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Density profiles of loose and collapsed cohesive granular structures generated by ballistic deposition
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Loose granular structures stabilized against gravity by an effective cohesive force are investigated on a
microscopic basis using contact dynamics. We study the influence of the granular Bond number on the density
profiles and the generation process of packings, generated by ballistic deposition under gravity. The internal
compaction occurs discontinuously in small avalanches and we study their size distribution. We also develop a
model explaining the final density profiles based on insight about the collapse of a packing under changes of the
Bond number.
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I. INTRODUCTION

Loose granular packings, metastable granular structures,
and fragile granular networks play an important role in a wide
range of scientific disciplines, such as collapsing soils [1–4],
fine powders [5], or complex fluids [6,7]. In collapsing soils,
without any doubt there is a metastable or fragile granular
network involved [1–3,8,9]. A similar failure behavior can be
found in colloidal gels [10] and snow [11,12]. But also powders
have, in most cases, an effective cohesive force, for example,
due to a capillary bridge between the particles or van der
Waals forces (important when going to very small grains, e.g.,
nanoparticles), leading to the formation of loose and fragile
granular packings [5,8,9,13]. In many complex fluids a fragile
or metastable network of colloids or grains is believed to be the
essential ingredient for the occurrence of shear thickening [6]
or yield stress behavior [7].

The general feature of such fragile networks is that they
can collapse or compact under the effect of an applied
load [9,11,13]. This load can be an external load or exerted
internally by a force acting on all particles within the structure.
This “internal collapse” is important in different applications
such as cake formation of filter deposits [14–16], where the
compaction force in most situations is the drag force exerted
on the grains by the flow, which is typically porosity dependent
[17]. The structure’s own weight leads to compaction of snow
after deposition [18] and during aging [19,20] or to sediment
compaction [21–23]. In all cases, typically a depth-dependent
porosity is observed and quantified by continuum descriptions
[15,16,18,21–23]. In most cases the details of the porosity
profile are influenced by a combination of different mechanical
and chemical processes [15,21]. It is well known that the
porosity of a structure is of major importance for its mechanical
properties [11,21,24,25], in filtration processes [26], and for
its chemical properties like catalytic activity [27]. The aim
of this paper is to study the microscopic processes, that is,
on the grain scale, for these internal compaction processes.
For this, we investigate the compaction due to gravity in a
simplified model system of grains held together by cohesive
bonds. We analyze how the density profiles depend on the
granular Bond number, that is, the ratio of cohesive force to
gravity, and the influence of the dynamics of deposition and
collapse. As discussed above, loose structures are generated
in nature, industrial application, experiments, or simulation
by different processes. Here, we focus on ballistic deposition.
However, we expect the findings of this paper to be of relevance

for all systems involving compaction due to the particles’ own
weight. After a description of the simulation model and a brief
discussion of possible experimental realizations in Sec. II,
we first study the resulting density profiles when gravity acts
during deposition, in particular, the influence of the granular
Bond number (Sec. III). To understand the shape of the density
profiles, in Sec. IV we study the role of the dynamics of the
collapse occurring in small avalanches. We study the average
“avalanche profile,” defined here as the average distance a
particle moves downward after being deposited depending on
its height. We observe characteristic profiles that can be used
to relate the final density profile to the deposition density,
given by the number of deposited particles per unit volume
(Sec. V). To understand this phenomenological profile we
study a simpler system where first all particles are deposited,
followed by the collapse of the whole structure, leading to
an even simpler profile (Sec. VI). Our calculations yield
that this linear profile is obtained in all processes where a
homogeneous initial configuration is collapsed or compacted
to a homogeneous final state. In Sec. VII we show that
the phenomenological obtained avalanche profile obtained in
Sec. III can be derived from the linear avalanche profiles of
the homogeneous collapse.

