to sharper
density peaks and requires more computer memory to store
finer numerical meshes.

The above analysis reveals several important points. The
first, and most important, point in constructing a correlation
function that stabilizes the fcc structure is to realize that
inclusion of only a single peak in the correlation function
will always stabilize the bcc structure at the solid reference
density ρo (i.e., n̄ = 0). Therefore, the second peak must be
included to stabilize the fcc structure [16]. It turns out that
including a third peak in the excess energies leads to relative
changes in the energy of less than 1% for both of these phases,
and as such these peaks can be omitted. A further revelation in
this construction comes in a study of the emergent anisotropy
of the crystalline phases. This is discussed below in Sec. IV.

3. Direct correlation function construction

The previous section showed how the density field’s
spectral peaks emerge and how they contribute to the free
energy. In this section, the form of the excess free-energy
kernel Ĉ2(|�k|) is constructed to include relevant reciprocal
space peaks at positions determined by the desired crystal unit
cell. The positions of the peaks correspond to the interplanar
spacings shown by the δ-peaks in Fig. 2. The peaks of our
Ĉ2(|�k|) have a finite width, discussed further below. The excess
free energy also contains a temperature parameter, crucial for
driving phase transformations.

For the fcc, bcc, and hcp kernels we select two modes, each
corresponding to the two most dominant peaks in the density
spectrum. The resulting functions Ĉ2(|�k|) are illustrated in
Fig. 3(a) for the case of zero temperature (σ = 0). The lattice
spacings of all three structures are scaled such that the lowest
frequency peaks of all correlation functions overlap to illustrate
the relative positions of the secondary peaks. Individual peaks
are represented in reciprocal space by Gaussians of the form
exp[− (k−ki )2

2α2
i

], with a finite width of αi rather than the δ-peaks

of a perfect lattice. The variation of the parameter αi accounts

(a)

(b)

(c)

FIG. 3. (Color online) (a) Two peak correlation functions Ĉ2(k)
for hcp (dot), fcc (dash), and bcc (dash-dot) lattices. In this illustration,
the lattice spacing has been rescaled such that the first peak of the
function overlaps for all three lattices. For simplicity, the case of zero
effective temperature is shown here (i.e., σ = 0). α1 and α2 are free
parameters that set the width of each peak correspondingly. Planes
illustrating the planar symmetry and the planar atomic density are
shown in (b) for bcc (110) (dominant) and (200) planes and (c) for
fcc (111) (dominant) and (200) planes.

for changes in the free energy due to interfaces, defects, and
strain. Specifically, varying αi changes the width of a liquid-
solid interface, which directly affects the surface energy [35,
43] and can control the magnitude of the elastic coefficients
and their anisotropy.

The effect of temperature enters into our correlation
function via modulation of the Gaussian peak heights. This
modulation is motivated by the Debye-Waller decay due to
thermal motion of atoms about their equilibrium positions. A
prefactor to this effect is also included that accounts for the
number of planar symmetries βi (dimensionless) and for the
atomic density ρi within each plane. For instance, the bcc (200)
plane has an atomic density of ρ200 = 1 and a planar symmetry
of β200 = 6, which can be inferred from Fig. 3(b). These factors
represent the relative weight of each planar family and give
each its own corresponding Debye-Waller prefactor. These
effects are accounted for phenomenologically by modulating
the peaks in Ĉ2(k) by the factor exp[−(σ 2k2

i )/(2ρiβi)], where
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σ plays the role of an effective temperature. Summarizing,
each family of planes i in the unit cell thus contributes a peak
to the correlation kernel of the form

Ĉ2(k)i = e
− σ2k2

i
2ρi βi e

− (k−ki )2

2α2
i . (13)

The complete correlation function in Fourier space [i.e.
Fig. 3(a)] comprises the numerically evaluated envelope of
the superposition of all relevant peaks for the crystal structure
given by Eq. (13). This avoids shifts in the peak positions and,
correspondingly, changes to the stable structure that would
result from a simple sum of these peaks. It is noted that
this technique leads to stable structures that exist around the
reference state of the energy. Through the use of α1 and α2,
which modulate the correlation function peaks, the anisotropic
response of a given crystal structure can be tuned, as discussed
later in Sec. IV.

