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Glassiness, rigidity, and jamming of frictionless soft core disks
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The jamming of bidisperse soft core disks is considered, using a variety of different protocols to produce the
jammed state. In agreement with other works, we find that cooling and compression can lead to a broad range of
jamming packing fractions φJ , depending on cooling rate and initial configuration; the larger the degree of big
particle clustering in the initial configuration, the larger will be the value of φJ . In contrast, we find that shearing
disrupts particle clustering, leading to a much narrower range of φJ as the shear strain rate varies. In the limit of
vanishingly small shear strain rate, we find a unique nontrivial value for the jamming density that is independent
of the initial system configuration. We conclude that shear driven jamming is a unique and well-defined critical
point in the space of shear driven steady states. We clarify the relation between glassy behavior, rigidity, and
jamming in such systems and relate our results to recent experiments.
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I. INTRODUCTION

An athermal system of hard or soft core interacting
particles, for which thermal fluctuations are negligible (i.e.,
T = 0), is found to undergo a jamming transition from a
liquid-like state to a rigid but disordered solid as the packing
fraction φ increases above a critical value φJ [1]. Other
physical systems similarly seem to show a transition from
a liquid to a rigid but disordered state, as a function of some
physical control parameter: Foams change from flowing liquid
to elastic solid once the applied shear stress σ falls below a
critical shear yield stress σY; supercooled liquids appear to
freeze into a frozen glass as the temperature T is lowered.

These observations led Liu, Nagel, and co-workers [2,3] to
propose that these phenomena might be unified in terms of
a three-dimensional jamming phase diagram with the axes of
packing fraction φ, applied shear stress σ , and temperature
T . A surface in this three-dimensional phase space separates
jammed (i.e., rigid but disordered) from unjammed (i.e.,
liquid-like) states. We sketch this jamming phase diagram in
Fig. 1, following Ref. [2]. As originally proposed [2,3], this
jamming surface represented points in phase space where the
relaxation time τ of the system reached some experimentally
defined large time scale. The intersection of this surface
with the equilibrium (φ,T ) plane at σ = 0 then describes
the experimentally observed glass transition T

exp
g (φ), where

the viscosity of the liquid becomes immeasurably large upon
cooling.

For discussing possible critical behavior, it is of interest
theoretically to consider the critical jamming surface that
would correspond to a diverging time scale τ → ∞. In this
case the line Tg(φ) in Fig. 1 would be a true equilibrium
glass transition. By saying equilibrium glass transition, we
mean that Tg(φ) would locate a true singularity in the free
energy, independent of the particular dynamics of the system.
Subsequently, when we refer to equilibrium glass transition,
this will be what we mean. Such a critical jamming surface
would intersect the φ axis at T = σ = 0 at a well-defined
point φ0, such that Tg(φ) → 0 as φ → φ0. O’Hern et al. [2]
conjectured this point to be identical to the T = 0 jamming
transition of athermal particles, i.e., φ0 = φJ , and denoted

it “point J.” Moreover, they conjectured that point J may
act like a critical point and “that it may control the region
around it and thereby govern the nature of the entire jamming
surface in the phase diagram” [2]. Were this conjecture correct,
then properties of the equilibrium glass transition would be
intimately related to properties of athermal jamming. In the
following, we will denote “point J” as the athermal jamming
point, within some well-defined physical protocol, where the
packing fraction equals φJ and T = σ = 0.

It must be noted that in models of simple liquids, such as
those considered in this work, the existence of an equilibrium
glass transition at a finite temperature, Tg(φ) > 0, remains a
much debated question. Works have suggested that the critical
jamming surface, where τ → ∞, may collapse entirely into
the T → 0 plane. See Ref. [4] for a recent review. However,
even in this case, one might expect at σ = 0 a line of zero
temperature glass transitions that would terminate at some
specific lowest packing fraction φ0, with viscosity diverging
as T → 0 for all φ � φ0. If such a φ0 was identical to the
φJ of point J, one would again have a connection between
equilibrium glassy behavior (albeit a Tg → 0 glass transition)
and athermal jamming.

