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Scaling of granular temperature in a vibrated granular bed
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Granular temperature underpins the kinetic theory of granular flows as well as models for heat transfer,
segregation, erosion, attrition, and aggregation in various granular systems. It is generally thought that granular
temperature in vibrated granular systems scales with the square of the peak vibrational velocity. However,
careful diffusing wave spectroscopy experiments and statistical analysis of data obtained from these for a
three-dimensional vibrated bed of monodisperse glass particles reveals that the granular temperature is also
significantly correlated with other vibrational parameters. Reexamination of previously published data obtained
by others using alternative methods further supports our thus far unremarked upon observation reported here.
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I. INTRODUCTION

Granular flow requires continuous energy supply, such
as vibration, shearing, or interstitial fluid flow, because of
the dissipative particle collisions which are dominant in the
granular flow. Such energy input results in a random motion
of particles which is quantified by the so-called granular
temperature, which is proportional to the mean-square value
of velocity fluctuations around the mean flow velocity, 〈δv2〉,
a term first used by Ogawa [1]. The granular temperature is a
key property in continuum models of granular flow [2,3], and
it also underpins models for heat transfer [4], segregation [5],
erosion [6], attrition [7], and aggregation [8] in various particle
processing technologies.

Vibration of granular media occurs widely across technol-
ogy (e.g., sorting of minerals) and nature (e.g., earthquakes).
Many studies of such systems have focused on the scaling
of the granular temperature with particular emphasis on the
vibrational peak velocity. Kinetic theory considerations of
a vibrated bed suggest a granular temperature scaling with
the square of the peak velocity [9,10]. Experimental studies
in highly fluidized two-dimensional (2D) [11,12] and dilute
three-dimensional (3D) vibrated granular system [13–15]
support this theoretical prediction. On the other hand, some
experimental studies suggest a power-law relation with an
exponent ∼1.5 [9,16,17], similar to numerical simulation
results [18]. Two more recent experimental studies of the
granular temperature scaling in highly dense 3D vibrated
granular beds [19,20] were also, however, in line with the
granular kinetic theory-based prediction [9,10].

Recent very careful experiments by us using the highly
sensitive method of diffusing wave spectroscopy (DWS) have
lead us to observe that granular temperature is not entirely
independent of other vibrational parameters as commonly
asserted. This finding is reported here. We first outline the
experimental details, including an overview of DWS and
details pertaining to the apparatus and the particulate materials
used, and the experimental procedure. This is followed by a
presentation of the results obtained using DWS to demonstrate
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that a significant correlation exists between granular temper-
ature and vibrational parameters beyond just the vibrational
peak velocity. A statistical analysis is then used to show that
this observation, although previously unremarked upon, can
be discerned in already published data obtained by others’
different techniques.

II. EXPERIMENTAL DETAILS

The experimental apparatus is illustrated in Fig. 1. The
granular material was held in a thin rectangular column with
smooth Plexiglas walls, fixed so that only vertical motion was
possible. The column inner cross section was 15 × 200 mm,
and its height was 500 mm. The column was filled with trans-
parent spherical glass particles of diameter d = 0.95 ± 0.05 mm
to a mean granular bed height, h = 75 mm. The bed, including
the container, was subject to vertical vibrational forcing
provided by an air-cooled electromagnetically driven shaker
(V721, LDS Ltd., Hertfordshire, UK). The vibrational forcing
was controlled by a Dactron COMET USB controller (LDS
Ltd.) with feedback from two integrated-circuit piezoelectric
accelerometers (model 353B03, PCB Piezotronics, Inc., NY,
USA) attached to the base of the column. The acceleration
and frequency were controlled to a resolution of 0.005g
and 0.01 Hz, respectively, where g is the acceleration due
to gravity.