III. EQUILIBRIUM PROPERTIES

This section examines some of the equilibrium properties of
the PFC materials that emerge from the formalism discussed
above. First we construct the phase diagram corresponding
to the fcc correlation function using a numerical method for
minimizing the energy. The effect of the k = 0 mode on the
periodic structure is examined separately by using a square
correlation function. Finally, we demonstrate the robustness
of our methodology to generate even more complex structures
by showing an example of dynamic coexistence of an hcp seed
growing into a liquid melt, using an energy kernel for an hcp
lattice.

A. Phase diagram construction

Phase coexistence is analyzed by performing a common
tangent construction between the curves of free energy versus
average density of different combinations of bulk phases. The
free energy of a phase is calculated at each average density by
iterative relaxation of the total free-energy functional, using the
kernel for the structure of interest, as described in Sec. II B. A
phase diagram for a liquid-bcc-fcc system using a correlation
kernel for a fcc lattice is shown in Fig. 4(a). The free-energy
curves shown in Fig. 4(b) are computed for liquid, bcc, and fcc
states by varying the mean density, and for each mean density
imposing the corresponding density structure, and numerically
minimizing the amplitudes of the density peaks.

The liquid state energy is computed assuming a constant
density for all values of n̄, and the energy per unit volume
is calculated by numerically integrating Eq. (3). The bcc
and fcc crystal structures are initially set up by imposing
a series of Gaussian density peaks at lattice positions in
a numerical domain with lattice spacings of a = 1 for the
fcc phase and a = √

2/3 for the bcc phase. These density
fields are numerically relaxed by iterating Eq. (2) in Fourier
space. The relaxed energy density is integrated over the crystal
unit cell, yielding free energy versus mean density n̄ for an
effective temperature σ . Varying the effective temperature σ

thus produces the phase diagram shown in Fig. 4(a). It is
noteworthy that a stripe phase is not stable in our model.
The reason for this is related to the lack of cross terms
of modes in the expansion of the density field, i.e., the

(a)

(b)

(c)

FIG. 4. (a) Phase diagram for an fcc lattice correlation function
showing the coexistence between liquid, fcc, and bcc phases near a
peritectic point. (b) Free-energy curves for the liquid (dot), fcc (solid),
and bcc (dash) phases at a temperature close to the peritectic point of
the phase diagram.

n(�r)3 term in the free energy integrates to zero for this
crystal symmetry.

As the temperature is increased, the lower-frequency modes
of the correlation function become dominant in the free energy
over the higher-frequency modes, which changes the particular
structure that minimizes the free energy. For example, as σ

increases, the fcc crystal transforms into a bcc crystal since
the bcc structure minimizes the free energy when only a single
mode is present in the correlation kernel. This is consistent with
the free-energy ratios examined in Sec. II, where it was seen
that 92% of the bcc energy is due to the first correlation peak.
The decay of peaks leads to a transformation of coexisting
liquid and solid phases into a single solid phase at a peritectic
point.

B. Effect of the k = 0 mode

The k = 0 mode in the correlation function affects the
bulk compressibility of a material. For simplicity, the k = 0
value of the correlation function in Fig. 3 is set to zero.
It must be stressed, however, that the introduction of a
nonzero k = 0 contribution to the correlation kernel does
not affect the stability of the various structures discussed
above. Its effect is instead to compress the phase diagram
about the reference density (n̄ = 0) around which the free-
energy functional is expanded. We illustrate this effect by
examination of the free-energy curves for two different
phases.
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(a)

(b)

FIG. 5. (Color online) Effect of the k = 0 mode illustrated using
the 2D square correlation function. (a) Correlation functions with
different k = 0 mode amplitudes: Ĉ2(0) = 0 (solid), Ĉ2(0) = −1
(dashed), and Ĉ2(0) = −2 (dotted). (b) Effect of the k = 0 mode
on the phase stability illustrated by free-energy curves for the liquid
(black) and square (red/gray) phases for the three amplitudes shown
in (a).

We will consider here a liquid and a square lattice in 2D
using an energy kernel for a square lattice.1 As described
in Sec. II, we construct our direct correlation function by
introducing two peaks corresponding to the modes of the
square lattice. However, we now include a third Gaussian peak
(with negative amplitude) at k = 0 as shown in Fig. 5(a) for
an effective temperature of σ = 0.05. Changing the amplitude
of the k = 0 mode results in a shift in the free energy for the
structures at densities away from the reference density. In our
PFC model, the lowest free-energy structure of the correlation
kernel is constructed to be stable at n̄ = 0. This is illustrated in
Fig. 5(b) for free-energy curves of both the liquid and square
phases. As the mean density of the system is varied away
from the reference state density, the change in free energy
is steeper for more negative amplitudes of Ĉ2(0), that is, the
bulk modulus is larger. In all cases the relative energy at the
reference state is unchanged, as one would expect since our
reference energy state is taken to correspond to a density with
a correlation kernel with zero amplitude at k = 0.