II. DESCRIPTION OF SIMULATION MODEL

The dynamical behavior of the system during generation
is modeled with a particle-based method. Here we use a two-
dimensional variant of contact dynamics, originally developed
to model compact and dry systems with lasting contacts
[28–31]. The absence of cohesion between particles can only
be justified in dry systems on scales where the cohesive force
is weak compared to the gravitational force on the particle,
that is, for dry sand and coarser materials, which can lead to
densities close to that of random dense packings. However,
an attractive force plays an important role in the stabilization
of large voids [32], leading to highly porous systems, as, for
example, in fine cohesive powders, in particular, when going to
very small grain diameters. Also, for contact dynamics a few
simple models for cohesive particles are established [32–35].
Here we consider the bonding between two particles in terms
of a cohesion model with a constant attractive force Fc acting
within a finite range dc, so that for the opening of a contact a
finite-energy barrier Fcdc must be overcome. In addition, we
implement Coulomb and rolling friction between two particles
in contact, so that large pores can be stable [32,36–39].
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FIG. 1. (Color online) Final structures achieved by the deposition and collapse process for different granular Bond numbers Bog . In addition
to the particles, compressive forces are illustrated by red (dark-gray) lines connecting the center of masses between the particles. In the case of
Bog → ∞ no forces are present, as is realized in the simulations by switching off gravity.

To generate the loose structure we use ballistic deposition
where each deposited particle, chosen at random horizontal
position, is attached to the structure at maximal possible
height with zero velocity. At the same time we allow for
all particles to move, which can lead to a partial collapse
of the structures due to gravity [8,9,13,40]. The structure is
deposited on a flat surface, that is, a wall at the bottom.
We use periodic boundaries in the horizontal direction to
avoid effects of side walls, like the Janssen effect. During
this process the time interval between successive depositions
crucially determines the structure and density profiles of the
final configurations. Here we focus on the two extreme cases
of very large time intervals, that is, the system can fully relax
after each deposition of a single grain, and vanishing time
interval, that is, the collapse of the systems happens after the
deposition process is complete. In the first case the interval is
chosen large enough to let the system compactify and relax
due to the additional weight of the deposited grain. This
is verified, on one hand, by checking that the final density
is independent on the time interval and, on the other hand,
by monitoring the dynamics of the process. Having no time
between depositions, in practice, means that we first perform
pure ballistic deposition [41,42] and then switch on the full
particle dynamics, leading to a collapse of the system due
to gravity. Experimentally, the two cases can be realized in
a Hele-Shaw cell [43–45] which can be tilted to effectively
change gravity

In the slow deposition process, the cell is simply filled
slowly in an upright position so that full gravity acts on the
grains. In the other case the Hele-Shaw cell will be almost hor-
izontal, so that the grains can be filled in with nearly vanishing
gravity, and then the cell is tilted so that gravity can fully act
on the grains, leading to an abrupt collapse of the structure.

III. DENSITY PROFILES WHEN GRAVITY
ACTS DURING DEPOSITION

In this section we analyze the density profiles for the
case of time intervals between successive depositions long

enough to allow the systems to relax under the effect of
gravity as described in the previous section. It is expected
that the density and the characteristics of the density profiles
are mainly determined by the ratio of the cohesive force
Fc to gravity Fg , typically defined as the granular Bond
number, Bog = Fc/Fg [46,47]. Obviously the case Bog = 0
corresponds to the cohesionless case, whereas for Bog → ∞,
gravity is negligible. A similar dimensionless quantity had
been identified as the most important parameter in previous
studies on compaction of cohesive powders [32,36,48].

In the following, we use monodisperse systems with a
friction coefficient μ = 0.3 and a rolling friction coefficient
of μr = 0.1 (in units of particle radii). The effect of varying
these parameters is also studied in an exemplary fashion and
is discussed later. Typically the values of the density can
depend on these parameters as shown in Ref. [37], whereas
the qualitative behavior does not change. Figure 1 shows the
final structures obtained for different values of granular Bond
number ranging from 0 to 106. Also, the limit of infinite Bond
number is shown, leading to pure ballistic deposition [42],
which has already been well studied. For small Bond numbers,
here represented by Bog = 0, the system typically reaches a
random close packing, which also has been studied intensively
in the past. Note that our case of monodisperse particles
typically leads in dense packings to crystallization effects,
which could be avoided by using a small polydispersity. As
our focus in this paper is on looser structures where this effect
is not very important, we prefer the monodisperse system to
keep the model as simple as possible. In the intermediate range
of Bond numbers the density varies between the two limiting
values.