The dynamics of the particles in the vibrated bed were
studied using DWS in transmission mode [21]. This method
involves illuminating one side of the bed at the point of interest
with a ∼2-mm-diam laser beam and collecting the scattered
light from the opposite side of the bed over a time, t, with a
single mode optical fiber (OZ Optics Ltd., Ottawa, Canada).
A 400-mW diode-pumped solid-state linearly polarized laser
(Torus 532, Laser Quantum Ltd., Cheshire, UK), operating
at a wavelength of λ = 532 nm in single longitudinal mode,
was used. The collected light signal was bifurcated and fed
into two matched photomultiplier tubes (PMTs) to reduce
spurious correlations due to possible afterpulsing effects of
the detector. The outputs from the PMTs were amplified and
fed to a multitau digital correlator (Flex 05, Correlator.com,
USA), which performed a pseudo cross-correlation analysis in
real time to give the intensity autocorrelation function (IACF),

031308-11539-3755/2011/83(3)/031308(8) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.031308


V. ZIVKOVIC, M. J. BIGGS, AND D. H. GLASS PHYSICAL REVIEW E 83, 031308 (2011)

linear stage

DPSS laser

PMT

transmitted
light

optical f iber

electromagnetic
shaker

correlator

laser
beam

PMT

beam
splitter

controller

accelerometer

h

y
x accelerometer

FIG. 1. Schematic of the experimental setup.

g2(t), that was stored on a PC for further offline analysis as
detailed below.

The vibrated bed was subject to sinusoidal vibrations in all
cases reported here. The vertical position of the bed, at time t,
for such vibrational motion is expressed by

yp = A sin(ωt), (1)

where A and f = ω/2π are the amplitude and frequency,
respectively. The associated peak vibrational velocity and
acceleration of the bed are vp = ωA and ap = ω2A, respec-
tively; the latter is expressed here in the nondimensional form,
� = ap/g, where g is the acceleration due to gravity. Note that
frequency, amplitude, velocity, and acceleration are related.
Knowing any two quantities, the other two can be easily
calculated.

The IACF was determined at the centerline of the bed,
x = 0 mm, and at vertical position, y = 40 mm, above the
base of the bed, which is approximately the center of the
bed. The measurements were done at only one position, as
our previous experiments found that the granular temperature
varied very little with spatial position in the bed [20].
Measurements near the wall, and the top and bottom of the
bed where variations may be expected were impossible due
to experimental constraints [20,22]. Before each measurement
the system was vibrated for at least 10 min, allowing the bed to
reach a stationary state. The IACFs were obtained by collecting
and correlating ten blocks of data 30 s long each.

The normalized electric-field autocorrelation function
(FACF), g1(t), was obtained from the IACF, g2(t), using the
Siegert relationship [21,23],

g2(t) ≡ 〈I (0)〉〈I (t)〉
〈I 〉2

= 1 + β|g1(t)|2, (2)

where I is light intensity and β is a phenomenological
parameter determined from the intercept of the IACF; this
phenomenological parameter was always found to be β ≈ 0.5,
as expected for depolarized light [21].

The mean-square displacement (MSD) of the particles,
〈�r2(t)〉, was determined by inverting the FACF using the
formula [21]

g1(t) =
L/l∗+4/3
z0/l∗+2/3
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where X = 〈�r2〉k2 + 3l∗/la, L is the sample thickness
(15 mm here), l∗ the transport mean free path, la the absorption
path length, z0 = γ l∗ the distance over which the incident
light is randomized, and k = 2π/λ the light wave vector.
The scaling factor, γ , was set to unity, in line with common
practice [21,24].

The mean square of particle velocity fluctuations about the
mean flow velocity can be derived straightforwardly from the
ballistic region of the MSD [25], provided it is resolved, using
the expression

〈�r2〉 = 〈δv2〉t2. (4)

The granular temperature for a monodisperse granular
material flowing in 3D can then be evaluated following [26]:

θ = 1
3 〈δv2〉. (5)

Equation (3) requires knowledge of the transport mean free
path, l∗, or step size in the random walk of photons, and the
diffusive absorption path length, la , which accounts for light
absorption, at the positions and conditions considered. In our
previous study [20], we used the method of static transmission
[21,27] to determined that la = 4 mm and that l∗ varies from
1.95 to 2 mm for the amplitude range investigated here of
0.05–0.17 mm.

III. RESULTS AND DISCUSSION

Figure 2 shows a typical IACF, g2(t), along with the
FACF, g1(t), and MSD, 〈�r2(t)〉, obtained from the analysis
outlined in the previous section. The example IACF, shown
in Fig. 2(a), first decays from g2 ≈ 1.5 over the time scale
of 10−6−10−5 s to an intermediate plateau, where it remains
before once again decaying over the time scale of 10−1−100 s,
this time toward unity. The intercepts of g2 for all considered
vibrational conditions were close to 1.5, the expected value for
depolarized light [21]. This value indicates that we are imaging
one coherence area and that enough decorrelation cycles have
been taken to ensure good statistics.