Previous PFC models have been reported to support stable
fcc and hcp structures, but only at very deep quenches where
the asymmetry of the ideal energy approximation brings the
free-energy state of these lattices to be comparable to the bcc
structure at mean densities away from the reference density

1The liquid-square-triangle phase diagram is published in [35]
without a k = 0 mode. We note that the σ axis of the phase diagram
in [35] is incorrectly labeled and should actually be divided by 2π .

[30,31]. However, by making the k = 0 mode of the correlation
function deeper, these structures will become unstable due to
the liquid phase becoming more preferable at densities away
from n̄ = 0. This stability away from the reference state will
also lead to an undesired increase in the density amplitudes as
the strength of the k = 0 mode of the correlation function is
increased. This is not the case for models such as the present
one, where the structure of interest is stable at the reference
state.

C. Dynamic coexistence

Extending the above methodology to other simple crys-
talline phases such as hcp and sc lattices is straightforward.
Using the secondary peak in the kernel corresponding to the
hcp lattice in Fig. 3(a), the hcp structure becomes the stable
structure for a range of effective temperatures and densities,
as illustrated by the energy curves shown in Fig. 6(b). An
hcp lattice with spacings of a = 1 and c = 2

√
2/3 emerges

using a correlation function with these two primary peaks
corresponding to planes with modes of k1 = 2π

√
4/3 and

k2 = 2π
√

41/24. The hcp phase can be shown to have dynamic
coexistence with the liquid phase by seeding the liquid phase
with an hcp nucleus that has a sufficient radius to overcome
surface energy melting. We set the material parameters to
values of α1 = α2 = 1.0 allowing a small nucleation radius
to survive due to low surface energy. The temperature is
quenched to a value of σ = 0.02 and, corresponding to the

FIG. 6. (Color online) (a) Dynamic coexistence of hcp with a
liquid. Three perpendicular planar cuts through the simulation volume
are shown illustrating the hcp structure. (b) Free-energy curves for a
quench using an hcp correlation function shown for the liquid (dot),
bcc (dash), and hcp (solid). The energies clearly show the stability
of the hcp lattice relative to a minimized bcc and liquid state at the
reference density (n̄ = 0).
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energy curves of Fig. 6(b), we set the hcp lattice density
initially to a value of n̄hcp = 0.0 and the total mean density
of the system to n̄ = −0.09. The system is evolved using the
dynamics of Eq. (2). The hcp seed grows, at first linearly
in velocity, slows, and eventually reaches coexistence with
the liquid phase. This coexistence is illustrated in Fig. 6(a),
showing three perpendicular cuts through the system volume.
These cuts clearly show the stable a-b-a-b stacking of hcp and
the triangular arrangement of the (0001) plane. Both fcc and sc
phases also coexist dynamically with the liquid phases using
their appropriate energy kernels.

IV. ELASTICITY

This section computes cubic elastic moduli C11, C12, and
C44 for the 2D square and 3D fcc free-energy functionals at
their respective reference densities. We extract the moduli by
Taylor expansion of the energy about specific strained states of
the defect-free lattices. For the square lattice, we calculate the
strain energy both numerically and analytically through a two-
mode approximation and find excellent agreement between
the two methods. Since the numerical approach is too costly
for small strains in 3D, the equivalent calculation for the fcc
lattice is performed only analytically.

A. 2D square phase elastic coefficients

The elastic coefficients are computed by fitting free energy
curves to specific strain states. For a square lattice using a
square energy functional, it is necessary to consider three strain
states: bulk, deviatoric, and simple shear. The free energy of
these strained states can be expanded as

�Fbulk ≈ Fo + mbδ
2 + O(δ4),

�Fdev ≈ Fo + mdδ
2 + O(δ4), (14)

�Fshear ≈ Fo + msδ
2 + O(δ4),

where Fo is the unstrained energy state and δ is the magnitude
of the strain. The bulk, deviatoric, and shear strain states are
defined here as n(x/(1 + δ),y/(1 + δ)), n(x(1 + δ),y(1 − δ)),
and n(x + δy,y), respectively. In 2D, mb, md , and ms are
quadratic fit parameters related to the elastic coefficients
by mb = C11 + C12, md = C11 − C12, and ms = C44/2 [22].
Two methods of computing the energy curves for the bulk,
deviatoric, and simple shear strains are implemented. We
consider the case in which α1 = α2 in the correlation function.