Although the above conjecture is appealing, several recent
works have suggested that the actual situation may be
more complicated. Some simulations have suggested that an
equilibrium glass transition may be controlled by a different
critical point, sometimes referred to as “point G,” that is distinct
from the athermal jamming point J. Equilibrium simulations of
hard spheres (where temperature T plays no role and density φ

is the only parameter) in three dimensions (3D) by Brambilla
et al. [5] claim a glass transition at a φ0 that is distinctly lower
than the typical values of φJ obtained from compression; the
reduced pressure p/T remains finite at φ0, in contrast to the
athermal jamming of hard spheres where p/T is expected
to diverge. Equilibrium simulations of soft spheres in 3D by
Berthier and Witten [6,7] show a scaling in the (φ,T ) plane that
similarly suggests a T → 0 glass transition at a φ0 lower than
the athermal jamming φJ . Similar results have been suggested
by Xu et al. [8]. Other works by Donev et al. [9] argue
that in a properly equilibrated hard sphere system there is no
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FIG. 1. Proposed jamming phase diagram, adapted from Ref. [2].
Note that the axis along which packing fraction varies is 1/φ rather
than φ.

glass transition, unless some constraint is imposed to prevent
crystallization.

At the same time, recent works have illustrated that the
precise value φJ of the athermal point J is not unique,
even within a given specified model, but can depend on
the particular protocol used to prepare the jammed state.
Donev et al. [9] show, for both frictionless monodisperse
spheres in 3D and bidisperse disks in two dimensions (2D),
that for compression driven jamming, φJ depends on the
rate of compression. Chaudhuri et al. [10] show that when
compressing configurations equilibrated at an initial φinit,
bidisperse frictionless spheres in 3D jam at a φJ that increases
with φinit; hence the value of φJ can depend not only on the
compression rate, but on the particular initial configuration
from which one starts the compression. Recent theoretical
works [11,12] on mean-field hard sphere models have found
similar results: a continuous range of athermal jamming
densities at infinite p/T , with a φJ that varies according to
compression or cooling rate, as well as a distinct equilibrium
glass transition at a finite p/T .

In this work we consider a variety of jamming protocols for
a 2D system of frictionless bidisperse soft core disks, focusing
on protocols which do not involve compression. We also carry
out equilibrium Monte Carlo (MC) simulations of hard disks
to look for the onset of glassy behavior prior to jamming, i.e.,
at a φ0 < φJ , as was previously observed in 3D. Our main
conclusion is that, unlike jamming driven by compression or
cooling, athermal shear driven jamming results, in the limit
of a vanishingly small shear strain rate γ̇ → 0, in a unique,
well-defined, nontrivial value of φJ that is independent of
the system’s starting configuration. This result follows from
our observation that shearing breaks up the clustering of big
particles that can lead to phase separation and crystallization
under slow compression or cooling. The remainder of this
paper is organized as follows. In Sec. II we describe our
model of bidisperse frictionless soft core disks, give our precise
procedure for determining the jamming packing fraction φJ ,
and describe the different jamming protocols we will consider.
In Sec. III we present our numerical results. In Sec. IV we
relate our results to some recent experiments and summarize
our conclusions.

II. MODEL

Our system is a bidisperse mixture of frictionless disks
with diameter ratio dB/dS = 1.4, as has been used in earlier
works [2,13]. The fraction of bigger particles is xB = 1/2.
The disks interact via a pairwise soft core repulsive contact
interaction that is harmonic in the particle overlap,

V (rij ) =
{

ε(1 − rij /dij )2/2 for rij < dij ,

0 for rij � dij ,
(1)

where rij is the distance between the centers of two particles
i and j , and dij is the sum of their radii. Length is measured
in units such that the smaller diameter is unity, and energy is
measured in units such that ε = 1. A system of N disks in an
area A thus has a packing fraction (density)

φ = Nπ (0.52 + 0.72)/(2A) . (2)

We use a simulation cell of area A = LxLy , with equal length
and width, Lx = Ly .

Starting from a set of physically motivated initial states
at fixed φ, we use a nonlinear conjugate gradient method to
quench each state to its local energy minimum (the inherent
structures). For soft core particles, mechanically stable states
exist at values of φ above the jamming φJ . Such states are
characterized by a finite interaction energy, pressure, and shear
yield stress; all these vanish as φ → φJ from above [2]. Energy
minimized states with an energy per particle below a certain
fixed very small threshold value, E/N < ecut, are therefore
regarded as unjammed; otherwise the state is considered to
be jammed. This criterion for jamming [2] has been shown
[14] to be essentially the same as “strictly jammed” in the
classification scheme of Torquato and Stillinger [15]. In this
manner we count the fraction f (φ) of these energy minimized
states which are jammed.