Plotting the density profile depending on the vertical
position y (Fig. 2) provides a more quantitative analysis. It can
be seen that in the two limiting cases (Bog = 0 and Bog → ∞)
the density is constant. For an infinite Bond number this can be
explained easily, as no collapse occurs and the density profile is
that of a ballistic deposition and, thus, constant [41,42]. For the
noncohesive case a close packing is expected, also leading to a
constant density. This is discussed again in more detail later. In
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FIG. 2. (Color online) Density profiles for different granular
Bond numbers Bog (cf. Fig. 1). Here, the volume fraction ν is plotted.
In this case the volume fraction is measured in thin slices of a given
width (here, 3.97 particle radii) at varying height y. For Bog = 0 no
cohesion is active and random close packing is reached. In the limit
Bog → ∞ the system does not collapse at all, and the simple ballistic
deposition case [42] is obtained.

the intermediate range the density decreases with increasing
height. This is a result of the generation process where the
fragile structure is partially collapsed due to the weight of the
added particles, which happens discontinuously in relatively
small avalanches as discussed in more detail in Sec. IV.

Knowing that the density depends on vertical position, a
general dependence of the total density on the Bond number
cannot easily be defined. Instead, for a given system size as
in Fig. 2 the density at a fixed position can be measured.
In Fig. 3 the averaged density in the lower half excluding
the region very close to the bottom is shown versus the
granular Bond number. The density varies between the two
limiting cases Bog = 0 and Bog → ∞. Note that the Bond
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FIG. 3. (Color online) Average volume fraction νlower half depend-
ing on granular Bond number Bog . The density is averaged in the
lower half of the system excluding the region very close to the bottom
to avoid border effects. (Here we excluded the region below the height
of 50 particle radii so that boundary effects are clearly removed for all
curves; cf. Fig. 2.) Volume fractions vary between the two limits given
by random close packing (Bog = 0) and pure ballistic deposition
(Bog → ∞).

number is plotted on a logarithmic scale; that is, to see
substantial changes of volume fraction the cohesive force
or the gravitational force has to be changed by orders of
magnitude. Particles with similar gravity and cohesive force
will show the same typical behavior. As typically both forces
depend on the size of the particles, it appears to be natural to
characterize the behavior of granular matter and powders by
the grain size. For noncohesive material recent experimental,
numerical, and theoretical studies [49–52] have investigated
the influence of the friction coefficient on, for example, the
volume fraction. A behavior similar to that found here for
the cohesive material when varying the granular bond number
has been found [49,50]: varying the friction coefficient on a
logarithmic scale leads to a variation between the value 0.84
for the packing fraction of a random close packing and the
value 0.77 for an infinitely large friction coefficient (in two
dimensions or in three dimensions between 0.64 and 0.55).
In the cohesive case as discussed here this range of accessible
volume fractions is much higher and limited by the preparation
protocol, that is, in this paper, by the ballistic deposition. This
limit, of course, can be changed when changing the preparation
protocol, for example, by introducing a capture radius (cf.
Sec. VI).

For all results presented above the total system height H

was fixed, that is, the deposition process stops when no more
particles can be deposited below a specified value H . When
comparing density profiles for different system heights, H

plots depending on the vertical position y will show different
densities. Scaling can be achieved when plotting the density
versus the depth H − y as illustrated in Fig. 4. This means that
the upper part of the large system is depositing and collapsing
in the same way as the small system while additionally leading
to further collapse of the structure deposited previously below,
accompanied by a downward motion of the whole upper part.
Obviously the slow deposition process guarantees that inertia
is not important (cf. Sec. VI).

The specific behavior of the density profiles shown in this
section results from a deposition process combined with a
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FIG. 4. (Color online) Illustration of the effect of system size for
the intermediate density range (Bond number Bog = 103). Plotting
the depth H − y measured from the surface H of the final packings,
smaller systems show the same profile as large systems.
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collapse of the current structure due to gravity. The deposition
is characterized by the number of deposited particles per
volume, which we call “deposition density” and which is not
constant here (Sec. V). The collapse happens successively in
relatively small avalanches, which are analyzed in detail in the
following section. In Sec. V we show that these avalanches
can be used to relate the final density profile to the “deposition
density.”