1. Numerical calculation of elastic coefficients

The first approach we consider is to numerically strain
a relaxed periodic density field. To accomplish this, we
use a domain size fitting 40 unit cells in each dimension
with an initial mesh spacing of dx = 0.05 corresponding
to a lattice spacing of a = 1 in dimensionless units. The
simulation domain is filled with overlapping Gaussian density
peaks ni = exp{−[(x − xi)2 + (y − yi)2]/(2σ 2

v )}, where i is
summed over all lattice sites for a square lattice. With the
Gaussian representation of the field in place, the mean density
field is shifted to the reference density (n̄ = 0) and then relaxed
to its minimum energy state using the dissipative dynamics of
Eq. (2). This yields the unstrained base energy F0.

The bulk strain can by applied to our base state by varying
the mesh spacing as dx ′ = dx/(1 + δ). With this strained
state of the lattice, the energy per unit cell is integrated
numerically and fitted to Eq. (14), where the coefficient mb

is easily extracted. Results for mb are shown for the case
of σ = 0 as open circles in Fig. 7(a) for various values of
α1 = α2. Simple shear and deviatoric strains are similarly
computed by mesh manipulation of our base state. The mesh
is sheared by the coordinate transform on the grid points N

by N (x(1 + δ),y(1 − δ)) and N (x + δy,y). To calculate the
energy via Fourier transform techniques, the sheared mesh is
mapped back onto a uniform mesh by linear interpolation. The
periodic nature of the system yields good results for simple
shear, but deviatoric strains result in accurate values for the
energy only when the applied strain resulted in multiple values
of the lattice spacing in both x and y (i.e., the lattice periodicity
fits in the system). For small strains, our calculations therefore
require very large system sizes to accurately compute the
energy values. As a result, this technique is not practical
in 3D.

2. Analytical calculation via a two-mode approximation

A second approach to calculate strained free energies
employs a two-mode approximation to the density field. To
lowest order, the density requires two amplitudes to have
enough freedom to minimize with regard to our two-peak
correlation function. The density field of a square lattice can
be written as

n(x,y) = A10[(3
√

2 − 2)cos(koy) − 2 cos(kox)]

−A11cos(kox)cos(koy), (15)

where A10 and A11 are amplitudes to be solved for by energy
minimization. The limitation of this approach is that since our
correlation function is the envelope of overlapping peaks, it is
not possible generally to obtain a closed-form mathematical
expression for the elastic coefficient. However, in the limit
of small αi , when the peaks do not overlap, our correlation
function can be described analytically as

C2(|�k|) =
∑

i

e
− 1

2α2
i

(|�k|−ki )2

, (16)

where i indexes over the correlation function peaks.
With these approximations, we can calculate our base state

energy by minimizing the energy for an unstrained square
lattice. The amplitudes A10 and A11 are calculated taking the
Fourier transform of Eqs. (15) and (16) to compute the convo-
lution in the excess free energy K̂(kx,ky) = Ĉ2(|�k|)n̂(kx,ky).
The energy per unit volume can now be calculated from

�F

V
= 1

a2

∫ a

0

∫ a

0
dx dy

[
�Fid − n(x,y)

2
K(x,y)

]
, (17)

where ν = ξ = 1 gives a function dependent on A10 and
A11. This free energy is minimized by solving the system of
equations ∂�F/∂A10 = 0 and ∂�F/∂A11 = 0. For a lattice
spacing of a = 1 and a temperature of σ = 0, the amplitudes
are found to be A10 = 0.218 24 and A11 = 0.560 15. The
resultant density structure for an unstrained crystal was found
to be in very good agreement with the numerically minimized
structure, as shown in Fig. 7(a).
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The energy for the bulk, deviatoric, and shear strained lat-
tices is calculated by substitution of their respective coordinate
transformations into the density field [Eq. (15)]. The strained
energy is extracted by repeating the energy integration above,
except now the bounds of integration are over the strained unit
cell. We assume (confirmed but not shown here) that for small
strains, the amplitudes A10 and A11 have negligible changes
for the regime we study. These energy curves are fit to the
parabolic order of Eq. (14) to extract the coefficients mb, md ,
and ms .