As φ increases, f (φ) varies rapidly from zero to unity,
with f (φ) approaching a sharp step function as the number of
particles N → ∞. The location of the step then determines the
jamming packing fraction φJ for that initial set of states. We
consider two classes of initial states: (i) Equilibration at a finite
T , which may be thought of as the equilibrium temperature of a
glassy system, or as an effective temperature of kinetic motion
in a granular system with uniform mechanical agitation.
Quenching corresponds to suddenly turning off the agitation
and allowing the system to relax. In the limit T = ∞ one
chooses random initial positions. This is the ensemble studied
by O’Hern et al. [2] and we will denote it as “RAND.”
(ii) Shearing at a constant uniform shear strain rate γ̇ .
Quenching corresponds to suddenly turning off the shear and
allowing the system to relax to a mechanically stable or to an
unjammed state. The limit γ̇ → 0 gives quasistatic shearing
(“QS”), as studied previously by Heussinger and co-workers
[16,17].

The specific conjugate gradient algorithm we use to energy
minimize is the Polak-Ribiere method [18]. We stop the energy
minimization when one of the following conditions is met:
(i) the relative decrease in the energy �E/E after 50 iterations
is smaller than 10−10, or (ii) the energy per particle falls below
a certain small threshold value, E/N < ecut. In the second
case, we consider the state to be unjammed. We find that the
threshold value ecut = 10−16 gives a clear separation between
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the jammed and unjammed states up to the largest system size
we have studied (see Appendix for further details).

III. RESULTS

A. Random vs quasistatic shearing ensembles

In Fig. 2 we plot our results for the RAND and QS
ensembles, showing how the jammed fraction f (φ) sharpens
to a step function as the number of particles N increases. For
RAND we average over at least 10 000 initial configurations
for each value of φ. For QS we average over 10–20 independent
runs, each sheared a total strain γ ∼ 4–8 for our biggest size,
but γ = 200 for our smallest size. We use Lees-Edwards
boundary conditions [19] to model uniform shear strain, energy
minimizing after each small strain step �γ . For N � 4096 we
use �γ = 10−5, while for N < 4096 we use �γ = 10−4. We
have explicitly verified that for all but perhaps the biggest
size N = 8192, our value of �γ is small enough not to
influence our results (see Appendix for details). We clearly see
that the two ensembles approach different jamming densities,
φRAND

J � 0.842 while φ
QS
J � 0.843 [20].

B. Equilibration at finite temperature

Next we consider initial states equilibrated at a fixed
temperature T . In Fig. 3(a) we plot the jammed fraction f (φ)
resulting from the energy minimized states arising from these
thermally equilibrated initial states, comparing RAND with
several finite values of T , for N = 256 particles. For the
three lowest T we also show results for N = 512 to illustrate
that increasing N continues to lead to a sharpening of the
transition as seen in Fig. 2. To equilibrate at T we do ordinary
MC simulations, at each step displacing a randomly chosen
particle by a random amount and accepting or rejecting the

0.0

0.2

0.4

0.6

0.8

1.0

0.830 0.835 0.840 0.845 0.850

64
128
256
512
1024
2048
4096
8192 ja

m
m

ed
 f

ra
ct

io
n 

 f QS
N

J  0.843

(b)

0.0

0.2

0.4

0.6

0.8

1.0

0.830 0.835 0.840 0.845 0.850

64
128
256
512
1024
2048
4096
81292
16384

 ja
m

m
ed

 f
ra

ct
io

n 
 f

RAND
N

J  0.842

(a)

FIG. 2. (Color online) Jammed fraction f vs packing fraction
φ for systems of different numbers of particles N . (a) and (b) are
for the RAND and QS ensembles, respectively. Vertical dashed lines
indicate the limiting N → ∞ value of the jamming density φJ in each
case.
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FIG. 3. (Color online) (a) Jammed fraction f vs packing fraction
φ comparing RAND with ensembles quenched after thermal equi-
libration at a fixed temperature T . Open symbols (solid lines) are
for N = 256 particles, while closed symbols (dashed lines) are for
N = 512 particles. (b) Clustering strength parameter n6 vs φ for the
cases shown in (a) as well as for QS. Representative error bars are
shown at select data points at the lowest T ’s.

move according to the Metropolis algorithm. N attempted
particle moves is 1 MC pass. At our lowest T , we use 10
independent runs, each with roughly 108 MC passes. We judge
that we have equilibrated when particles have, on average,
diffused a distance equal to a few particle diameters. We see
that T = 5 × 10−3 is essentially equal to the T = ∞ ensemble
RAND, but that as T decreases, φJ (T ) increases. Our lowest
T ∗ = 5 × 10−4 gives our largest φJ (T ∗) � 0.850 [21]. For
such high densities, our runs at T ∗ are just at the border of
equilibrating; we would need much longer runs to try and
equilibrate at even lower T . Similar results have recently been
found for continuous cooling with different fixed rates [22].
These results are in good agreement with recent predictions
from a mean-field-like hard-sphere model [11].