IV. ANALYSIS OF THE AVALANCHES DURING
DEPOSITION AND COLLAPSE

Typically the collapsing of the structures, as mentioned
earlier, happens discontinuously in small avalanches. As these
avalanches are important also for the final density profiles
(see Sec. III), their characteristics are studied in detail in this
section. To illustrate the nature of these avalanches, in Fig. 5
the trajectories of the particles are plotted for a relatively small
system of height H = 147 consisting of about 3200 particles
(for better visibility only each fifth trajectory is shown, that is,
the trajectories of 640 particles, instead of all 3200 particles).
The avalanches are a collective motion of parts of the system.
This mainly downward motion is accompanied by a sideward
motion or rotation.

Upon zooming in, individual trajectories can be identified.
These trajectories represent the motion of each particle during
deposition and collapse. Thus, they show the paths that
a particle experiences in all avalanches at different times.
Neighboring particles can have very similar trajectories, that
is, they belong to the same set of avalanches at different times.

In Fig. 6 we show the size of avalanches depending on
the initial and final vertical position. This size is measured by
�y, the total downward displacement of the particle after its
deposition, that is, initial position minus final position. This
represents for each particle the sum of all avalanches occurring
during the generation process, resulting in as many data points
as particles in the system. In Fig. 6 these data are averaged
in bins two particle diameters in size. The fluctuations within

FIG. 5. (Color online) Particle trajectories of particles of a
small system (H = 147; cf. Fig. 4) for the whole deposition and
collapse. For better visibility only each fifth particle’s trajectory
is shown, that is, the trajectories of 640 particles (instead of all
3200 particles).Viewing the total system (and, at the right, a zoom-in
of the boxed area on the left) illustrates that parts of the system
move collectively downward, accompanied by a sideward motion or
rotation. In the zoom-in at the right, individual trajectories can be
identified, which are composed of the sum of paths during all the
small avalanches experienced by the particle.
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FIG. 6. (Color online) Size of avalanches depending on vertical
position for Bog = 103. Here the size is measured by �y, the average
total downward motion of a particle after deposition (initial position
minus final position). On the horizontal axis the initial position yi

[(blue) squares] and final position ye [(red) circles] are plotted. This
leads to two slightly shifted curves as ye < yi . Solid lines represent
parabolic fits �y(yi) = −1.8 − 0.31yi + 0.000 35y2

i [solid (black)
line] and �y(ye) = −10.2 − 0.31ye + 0.000 38y2

e [dashed (violet)
line]. Also shown is a fit by �y(ye) = −aye(1 − ye/H ) predicted by
the considerations in Sec. VII, leading to a ≈ 0.39 [dashed-dotted
(green) line].

each bin are shown by the vertical error bars. Both curves (for
yi and ye) can be relatively well approximated by parabolas:

�y(yi) = a′ + b′yi + c′y2
i , �y(ye) = a + bye + cy2

e (1)

It is obvious that both curves cannot obey the parabolic behav-
ior exactly, as yi and ye are related by ye(yi) = yi + �y(yi).
However, in the cases presented in this section, obtained by
slow deposition, the value of �y is relatively small compared
to yi , so that ye(yi) is very close to a straight line, leading
only to a very small horizontal shift. This behavior is typical
for intermediate Bond numbers, whereas in limiting cases no
noticeable dependence of �y on the vertical position could be
found. For Bog = 0 a small constant value, below the particle
diameter (about 1.5 particle radii), is observed. In the case
Bog → ∞ no collapse happens, that is, all �y = 0.

The parabolic behavior can be reproduced also for other
system heights. In Fig. 7 two different system sizes, again
for Bog = 103, are shown collapsed by scaling both axes by
the system height H . From this scaling one can deduce the
system size dependence of the prefactor of the quadratic term
in Eq. (1). The scaling becomes

�y(y,H ) = Hf (y/H ) ∝ H (y/H )2 ∝ 1/H (2)

when assuming that �y ∝ y2 [parabolic behavior; see Eq. (1)].
This 1/H dependence could be verified by fitting the curves in
Fig. 7. Note that the parabolic shape was also found when
varying the friction coefficient μ and the rolling friction
coefficient μr .