Figure 2(b) shows that the double decay and time scales
seen in the IACF are reflected and enhanced in the FACF, as
one would expect given the Siegert relationship, (2). Rigorous
interpretation of the long-time behavior is difficult due to
limitations of the technique [28]. However, previous work
by the authors [20] suggests that it is reasonable to attribute
the intermediate plateau and second decay in the ACFs of
Fig. 2 to caged motion of particles at intermediate times and,
at longer times, particles breaking free of their cages only to
become trapped once again in new cages nearby. The MSD
obtained from inversion of (3) using the FACF is shown in
Fig. 2(c). A quantitative analysis of the ballistic region of this
MSD using (4) gives a particle velocity fluctuation 〈δv2〉1/2 =
2.86 mm/s. The intermediate plateau in MSD cannot be used

031308-2



SCALING OF GRANULAR TEMPERATURE IN A VIBRATED . . . PHYSICAL REVIEW E 83, 031308 (2011)

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

1.0

1.1

1.2

1.3

1.4

1.5
g 2

t [s]

(a)

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0.0

0.2

0.4

0.6

0.8

1.0

g 1

t [s]

(b)

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-19

10
-18

10
-17

10
-16

10
-15

<
Δr

2 >
[m

2 ]

t [s]

<δv2> = 8.18 mm
2
/s2

(c)

FIG. 2. (a) The intensity autocorrelation function, g2(t), at � =
2.6 and vp = 40 mm/s. (b) The normalized electric-field autocorrela-
tion function, g1(t), obtained from g2(t) using the Siegert relationship.
(c) The MSD obtained from g1(t) by inverting (3); the mean
square of fluctuating velocity 〈δv2〉 is indicated. The solid line is
fitted to (4).

for quantitative analysis due to the limitations of the technique,
which is the reason we do not show MSD for times longer than
1 ms [28].

A. Two-dimensional mapping of granular temperature

Most experimental studies of the granular temperature
scaling in a vibrated granular bed are carried out at a
fixed frequency [9,11,16,17,19]. Figure 3(a) illustrates that,
under this commonly adopted experimental protocol, the

granular temperature is a linear function of the square
of peak vibrational velocity, in line with the theoretical
prediction [9,10]. However, a linear trend is also obvious
when the granular temperature data is replotted against the
square of acceleration, Fig. 3(b). This is a straightforward
consequence of the fact that acceleration is a linear function
of peak velocity at a fixed frequency (viz., � = ωvp). The
data shows as well a linear trend with the square of the
amplitude (not shown here), because at a fixed vibrational
parameter, the other two vibrational parameters are a simple
function of peak velocity and that parameter (viz., A =
vp/ω). This discussion indicates that varying the vibrational
peak velocity while fixing the frequency as is commonly
practiced does not allow the dependency of the granular
temperature on any of the other vibrational parameters to be
elucidated.

If we are to determine if the granular temperature is
dependent on vibrational parameters beyond the peak velocity,
for sinusoidal forcing we must systematically vary two of
the vibrational parameters. Based on the widely held view
that the granular temperature scales with the square of peak
velocity [9–20], it is reasonable to suppose that it should be one
of the two parameters. Choice of the second parameter from
among the three available (viz., acceleration, amplitude, and
frequency) is less obvious. However, we initially selected here
the acceleration because (1) its intuitive link to (vibrational)
forcing, (2) our previous study of a submerged vibrated bed
indicates the granular temperature scales with the acceleration
[28], and (3) because its meaning is clearer in other vibrational
modes such as, for example, random vibrational forcing
[29,30], where amplitude and frequency are less well defined.
On this basis, we systematically varied acceleration while
keeping the peak velocity fixed and vice versa (i.e., varied
the peak velocity while keeping the acceleration fixed) so
as to decompose the influence of these two parameters on
the granular temperature. Figure 4(a) shows that the granular
temperature data obtained in this way is linearly dependent
on the square of the peak velocity as expected. However,
Fig. 4(b) shows that the granular temperature for a given
peak vibrational velocity, vp, is not constant at all but, rather,
is also linearly correlated with the vibrational acceleration,
�. Although not previously commented on, as we will show
below, careful consideration of the data from previous studies
also supports this notion that granular temperature depends on
other vibrational parameters, in addition to the square of the
peak velocity.