Roughly the same range of φJ was found by Donev et al.
[9] from slow compression of bidisperse hard disks (they use
xB = 1/3). Donev et al. argue that an increased φJ results
from an increased order due to the clustering of big particles.
To check for such clustering we have computed the fraction n6

of big particles which have 6 nearest neighbors (as determined
by Delaunay triangularization) that are also big particles. In
Fig. 3(b) we plot n6 vs φ for the cases of Fig. 3(a), as well
as QS. We see little difference in n6 comparing RAND, QS,
and the highest T ; however n6 systematically increases as T

decreases. The increasing fluctuations in n6 as φ varies at low
T reflect the increasing difficulty to equilibrate. Donev et al.
have argued that given sufficiently long equilibration, even
higher values of φJ might be achieved, up to the maximum
φmax � 0.91 of fully phase separated lattices of big and small
particles. We expect a similar situation in our system, if we
could equilibrate at even lower T .
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C. Shear driven steady states

Next we consider shearing the system. For our simulations
at a finite shear strain rate γ̇ we use Durian’s [23] foam
dynamics: overdamped motion with viscous damping to the
local average shear flow velocity. For shear flow in the
x̂ direction we have

dri

dt
= −C

∑
j

dV (rij )

dri

+ yi γ̇ x̂ , (3)

where the last term yi γ̇ x̂ is the average shear flow velocity.
Lees-Edwards boundary conditions are used, and we choose
units of time such that C = 1. We run the simulations up
to a certain total strain γ = γ̇ t (γ = 33 for our smallest γ̇ ),
and then sampling configurations uniformly from the resulting
shear flow, we energy minimize them and count the resulting
fraction that are jammed. In Fig. 4 we show results for the
jammed fraction f (φ) for N = 256 particles.

We stress that the energy minimization step, representing a
sudden switch off of the applied strain rate γ̇ , is crucial to this
calculation. Were we to sample the steady state distribution
at fixed γ̇ directly, all states would have a finite energy, yet
all states are flowing; our criterion for computing the jammed
fraction is only applicable to mechanically stable states at rest.
Thus the φJ (γ̇ ) determined by the present procedure should
not be viewed as representing a jamming transition for driven
steady states at finite γ̇ (there is none, since all such states
by definition are flowing); rather it represents the jamming
point resulting from a particular dynamic protocol for creating
statically jammed states, i.e., relaxation to rest from initial
states driven at a finite shear rate γ̇ .

Our fastest shear rate γ̇ = 10−3 gives results equal to the
random initial positions of RAND. From this we can infer
that in a rapidly sheared system, the soft core interactions are
playing little role in ordering the particles, and the system is
thus passing through effectively random configurations. Our
slowest shear rate γ̇ = 10−8 is clearly converging to the QS
limit. Thus quasistatic shearing, in which the system is always
instantaneously relaxing into its nearest local energy minimum
as it is slowly sheared, is the appropriate γ̇ → 0 limit of the
overdamped dynamics of Eq. (3). From our results in Figs. 2(b)
and 4 we thus conclude that there is indeed a well-defined
jamming density φ

QS
J in the γ̇ → 0, N → ∞ limit.
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FIG. 4. (Color online) Jammed fraction f vs packing fraction
φ for a system of N = 256 particles, comparing RAND and QS
ensembles with ensembles quenched from a fixed finite shear strain
rate γ̇ .
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FIG. 5. (a) Relaxation time τ and (b) clustering strength parame-
ter n6 vs φ for N = 1024 diffusing hard core particles. Representative
error bars are shown.