Whereas the average of the avalanche size �y as a function
of the vertical position shows a parabolic profile of reasonable
quality, there are of course large fluctuations around this value.
In Fig. 8 we show the distribution of the avalanche sizes (here
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FIG. 7. (Color online) Collapse of the size of the avalanches for
two different system sizes can be obtained by scaling both axes by the
system height (here, Bog = 103). Under the assumption of a parabolic
profile this scaling leads to a 1/L dependence of c [prefactor of the
quadratic term in Eq. (1)].

|�y|) for the entire system, that is, independent of the vertical
position. Upon removing the upper and lower part of the
system to decrease boundary effects, we obtain a Gaussian
distribution; that is, we get an estimate of a typical avalanche
size. This typical size decreases with increasing Bond number,
and in the limit of Bog → ∞, where no avalanches occur, it
vanishes. In the limit of Bog = 0 (no cohesion) the behavior
is different, and an exponential decay is obtained (Fig. 9).
Here the boundaries have no effect; that is, we get the same
behavior when removing the upper and lower part of the system
as done previously. For this Bond number typically the surface
of the structure during deposition grows relatively flat, so
that large |�y| are unlikely, as expressed by the exponential
decay. Due to the monodispersity this surface is locally almost
a flat crystalline surface with heaps that consist of only a
few particles, in most cases one particle. When a particle is
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FIG. 8. (Color online) The histogram of the size of avalanches
|�y| for Bog = 103 basically follows a Gaussian. Deviation from
this behavior can be almost fully suppressed when removing the
bottom and top part of the system.
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FIG. 9. (Color online) The histogram of avalanches |�y| for
Bog = 0 basically shows an exponential decay. Deviation from this
behavior can be found for |�y| between 1 and 2 particle radii, where
the probability is about constant. This effect cannot be suppressed
when removing the bottom and top part of the system (as, e.g., for
Bog = 103).

deposited on a one-particle heap it rolls off to rest eventually
as a “crystalline” neighbor beside the particle, resulting in a
|�y| between 1 and 2. This leads to the very small range
of |�y| with constant probability in Fig. 9. Taking a slightly
polydisperse system, this region would disappear.

In this section we have studied the collapse of the structures
occurring in small avalanches that we analyzed statistically.
We suggest characterizing these avalanches by their “size”
and their showing a typical dependence on vertical position
and a parabolic shape for the specific systems investigated in
this section. In the following section we use this characteristic
behavior to derive the final density profile from the “deposition
density.” In Sec. VI the same concept is shown to be applicable
also to other protocols of generating loose structures.

V. THEORETICAL ANALYSIS OF THE AVALANCHES

In previous sections we mentioned that the dynamics
leading to the final configuration is determined by small
avalanches occurring during the deposition process. All these
compaction events are contained in the function �y(ye), which
is given by the difference between the initial position yi and
final position ye. Note that �y can be plotted (e.g., Fig. 6) as a
function of the final position ye or, alternatively, as a function of
the position of deposition yi . The aim of this section is to relate
the final density profile to the dynamic process of deposition
and collapse by using �y(ye), showing how the avalanches
produce the final density ρf (ye) from the deposition density
ρd (yi). The deposition density is defined by the number
of particles deposited within a volume. As the structure
collapses between the depositions the deposition density is not
independent of the collapsing, and it is possible that at (almost)
the same position several particles are deposited. Thus, locally
within a fixed volume even more particles could be deposited
than is typical for a dense packing.
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We first calculate the number Nd,f of particles up to a given
height yi,e (Lx width of the two-dimensional system in units
of particle radii):

Nd,f (yi,e) = Lx

∫ yi,e

0
dy ′ρd,f (y ′). (3)

The final position ye of particles can be related to the position
yi of deposition by the avalanche profile �y:

yi(ye) = ye − �y(ye) or ye(yi) = yi + �y(yi). (4)

In this notation �y is negative as the motion of the particles
is downward (due to gravity). Therefore, yi is larger than or
equal to ye. As particles are never destroyed, the number of
particles deposited up to a given height Nd (yi) will stay the
same, but shifted to a lower height, Nf (ye), where yi and ye

are related by Eq. (4). Together with Eq. (3) this leads to

Nf (ye)/Lx = Nd (yi(ye))/Lx =
∫ yi (ye)

0
dy ′ρd (y ′)︸ ︷︷ ︸

≡G(yi (ye))

. (5)

This relates Nf to the deposition density, whereas Eq. (3)
relates Nf to the final density. The function G here is formally
introduced as an abbreviation for the integral; by derivation of
G the density is retrieved. The final density can be obtained
by derivation of Nf /Lx using Eq. (5):

ρf (ye) = d

dye

Nf (ye)