3. Comparison of the elastic coefficients

Figure 7(a) compares the analytically evaluated coefficient
mb (filled circles) to their numerically determined counterparts
for the same values of αi . Both solutions agree very well until
the correlation peak widths overlap. This is due to a shift in
the peak’s position by the sum in Eq. (16) causing a deviation
from the correlation function used numerically. This deviation

(a)

(b)

FIG. 7. (a) Elastic coefficient mb = (C11 + C12) for a square
lattice from Eq. (14) as a function of correlation peak widths α1 = α2.
Numerical (open circles) and analytical (filled circles) results are
shown and fitted to Eq. (18) (dot). (b) Elastic coefficients mb, mo,
and ms for the fcc lattice for bulk (filled circle), orthorhombic (open
circle), and simple shear strain (filled diamonds) states as a function
of the correlation function peak widths α1 = α2. Dotted lines shows
fits to Eq. (18).

is marked in Fig. 7(a) by “Peak Overlap.” Similar agreement
is found for the other coefficients md and ms . All coefficients
follow a power-law function over all tested αi values,

mj = Ajα
−2
i , (18)

where Aj represents a fitting coefficient for the different shear
states. These values are Ab = 3.7, Ad = 2.1, and As = 0.35
for the bulk, deviatoric, and shear states when α1 = α2.

B. 3D fcc phase elastic coefficients

The elastic coefficients for the fcc phase are computed using
the analytic method described above. For cubic lattices, it is
necessary to consider three strain states: bulk, orthorhombic,
and simple shear [44–47]. These constituent strains are also
fitted to quadratic order in an expansion of the free energy,

�Fbulk ≈ Fo + mbδ
2 + O(δ4),

�Forthorhombic ≈ Fo + moδ
2 + O(δ4), (19)

�Fshear ≈ Fo + msδ
2 + O(δ4).

The bulk modulus is related to the curvature of the free energy
and can be described as

B(V ) = V
∂2�F

∂V 2
, (20)

where V is the deformed volume of the unit cell. The
volumetric strain on the lattice is described by the strain tensor

εbulk =

∣∣∣∣∣∣∣
δ 0 0

0 δ 0

0 0 δ

∣∣∣∣∣∣∣
, (21)

and therefore V = a3(1 + δ)3. The relationship between mb

and the bulk modulus is obtained by substituting the energy
expansion of Eq. (19) into the bulk modulus Eq. (20), solving
for mb, and expanding, mb = 9

2B + O(δ). By dropping the
higher-order terms in mb, we neglect volumetric changes to
the bulk modulus. The elastic coefficients can be obtained
from the bulk modulus B = (C11 + 2C12)/3 in conjunction
with the other constituent strains.

To solve for the elastic coefficients, we also need to use two
volume-conserving (to linear order in δ) strain states. First is
an orthorhombic shearing of the lattice described by the strain
tensor,

εorthorhombic =

∣∣∣∣∣∣∣
δ 0 0

0 −δ 0

0 0 δ2/(1 − δ2)

∣∣∣∣∣∣∣
(22)

and second is a simple shear defined by the strain tensor,

εshear =

∣∣∣∣∣∣∣
0 δ/2 0

δ/2 0 0

0 0 δ2/(4 − δ2)

∣∣∣∣∣∣∣
. (23)

The final fitting parameter relationships used in Eq. (19) are
mb = 3

2 (C11 + 2C12), mo = C11 − C12, and ms = C44/2.
The density field of the fcc phase is approximated by

the two-mode density field used earlier in Eq. (8). The base
state of the unstrained lattice is calculated by integration over
the unit cell, and the amplitudes of the fcc phase can be
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found in Sec. II B 2. Substitution of A111 and A200 into the
density field approximation results in a minimized energy
state for the density structure of an unstrained fcc crystal. The
strained state energies are integrated over the now strained
unit cells, and these energy curves are fit to the quadratic
approximations of Eq. (19). Once again, it was found that the
free-energy coefficients mb, mo, and ms follow a power-law
function Eq. (18) over all tested αi values; see Fig. 7(b).
The corresponding fit coefficients are Ab = 26, Ao = 6.9, and
As = 2.15 for the bulk, orthorhombic, and shear states when
α1 = α2.