Given this, we plot the granular temperature as a function
of both peak velocity and acceleration in Fig. 5. Figure 5
shows (to our knowledge) the first ever map of the granular
temperature as a function of the square of peak vibrational
velocity and the acceleration. The data is fitted with a multiple
linear regression model with two explanatory variables of the
following general form (see the Appendix)

θ = b0 + b1v
2
p + b2�. (6)

The overall multiple regression is statistically significant
(F(2,51) = 870.8, p value 	 0.001, see the Appendix for an
explanation of these and other statistical measures used here),
and the two variables accounted for ∼97% of the variance
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FIG. 3. Variation of the granular temperature, θ , for fixed frequency f = 90 Hz with (a) square of peak forcing velocity, v2
p , and (b) square

of dimensionless accelerations, �2. Error bars are standard deviations of the ten correlation measurements and lines are a linear fit to the data.

in the granular temperature data (i.e., the coefficient of deter-
mination R2 = 0.9715, adjusted R2 = 0.9705). A comparison
with the coefficient of determination for the univariate scaling
involving the square of the peak velocity only (Table I) clearly
indicates that the commonly held belief that the granular
temperature varies only with the peak velocity is questionable.
The multiple linear regression model also has a smaller
prediction error sum of squares (PRESS) value (Table I),
which is further proof that addition of the acceleration term
to the scaling model is justified. More importantly, as also
shown in Table I, the greater-than-10 difference in the Bayesian
information criterion (BIC) represents conclusive evidence of
the relative superiority of a bivariate over the univariate scaling
model (see the Appendix for an explanation of PRESS and
BIC).

Further support for the assertion that the bivariate scaling of
(6) is superior to the univariate scaling is provided by the t and
p values for the bivariate scaling coefficients (Table II), which
show that both of the explanatory variables are statistically
significant (see the Appendix for an explanation of the t and

p values). The values of the standardized coefficients for
the square of the peak velocity, β1, and the dimensionless
acceleration, b2, which are also shown in Table II, indicate
that while the square of the peak velocity is the leading scaling
parameter, the acceleration also has a substantial effect on the
granular temperature (see the Appendix for an explanation of
the standardized coefficients).

While the analysis above indicates the bivariate scaling of
(6) is superior to the commonly used univariate scaling, it is
necessary to test if the acceleration is the most appropriate
second scaling parameter. The BIC values in Table I indicate
that the amplitude is unlikely to be the most appropriate
second scaling parameter. The small difference between
the BIC values of the frequency- and acceleration-based
scalings means, on the other hand, that either acceleration
or frequency may be an appropriate second scaling parameter
(see the Appendix for an explanation of differences in the
BIC). Use of acceleration as the second scaling parameter as
done here is, therefore, not unreasonable given the advantages
it brings, as outlined above.

500 1000 1500 2000 2500 3000
1

2

3

4

5

6

7

8

θ
[m

m
2 /s

2 ]

v2
p [mm2/s2

]

(a)

1.5 2.0 2.5 3.0 3.5

2.5

3.0

3.5

4.0

4.5

5.0

θ
[m

m
2 /s

2 ]

Γ

(b)
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and (b) acceleration at fixed peak vibrational velocity vp = 45 mm/s. Error bars are standard deviations of the ten correlation measurements
and lines are a linear fit to the data.
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TABLE I. Model selection criteria for the common univariate
and the various possible bivariate granular temperature (GT) scaling
models involving the peak vibrational velocity.

Model variables R2 Adjusted R2 PRESS BIC VIF

v2
p 0.8135 0.8099 19.70 160.3

v2
p and � 0.9715 0.9704 3.14 62.8 1.00

v2
p and f 0.9725 0.9714 3.09 60.9 1.94

v2
p and A 0.9578 0.9562 4.72 84.0 4.00

B. Reexamination of previously published data

In order to check the observations arising from our DWS
data obtained in the study reported above, we performed
the same detailed regression analysis of previously published
experimental data [12,14,20]. The results of this analysis are
shown in Tables III and IV.