Lx

= d

dye

G(yi(ye)) = dG(yi)

dyi

dyi

dye

= ρd (yi(ye))
dyi

dye

= ρd (yi(ye))

(
1 − d�y(ye)

dye

)
. (6)

The deposition density ρd [yi(ye)], in principle, can be ex-
pressed directly by ye upon introducing ρ ′

d (ye). As usual,
the functional behavior of either function is not known, but
only values for specific yi and ye; the transformation can be
done for each point by simply using Eq. (4), that is, replacing
each yi by ye = yi + �y(yi). Summarizing, to calculate the
final density profile one needs to know the deposition density
ρd and the avalanche profile �y. Note that the avalanche
profile dependence on both ye and yi is needed, which can
be calculated from each other for some cases as shown later.
For experimental situations these quantities are not known.
However, the relation between ρf and ρd [Eq. (6)] can be used
to calculate the deposition density from the final density in the
slow deposition limit, when assuming a parabolic profile as
found in the simulations before.

In Fig. 10 we use Eq. (6) to calculate the final density
from the deposition density by using the parabolic fit for �y

(Fig. 6). In practice, first the deposition density curve is shifted
on the horizontal axis by ye = yi − (a′ + b′yi + c′y2

i ), then
the deposition density is multiplied by the factor on the right
of Eq. (6), using the derivative of �y(ye), given by Eq. (1),
leading to 1 − (b + 2cye) which is a linear function. If the
deposition density were constant, this would lead to a linear
profile for the final density. However, the deposition density is
not constant, explaining the nonlinear behavior for the final
density. Additionally, the deposition density shows strong
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FIG. 10. (Color online) Using the parabolic approximation
(Fig. 6) for the average avalanches, the final density (here, the volume
fraction νf ) can be calculated from the deposition density (inset:
volume fraction νd for Bog = 103). There are strong fluctuations in
the deposition density, which are induced by the irregularity of the
avalanches. To obtain a smooth curve we use a fit function (here, the
power-law fit, with exponent 0.15) to calculate a final density [solid
(black) line] that matches relatively well with the measured density
profile for sufficiently large y (except close to the bottom).

fluctuations, but by assuming the avalanches to follow the
averaged parabolic behavior, the corresponding fluctuations
in the avalanche profile are not included. The calculated curve
matches relatively well the profile measured in the simulations
for sufficiently large values of the vertical position. Close to
the bottom, however, the calculated curve deviates from the
measured one. In this region the deposition density is very
low, that is, almost that of pure ballistic deposition. This can
be understood, as the system needs to gain a sufficient amount
of weight for the collapse to start (cf. also Sec. VI). This should
correspond to a higher initial slope of �y(ye), which is not re-
flected in the parabolic approximation [Eq. (1)]. In this region
higher-order terms would be necessary to reproduce the system
bottom also.

The same analysis has been done also, for example, for
Bog = 102, as shown in Figs. 11 and 12. In this case the
deposition density shows somewhat lower fluctuations as
for Bog = 103 (Fig. 10). To quantify this we estimated the
fluctuations of the deposition density at vertical position
y = 200 for both cases. For Bog = 102 we obtained about
15%, whereas we estimated about 20% for Bog = 103. For
the case of Bog → ∞ there is no avalanching at all (cf.
Sec. IV), and trivially the final density equals the deposition
density. This is very similar for very large Bog , but as some
avalanches occur there are some relatively small fluctuations
in the average profile. Away from this limit, but still close
enough that the density profile is very similar to the Bog → ∞
case, as, for example, for Bog = 104, very large fluctuations in
the avalanche profile are observed. Thus, the parabolic profile
cannot easily be identified. Still the theory works well, as the
final density is very close to the deposition density, so that
even a very inaccurate fit for the avalanche profile does not
affect the calculated density profile very much. In the limit of
Bog = 0 the avalanche profile is a constant (cf. Sec. IV); that
is, all grains are slightly shifted downward by the same amount
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FIG. 11. (Color online) Size of avalanches depending on vertical
position for Bog = 102. Here the size is measured by �y, the total
downward motion of the particle after deposition (initial position
minus final position). On the horizontal axis the initial position yi

[(blue) squares] and final position ye [(red) circles] are plotted. Lines
represent the parabolic fits �y(yi) = −1.7 − 0.24yi + 0.00056y2

i

[dashed (violet) line] and �y(ye) = −4.7 − 0.23ye + 0.00059y2
e

[solid (black) line].