C. Temperature dependence of elastic coefficients

The effective temperature σ modulates the peak heights
in the correlation function, which changes the elastic moduli.
The magnitude of the change is additionally dependent on the
peak widths αi . As an example, Fig. 8(a) shows the relative
change of mb for the fcc lattice with temperature for several
values of α1 = α2. The coefficient decreases with increasing
temperature; larger values of αi cause a slower decrease. We
find that the temperature behavior can be well described by a
quadratic form,

mb = mo
b − bασ 2, (24)

(a)

(b)

FIG. 8. (a) Relative change in the elastic coefficient mb with
temperature σ for several correlation peak widths α1 = α2 = 0.05,
0.075, 0.1, 0.15, and 0.175 (bottom to top). (b) Dependence of the
quadratic fit coefficient bα in Eq. (24) on αi . Dotted line shows an
exponential fit (see text).

FIG. 9. Elastic coefficient prefactors Ai as a function of α2/α1

for the orthorhombic strain Ao (empty circle) and simple shear As

(filled circle).

where mo
b is the value of mb when σ = 0. The dependence

of the fit coefficient bα on αi is explored in Fig. 8(b), where
it can be well fit to an exponential form bα = B1e

−B2αi with
B1 = 2.74 × 105 and B2 = 27.335.

D. Tuning anisotropy

The magnitude of the material’s elastic anisotropy plays
an important role in defect interactions. Here we show how
anisotropy enters into the model through a coupling of
the density field and its interaction in the energy with the
modes included in our correlation kernel. Elastic anisotropy
can be characterized by the deviation from the isotropy
relation,

C44 = (C11 − C12)/2. (25)

We repeat the energy calculation in the previous two
sections, but now instead of varying the temperature σ or
the magnitude of the peak widths α1 = α2, we investigate
the effect of varying the ratio of peak widths α2/α1. For these
tests, an fcc kernel is used with σ = 0, and we consider the free
energies of the two volume-conserving strain states. Figure 9
illustrates the effect on mo and ms as we vary α2 relative to
α1. The first peak of the correlation function was set to a value
of α1 = 0.175 such that the two peaks would not overlap for
the range of this calculation. Interestingly, we find that as α2

is varied, the amplitude of the simple shear component As

[Eq. (18)] varies very little while the orthorhombic amplitude
Ao has a large dependence on the relative size of α2 and α1. The
condition for elastic isotropy can be determined by substitution
of Eq. (18) into Eq. (25), giving a relationship of

Ao = 4As. (26)

This implies that the ratio α2/α1 must equal the ratio of the
first two peak positions; for an fcc crystal, α2/α1 = √

3/2.

V. DISCUSSION

We have introduced an extension for the phase-field-crystal
(PFC) model to self-consistently construct free energy kernels
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that produce targeted crystal structures. We explicitly showed
that this method produces energetically stable bcc, fcc, hcp,
and sc phases for appropriately selected free-energy kernels
containing multiple peak two-point correlation functions. For
the fcc and hcp phases, it was shown that two peaks are
sufficient to stabilize the structures at the reference density,
while three peaks are needed to stabilize the sc phase. We also
explicitly showed how to map out the elastic coefficients and
how to tune the elastic anisotropy by adjusting the peak curva-
ture through changes in the correlation function peak widths.

The resulting dependence of the anisotropy strength on
the relationship between peak widths has implications if we
consider the relative change between the fcc and the bcc
phases. As shown in Sec. II, the energy spread across the
two primary peaks for the bcc and fcc lattices in the PFC
model is 92%–8% for the bcc phase and about 70%–30% for
the fcc phase. This will naturally result in a greater anisotropic

response in the fcc lattice since the response is related to the
relative changes in energy between these two modes.

The close proximity of the secondary peak of the fcc and
hcp phases can also have implications for the relative stability
of the two phases. Increasing the width of the second peak for
the fcc phase will increase the stability of a metastable hcp
phase. As shown in Fig. 9, this increase in width results in an
effective decrease in the shear modulus, relative to the total
magnitude of the elastic coefficients. This could potentially
decrease slip barrier energies, facilitating the use of the PFC
model to investigate dislocation splitting, creating hcp planes.
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