D. Hard disk equilibrium Monte Carlo

Next we consider the dynamic behavior at low densities
φ < φRAND

J . Following Brambilla et al. [5], we simulate the
diffusion of N = 1024 hard core disks using local MC moves
in which a randomly selected particle is displaced a random
amount within a box of length 0.1dS about its center; a move is
accepted only if the nonoverlap hard disk constraint is obeyed.
N such attempted moves corresponds to one MC pass, which
we equate to one unit of time. Measuring the self-part of the
intermediate scattering function [5],

Fs(q,t) ≡ 1

N

〈 ∑
i

eiq·[ri (t)−ri (0)]

〉
, (4)

with q = (2π/1.2dS)x̂, we define the relaxation time τ by
Fs(q,τ ) = 1/e. In Fig. 5(a) we show results for τ vs φ. At
low φ � 0.76 equilibration is relatively straightforward. At
larger φ, we use the following procedure to try to stay on
the metastable glassy part of the equation of state: Starting
from the ending configuration of the previous value of φ,
we compress the system an amount �φ = 0.005, and then
simulate for a time of roughly 100τ before increasing φ again.
At our lowest φ this corresponds to 3 × 105 MC passes; for
our highest φ this is 5 × 108 MC passes. We leave aside the
question whether τ (φ) is truly diverging at an ideal glass
transition φ0, as suggested by Berthier and Witten [6,7], or
whether the growth in τ is a kinetic effect of falling out of
equilibrium, as argued by Donev et al. [9]. Here we just note
that τ clearly grows many orders of magnitude by the time one
reaches φ0 ∼ 0.80 < φRAND

J � 0.842, thus leading to glassy
behavior before the onset of our lowest jamming density. In
Fig. 5(b) we show the corresponding cluster strength n6, which
we see increases rapidly with increasing φ.

In their work, Chaudhuri et al. [10] observed that when they
equilibrated their system first as hard spheres at some initial
φinit, and then slowly compressed them to reach jamming, the
φJ that resulted increased with increasing φinit. From Fig. 5(b)
we see that for equilibrated systems, the clustering strength n6

increases rapidly with increasing φ. The results of Chaudhuri
et al. are thus consistent [24] with the assertion by Donev
et al. [9] that initial configurations with greater clustering result
in jamming at larger φJ , when compressed.

The data of Fig. 5 do not represent true equilibrium at the
largest values of φ shown. We have found that we are able to
more properly equilibrate the system if we include nonlocal
swaps between big and small particles in our MC moves. Such
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moves are, of course, unphysical when modeling a continuous
dynamics of the particles, but they are perfectly acceptable for
sampling true equilibrium. With such moves we find evidence
for a transition near φ ∼ 0.78 to a phase separated coexistence
between a liquid mixture of big and small particles and a solid
of big particles, just as was predicted by Donev et al. [9].
In such true equilibrium states, n6 becomes even larger than
found in Fig. 5(b).

E. Compression vs shear driven jamming

To illustrate our above results on jamming, we next
consider the following numerical “experiment.” Since the
largest values of n6 in Fig. 5(b) are slightly larger than found in
Fig. 3(b) from cooling soft disks, we expect that compression
of configurations equilibrated at densities φ ∼ 0.80 should
result in relatively high jamming densities. We therefore take
one configuration at φ = 0.80, sampled from the states that
produced the data of Fig. 5; we denote this as configuration
“A.” We take a second configuration “B,” obtained also at
φ = 0.80, but after doing MC with particle swaps so as to
achieve a better equilibration of the system and a higher degree
of particle clustering. Configuration A has n6 = 0.037 while
B has n6 = 0.168. Both have N = 1024 particles. We show
these initial configurations A and B in Fig. 6.

We then uniformly compress both configurations A and
B in steps of �φ = 10−4, relaxing the system to its local
energy minimum after each compression step. In Fig. 7(a)
we plot the resulting energy per particle E/N vs φ. We
see that A jams at the relatively high value of φA

J � 0.8534,
while B jams at the even higher φB

J � 0.8559. We then return
to these configurations as they were at φ = 0.85. Because
0.85 is below the jamming density of either system, these
are unjammed, stress-free states. We now quasistatically shear
these configurations using a strain step �γ = 10−4. Our results
are shown in Fig. 7(b). We see that after relatively small strains
of γ = 0.05 for A and γ = 0.077 for B, both systems jam. This
is as expected since φ = 0.85 > φ

QS
J . In Fig. 7(c) we plot the

instantaneous value of n6 for these two configurations as a
function of total shear strain γ at φ = 0.85, showing results
out to a much larger total strain γ = 35 than in Fig. 7(b).
We see that after a certain amount of shearing, n6 for both A
and B drops down to the values typical of the QS ensemble

FIG. 6. Initial unjammed configurations A and B at φ = 0.80.
Configuration B is seen to have a greater degree of big (black) particle
clustering than A. N = 1024.
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FIG. 7. (Color online) (a) Energy E/N vs φ for the two
configurations A and B of Fig. 6 undergoing uniform compression.
(b) E/N vs strain γ for the same configurations undergoing uniform
shear starting from stress-free states at φ = 0.85. (c) Clustering
strength n6 vs γ as the two configurations are sheared at φ = 0.85.
N = 1024.