Table III shows that, except for the v2
p−f regression

model of the Zivkovic et al. [20] data, all the multiple
regression models with two variables have larger R2 and
smaller PRESS values as compared to the univariate model.
Furthermore, differences in BIC are ∼6 or more (except for
above-mentioned case), which represents strong evidence in
favor of the bivariate models. This provides further proof that
granular temperature scales with two vibrational parameters
rather than just the square of the peak velocity. Although
for all three previous studies the selection criteria suggests
that amplitude is the “best” choice for the second scaling
parameter, collinearity between the square of the peak velocity
and amplitude is a serious issue for two of them [12,20], as
indicated by the variance inflation factor (VIF) being greater
than 5 (Table III—see the Appendix for an explanation of
the VIF). In the case of the Losert et al. [14] data, the
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FIG. 5. Contour plot of the granular temperature, θ in mm2/s2,
in the vibrated bed as a function of the square of peak vibrational
velocity, v2

p , and the dimensionless acceleration, �. Solid lines are
experimental granular isotherms; dashed lines are a multiple linear
regression model fitting, (6).

small sample size means conclusions drawn from this study
cannot be considered to be particularly reliable (the common
recommendation is seven to ten experimental or observational
point for each explanatory variable in the model [31]). In
contrast, the bivariate model with amplitude is considerably
worse for the study reported here, as shown in Table III.
Finally, bivariate models with acceleration and frequency are
essentially indistinguishable from each other as the differences
in the BIC between these models for all studies are very small
(∼2). These less-than-conclusive and, in places, contradictory
findings make it difficult to be definitive about which of the
frequency or acceleration should be used with the square of
the peak vibrational velocity to best correlate the granular
temperature in vibrated granular systems. Future experimental
and theoretical considerations are needed to elucidate this
further.

Although the above analysis does not provide unquestion-
able support for acceleration as the “best” choice for the
second scaling parameter, it certainly does not provide a basis
for rejection of this hypothesis. Therefore, for comparison,
we did a regression analysis of previously published data
using the dimensionless acceleration as the second scaling
parameter. Table IV shows t-test results for both the square
of the peak velocity and acceleration terms in a multiple
linear regression model for the data from this and the three
previous experimental studies. As expected, the large t values
and very small p values indicate that the square of peak velocity
is a statistically more important parameter in the model.
Nonetheless, the acceleration terms are statistically significant
at the commonly applied threshold for model coefficients
(i.e., 95% confidence level) except for the most dilute case
(c = 0.28) of the Losert et al. [14] data. Furthermore,
the acceleration term is even highly significant (i.e., 99.9%
confidence) for the Tai et al. [12] data. The fact that the
standardized coefficient for the square of the peak velocity is
several times greater than that of the acceleration coefficients
(Table IV) indicates that the former is the leading scaling
variable.

The nonstandardized scaling coefficients shown in Table IV
for this and our previous study [20] are of the same magnitude.
However, the frequency scaling coefficients are of opposite
sign. This contradiction may arise from the main difference
between the two systems, the excitation mechanism: while in
this study we vibrated the whole box as in the other two studies
[12,14] in our previous study a vibrating piston supplied energy
to the granular system [20]. The scaling coefficients for the
other two studies [12,14], are orders of magnitude greater than
the ones presented here and different between each other. Once
again, this difference arises from the different experimental
apparatus and conditions—one is for a highly fluidized shallow
dilute 3D bed [14] and the other is a similarly fluidized 2D
system [12].

IV. CONCLUSION

Diffusing wave spectroscopy, which is a highly sensitive
yet versatile method relative to other previously exploited
methods, has been used to measure the granular temperature
of 0.95 mm glass particles in a dense three-dimensional
vibrated granular bed under sinusoidal driving. Although a
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TABLE II. Summary of coefficient for bivariate linear regression fitting, (6).