[see Fig. 3(b)]. We thus conclude that shearing breaks up the
particle clustering that can lead to high jamming densities
under slow compression, and that this effect is responsible
for the well-defined jamming density φ

QS
J in the limit of

vanishingly small shear rate, γ̇ → 0.
To further illustrate this point, in Fig. 8 we plot the strain

averaged cluster strength,

〈n6〉γ ≡ 1

γ

∫ γ

0
dγ ′n6(γ ′) , (5)

the strain averaged energy per particle 〈E/N〉γ , and the
strain averaged jammed fraction 〈f 〉γ vs total shear strain
γ , as we quasistatically shear three different initial states: the
moderately clustered state A and the highly clustered state B,
as in Figs. 6 and 7, and a state C that starts with particles in
random positions.

In Figs. 8(a)–8(c), we show results at the density φ =
0.85 > φ

QS
J [the same density as in Fig. 7(c)]. In Figs. 8(d)–8(f)

we show results at the lower density φ = 0.84 < φ
QS
J . In both

cases we see that as γ increases, the strain averaged quantities
for the different initial configurations approach a common
steady value. For the moderately clustered initial state A and
the random initial state C, this happens after a relatively
short strain; for the highly clustered initial state B, it takes
considerably longer to lose memory of the initial state. Note,
for φ = 0.84, f ≈ 0.05 and so the system is rarely jammed;
as a finite energy comes only from jammed configurations,
the rarity of jammed configurations at the low φ = 0.84 is the
reason for the larger fluctuations observed in the curves for
〈E/N〉γ shown in Fig. 8(e).

These observations illustrate two important points:
(i) Quasistatic shearing over long total strains produces a
well-defined ensemble of states that is independent of the
initial configuration, and (ii) the process of shearing, no
matter how slow, destroys the clustering that can produce
large φJ ’s under compression. It is for this reason that φ

QS
J

represents a true, well-defined, jamming transition in the limit

031307-5
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FIG. 8. (Color online) (a) Strain averaged cluster strength 〈n6〉γ , (b) energy per particle 〈E/N〉γ , and (c) jammed fraction 〈f 〉γ , vs total
strain γ at φ = 0.85 > φ

QS
J ; plots (d), (e), and (f) are the same quantities at the lower density φ = 0.84 < φ

QS
J . The three curves correspond

to simulations starting from three different initial configurations: A is the moderately clustered configuration and B is the highly clustered
configuration of Figs. 6 and 7, while C is a configuration with random initial particle positions. The system has N = 1024 particles. Note,
symbols are displayed on every 2000th data point for φ = 0.85 and every 1000th data point for φ = 0.84, to help with curve identification.

of vanishingly small shear strain rate γ̇ → 0, and does not
suffer from the questions of equilibration and protocol that
jamming from compression or cooling does.

IV. DISCUSSION AND CONCLUSIONS

We can relate our results to two recent experiments.
Lechenault et al. [25], in experiments on vibrated bidisperse
brass disks, interpret their results in terms of three relevant
densities, φg < φJ < φa (see their Fig. 1). φg they call the
glass/jamming transition where the structural relaxation time
rapidly grows large on experimental time scales; we can
identify this with the behavior in our Fig. 5(a). At φa they
say that the system reaches the fully arrested state; we can
identify this as the relatively large jamming density one
can obtain from slow compression. For φg < φ < φa , they
say “strong vibration can still induce micro-rearrangements
through collective contact slips that lead to a partial exploration
of the portion of phase space, restricted to a particular frozen
structure” and they find a diverging time and length scale
at a φJ � 0.842 within this region; they refer to this φJ

as the rigidity/jamming transition. We believe this is the
region where small shear displacements remain possible [as
illustrated in Fig. 7(b) at low γ < 0.05] and that their φJ

corresponds to the φ
QS
J of quasistatic shearing. In another

work by Zhang et al. [26], a system of disks was prepared
in a stress-free configuration at a density φ = 0.758, but upon
shearing at constant φ, the system jammed relatively quickly.
The comparatively low value of φ in these experiments, as
well as the low average contact number Z ∼ 3 they find at
jamming, suggests, as the authors say, that friction is playing
an important role in these experiments. Here we point out,
however, that exactly the same behavior may be observed in
frictionless disks, as illustrated by our Fig. 7.

To conclude, we have considered various approaches to
the jamming of 2D disks. Consistent with earlier works, our
results in Figs. 3(a) and 7(a) show that a relatively wide
range of jamming densities φJ are possible when compressing
mechanically stable configurations or when cooling thermally
equilibrated configurations. We can view compression and
cooling as quasiequilibrium processes, since they involve
changes in the equilibrium variables of φ and T . We see
that, rather than jamming being defined at a unique density,
the value of φJ from such processes is affected by details
of the specific protocol, such as compression or cooling rate,
the relative degree of order (particle clustering) in the initial
configurations one starts from, and presumably other details
of the compression or cooling algorithm. For infinitesimally
slow compression or cooling, it remains unclear if there is
a well-defined limiting value of φJ that is lower than the
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φmax � 0.91 of fully phase separated close packed lattices
of big and small particles. These observations suggest that
there is no disordered athermal jamming point that is the
well-defined T → 0 limit of an equilibrium glass transition
Tg(φ) in the (φ,T ) plane. Such an equilibrium glass transition,
if it exists, must by definition be protocol independent,
whereas athermal jamming via compression or cooling appears
not to be.

However, if one follows Liu and Nagel [3], and moves
off equilibrium into the phase space of shear driven nonequi-
librium steady states, then we find that there is a unique
well-defined athermal jamming transition in the phase space
(φ,T ,γ̇ ), located at (φQS

J ,T = 0,γ̇ → 0) (note, it is more
convenient here to think of the nonequilibrium axis as being
the shear strain rate γ̇ rather than the shear stress σ ). We stress
that the (φ,T ) plane at γ̇ → 0 is not the plane of equilibrium;
rather it is the plane of quasistatically sheared steady states.
This is most easily seen by noting that for φ > φ

QS
J , the

quasistatically sheared system has a finite average shear stress
σ [which is just the dynamic yield stress σY (φ)], whereas in
equilibrium one would expect to have σ = 0. Unlike with
compression or cooling, the limit of infinitesimally slow
shearing gives a well-defined value φ

QS
J clearly less than φmax.

Unlike compression or cooling, the value of φ
QS
J is independent

of the initial configuration one starts from; the process of
quasistatic shearing creates a well-defined ensemble that is
independent of the starting configuration. This is illustrated
by the results of our Figs. 7–8 where, even starting from a
carefully prepared dense unjammed state with a large degree
of particle clustering, we find that quasistatic shearing (unlike
equilibrium processes) destroys the clustering and, after a finite
amount of shear, restores one to states typical of the quasistatic
sheared ensemble. Moreover, we believe that the value of φ

QS
J

is independent of the specific details of the shearing dynamics,
provided one is in the limit of overdamped particle motion; the
φ

QS
J we report here from quasistatic shearing, which involves

energy minimization rather than a specific particle dynamics,
agrees well with the value we find from a scaling analysis [27]
of shear driven states at finite strain rates γ̇ using Durian’s
mean-field bubble dynamics, Eq. (3).

Thus, in our model, the athermal jamming of steady state
shear driven systems occurs at a nontrivial (i.e., φ

QS
J < φmax)

unique point in the (φ,T ,γ̇ ) space that is independent of any
further details of the shearing protocol. Our observation of
critical scaling in such shear driven flow [13,27] leads us to
conclude that φ

QS
J locates a true nonequilibrium critical point

in the (φ,T ,γ̇ ) phase space.
The question of whether there can exist a sharp equilibrium

glass transition in such simple models remains controversial.
Our results on jamming, reported here, make it interesting
to speculate that, should such an equilibrium glass transition
not exist, there may nevertheless be a sharp glass transition
when one considers the behavior of shear driven steady
states.
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APPENDIX

In this section we provide several details concerning our
simulation methods. We first consider the stopping criterion
E/N < ecut = 10−16 which we use to identify unjammed
states. Let Miter be the total number of conjugate gradient
iteration steps needed to achieve energy minimization of a
particular configuration, according to the stopping criteria
given in Sec. II. In Fig. 9 we show a scatter plot of the energy
per particle E/N vs the number of such conjugate gradient
steps per particle, Miter/N , for all initial configurations of
the RAND and QS ensembles, near the ensemble specific
jamming density. In Fig. 9(a) we show results for RAND
for a system with N = 16384 particles at a packing fraction
φ = 0.8415 ≈ φRAND

J . In Fig. 9(b) we show results for QS
for a system with N = 4096 at φ = 0.8430 ≈ φ

QS
J . We see

that the states clearly cluster into two groups: those with
E/N = 10−16, which correspond to the unjammed states for
which our minimization has stopped upon reaching our lower
cutoff treshhold ecut, and those with larger E/N , corresponding
to the jammed states. There are exceedingly few states, of
negligible statistical weight, in the region connecting these
two clusters; it is these states, with very small but finite energy,
which take the longest to energy minimize.