Variable Unstandardized coefficient, b Standard error Standardized coefficient, β t for H0 coefficient = 0 p value

Constant −2.081 0.182
v2

p 0.0016 0.00004 0.902 38.19 3.45 × 10−39

� 1.032 0.0613 0.398 16.83 1.81 × 10−22

statistical analysis of this data confirmed that the square of the
peak vibrational velocity is the leading parameter in scaling
of granular temperature, in line with theory and previous
experiments, a significant correlation was observed with the
other vibrational parameters—the frequency, acceleration, and
amplitude. A further statistical analysis of the data was
undertaken to determine which of these three is the most
appropriate second scaling parameter (only two are required
to specify the remainder). Although this analysis indicated
that the amplitude was not the most appropriate, it could not
differentiate between the remaining two. A similar statistical
analysis of previously published data was also undertaken here
with similar conclusions. Future work is, therefore, required
to determine which is the most appropriate second scaling
parameter—acceleration or frequency. Consideration should
also be given to how the conclusions drawn here are affected

by other details of the vibrational system, such as granular bed
height, coefficient of restitution, particle size, driving force
mode (e.g., random, square wave), and boundary conditions.

APPENDIX: MULTIPLE LINEAR REGRESSION ANALYSIS

Simple linear regression considers a single explanatory or
regressor variable x and a dependent or response variable y
[32,33]. It is assumed that each observation, y, can be described
by the univariate model

y = b0 + b1x + ε, (A1)

where the intercept b0 and slope b1 are unknown regression
coefficients, and ε is a random error with zero mean. On the
other hand, multiple linear regression admits the possibility of
more than one explanatory variable. The general form of the

TABLE III. Model selection criteria for common univariate and various bivariate GT scaling models. Variance inflation factor (VIF) is given
for a multiple regression models with two variables. The experimental sample size, n, is specified for each study. Note: For Losert et al. [14]
the reported c is coverage, which is principally connected to the solid fraction of the system.

DATA Model predictors R2 Adjusted R2 PRESS BIC VIF

This study n = 54 v2
p 0.8135 0.8099 19.70 160.3

v2
p and � 0.9715 0.9704 3.14 62.8 1.00
v2

p and f 0.9725 0.9714 3.09 60.9 1.94

v2
p and A 0.9578 0.9562 4.72 84.0 4.00

Losert et al. [14] (Fig. 6) n = 9 (c = 0.70) v2
p 0.9895 0.9880 4.42 × 107 151.6

v2
p and � 0.9970 0.9960 2.18 × 107 142.5 1.12
v2

p and f 0.9923 0.9897 3.67 × 107 151.0 1.86

v2
p and A 0.9979 0.9973 1.27 × 107 139.1 3.29

Losert et al. [14] (Fig. 6) n = 9 (c = 0.42) v2
p 0.9842 0.9820 1.70 × 108 161.3

v2
p and � 0.9923 0.9898 1.22 × 108 157.0 1.12
v2

p and f 0.9906 0.9874 1.25 × 108 158.9 1.86

v2
p and A 0.9989 0.9986 1.67 × 107 139.3 3.29

Losert et al. [14] (Fig. 6) n = 9 (c = 0.28) v2
p 0.9730 0.9691 3.98 × 108 168.0

v2
p and � 0.9831 0.9775 3.34 × 108 166.0 1.12

v2
p and f 0.9840 0.9787 3.12 × 108 165.5 1.86

v2
p and A 0.9957 0.9943 8.76 × 107 153.6 3.29

Tai and Hsiau [12] [Fig. 8(c)] n = 19 v2
p 0.9051 0.8995 1.38 × 104 180.5

v2
p and � 0.9550 0.9493 8.02 × 103 169.2 2.07

v2
p and f 0.9515 0.9454 8.48 × 103 170.6 1.34

v2
p and A 0.9699 0.9661 5.21 × 103 161.6 7.34

Zivkovic et al. [20] (Fig. 9) n = 17 v2
p 0.9628 0.9603 176.76 85.3

v2
p and � 0.9765 0.9731 137.75 80.3 1.21

v2
p and f 0.9673 0.9626 188.16 85.9 1.32

v2
p and A 0.9889 0.9874 59.15 67.5 9.50
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TABLE IV. Summary of coefficient for bivariate linear regression fitting, Eq. (6). The experimental sample size, n, is specified for each
study. Note: For Losert et al. [14] the reported c is coverage, which is principally connected to the solid fraction of the system.