In Fig. 10 we plot the number of conjugate gradient iteration
steps per particle Miter/N needed to energy minimize the
initial configuragtion, averaged over all initial configurations,
vs the packing fraction φ, for both RAND and QS, for several
different system sizes N . Note, since each initial state for
RAND is completely random, while each initial state in QS
starts as a small affine shear strain from a previously energy
minimized state, the number of iterations needed for RAND is
higher than that needed for QS. As N increases, Miter(φ,N )/N
sharpens up to a peak located near φJ . For RAND, we see
that the peak value appears to be approaching a constant as

FIG. 9. Scatter plot of energy per particle E/N vs the number
of conjugate gradient iteration steps per particle Miter/N needed to
achieve minimization at φ ≈ φJ . (a) is for RAND with N = 16384
particles at φ = 0.8415; (b) is for QS with N = 4096 particles at φ =
0.8430. The horizontal line at E/N = 10−16 shows the unjammed
states, where the minimization has stopped upon reaching our cutoff
threshold ecut.
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FIG. 10. (Color online) Average number of conjugate gradient
iteration steps per particle Miter/N needed to energy minimize, vs
packing fraction φ. (a) is for RAND; (b) is for QS. Results are shown
for a few different systems sizes with particle numbers N .

N increases. For QS, we use �γ = 10−4 for sizes N � 2048,
and for this strain increment, the peak number of iterations per
particle also seems to be approaching a constant as N increases.
For N > 2048, however, we use �γ = 10−5; each initial
configuration is thus closer to its previous energy minimum
from the prior strain step and so takes fewer (about a factor of
two) iteration steps to reach its new energy minimum than for
the larger �γ . While decreasing �γ thus appears to make the
energy minimization more efficient, as �γ decreases we obvi-
ously need to run longer to reach the same total strain γ . Thus
the net effect of decreasing the strain step from �γ = 10−4 to
10−5 is about a factor 5 increase in computation. It is interesting
to note that for RAND, and also for QS for those sizes
N � 2048 where a constant �γ = 10−4 is used, the curves of
Miter(φ,N )/N for different N all seem to intersect at roughly
the same value φ∗ ≈ φJ . If we interpret the total number of
iterations needed to energy minimize, Miter, as a relaxation
time τ , then a finite size scaling analysis would suggest a
divergent relaxation time τ ∼ N ∼ Lzcg at φJ , with zcg ≈ 2.
We note, however, that the conjugate gradient “dynamics” does
not necessarily correspond to a real physical dynamics, so zcg

need not equal the physical dynamic critical exponent z, such
as one might find using the dynamics of Eq. (3).
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FIG. 11. (Color online) (a) Dependence of jammed fraction f

and (b) energy per particle E/N on shear strain step increment �γ ,
within quasistatic shearing simulations, at fixed packing fraction φ =
0.8430 ≈ φ

QS
J . Results are shown for several different system sizes

with particle numbers N .

Finally, in Fig. 11 we consider the effect of the finite shear
strain step �γ on our QS simulations. In Fig. 11(a) we plot
the fraction of jammed states f vs �γ for the fixed value φ =
0.8430 ≈ φ

QS
J , for systems with different numbers of particles

N � 4096; in Fig. 11(b) we plot the corresponding energy
per particle E/N vs �γ . Note, at this value of φ, the jammed
fraction f is in the range 0.5 < f < 0.8, depending on system
size N , hence we are adequately sampling the behavior in both
jammed and unjammed states. We see that for fixed N , both
f and E/N decrease to a constant value (within the estimated
statistical error [28]) as �γ decreases. The larger the value
of N , the smaller �γ must be to reach the limiting constant
value. For the results reported in the main body of this work
we have used �γ = 10−4 for N � 2048 and �γ = 10−5 for
N � 4096. Comparison with Fig. 11 shows that these values
are small enough that we are in the correct quasistatic limit,
except possibly for our largest system size N = 8192; we
have not been able to simulate N = 8192 long enough with
�γ < 10−5 to verify that a smaller �γ is not needed for this
case.
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