Unstandardized Standardized t for H0

Data Predictor coefficient, b Standard error coefficient, β coefficient = 0 p value

This study n = 54 Constant −2.081 0.182
v2

p 0.0016 0.00004 0.902 38.19 3.45 × 10−39

� 1.032 0.0613 0.398 16.83 1.81 × 10−22

Losert et al. [14] (Fig. 6) Constant −2077 716.0
n = 9 (c = 0.70)

v2
p 1.043 0.026 0.964 40.69 1.47 × 10−8

� 805.1 207.9 0.092 3.87 8.23 × 10−3

Losert et al. [14] (Fig. 6) Constant −3754 1607
n = 9 (c = 0.42)

v2
p 1.458 0.058 0.960 25.32 2.50 × 10−7

� 1177 466.6 0.096 2.52 4.50 × 10−2

Losert et al. [14] (Fig. 6) Constant −4659 2647
n = 9 (c = 0.28)

v2
p 1.600 0.095 0.951 16.88 2.76 × 10−6

� 1457 768.5 0.107 1.90 1.07 × 10−1

Tai and Hsiau [12] Constant −23.23 13.46
[Fig. 8(c)] n = 19

v2
p 0.055 0.006 0.720 9.42 6.22 × 10−8

� 18.64 4.429 0.322 4.21 6.65 × 10−4

Zivkovic et al. [20] Constant 2.815 1.817
(Fig. 9) n = 17

v2
p 0.0035 0.00016 1.035 22.96 1.64 × 10−12

� −1.818 0.6355 −0.129 −2.86 1.26 × 10−2

multiple regression model with k regressor variables is

y = b0 + b1x1 + b2x2 + · · · + bkxk + ε, (A2)

where b0,b1,b2, . . . , bk are the regression coefficients. This
model describes a hyperplane in the k-dimensional space of
the regressor variables x0,x1,x2, . . . ,xk .

The test for significance of regression, which can be
calculated from the analysis of variance for the regression,
has an F distribution with k and n-(k−1) degrees of freedom,
where n is the sample size. The null hypothesis that all
the coefficients are zero can be rejected if an F value is
large, i.e., the corresponding p value is very close to zero
[32,33]. The null hypothesis for testing the significance of
any individual regression coefficient has a t distribution with
n-(k−1) degrees of freedom [32,33]. Basically, the larger the
value of t and smaller the corresponding p value, the greater
is the contribution of that variable to the model. A commonly
applied threshold for rejection of a model coefficient is at
the probability level of p = 0.05 (i.e., 95% confidence level)
[32,33].

The coefficient of determination R2 is a measurement of
regression fit, and it represents the proportion of total variation
in a dependent variable explained by the regression model
[32,33]. Because R2 can only increase, and never decline,
when explanatory variables are added, a “penalized” value of
R2 by a correction for degrees of freedom, the adjusted R2 that
does not necessarily increase with model complexity, is used
for model comparison.

Another simple criterion for model comparison is PRESS.
A small PRESS value is associated with a good model in
the sense that it yields small prediction errors [32]. A more
sophisticated measure that penalizes model complexity is
the BIC [33]. Models with smaller BIC values are better.
Moreover, the difference between the BIC values of different
models can be interpreted as follows: according to Raftery
[34], a difference in BIC of less than 2 provides weak evidence,
a difference between 2 and 6 positive evidence, between
6 and 10 strong evidence, and greater than 10 very strong
evidence for the relative superiority of one model over the
other.

Different regressor variables in a regression analysis gener-
ally have different metrics. The standardized coefficients β’s
place all variables on the same metrics (standard deviation
units), enabling a limited comparison of the relative impact
of incommensurable variables in a regression equation for
the same sample [33]. However, β’s cannot be used to
compare effects across different studies and samples, where
nonstandardized coefficient b’s have to be used.

When undertaking a multiple linear regression analysis,
care must be exercised to avoid issues such as collinearity and
variance inflation. Multicollinearity, or dependence between
explanatory variables, can result in misleading regression
results [32,33]. The VIF is the basic diagnostic for multi-
collinearity, with VIF larger values indicating its presence
[32,33]. The common rule of thumb is 10 [32,33], but other
authors consider this value too liberal and suggest that VIF
should not exceed 4 or 5 [32].
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