(except boundary effect at the bottom). As the derivative then
vanishes, the final density equals the deposition density.

Here, we have shown how the parabolic avalanche profile
can be used to calculate the final density profiles from the
deposition density in the case where gravity acts during
deposition. In the next section the same concept is used in
the simpler case of collapse of the system after deposition is
complete. These two cases are then related in Sec. VII.
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y
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0.7

0.8

0.9

1

ν f 0 100 200 300 400
y

0.5

0.6

0.7

0.8

ν d

FIG. 12. (Color online) Using the parabolic approximation
(Fig. 11) for the average avalanches the final density can be
calculated from the deposition density (here, volume fraction for
Bog = 102). There are strong fluctuations in the deposition density,
which are induced by the irregularity of the avalanches. As before
(for Bog = 103), to obtain a smooth curve we use a fit function (here,
the power-law fit, with exponent 0.13) to calculate a final density
[solid (black) line] that matches relatively well for sufficiently large
y (except close to the bottom).

VI. COLLAPSE AFTER DEPOSITION IS COMPLETE

In the previous sections we have investigated the case where
gravity acts during deposition, leading to a relatively complex
shape of the density profiles and parabolic characteristics of
the avalanche size. For this case we have shown that these
avalanche profiles can be used to relate the final density profile
to the deposition density. In this section we analyze the case
when the particles are first deposited, then gravity is switched
on and the structures collapse. This case is even simpler and can
later be used to understand the more complex system studied
before. In this case the initial density ρi characterizes the
system (instead of the deposition density as in the previously
discussed situation). Using the off-lattice version of ballistic
deposition as presented in Refs. [41] and [42] with sticking
probability 1, vertically falling particles stick when they touch
an already deposited particle. This leads to a fixed initial
density. Lower densities can be obtained by using a capture
radius rcapt; that is, particles stick to each other when they are
within a certain distance during the falling of the depositing
particle. More precisely, when the distance between the centers
of mass of two particles is below 2 · rcapt, the particles stick and
the falling particle is pulled along the connecting line toward
the already deposited particle. This capture radius is a measure
for the distance between the branches of the deposit and the
resulting density is inversely proportional to rcapt [32]; rcapt = 1
gives the original method. The resulting initial structures are
shown in Fig. 13. These structures, obtained with different
capture radii, are used later to study the influence of the
initial density.

First, we investigate the behavior using rcapt = 1. Figure 14
shows the density profile before the collapse, which is the
same that we got in the limit of Bog → ∞ in Sec. III,
also independent of vertical position. After this deposition is
complete, gravity is “switched on” and the structure abruptly
collapses. Here we choose a Bond number of Bog = 103. This
leads to a final structure with a higher density, in this case also
independent of the vertical position (Fig. 14). As no particles
are added after the initial deposition, the final system height is
lower.

Similarly as before, we analyze the size of the avalanches
�y as defined in Sec. IV. Figure 15 shows a linear dependence
of �y on both ye and yi . The fit parameters of the two lines
can be related to each other by the relation between yi and
ye [Eq. (4)]. Assuming �y(ye) = a − bye and �y(yi) = a′ −
b′yi , the values a′ and b′ can be calculated from a and b (see
Appendix A) as

b′ = b

1 + b
, a′ = a

1 + b
. (7)

The vertical dependence of �y can be used similarly as
before to calculate the final density from the initial density by
using Eq. (6). The calculated density profile using this linear
dependence reproduces the obtained final density profile very
well, as shown in Fig. 14. In this case the agreement is better, as
now the initial density is not fluctuating very much, in contrast
to the cases discussed in Sec. V. The density increase �ρ (or
volume fraction increase �ν) can be directly calculated by the
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r     =1capt r     =1.25capt r     =1.5capt r     =1.75capt captr     =2 r     =2.25capt captr     =2.5

FIG. 13. (Color online) Initial structures generated by ballistic deposition with increasing capture radius rcapt.

constant slope of �y(ye):

�ρ

ρi

= �ν

νi

= −d�y(ye)

dye

. (8)

For the same parameters (Bog = 103) we studied the effect
of the system height H on the density increase while still

0 100 200 300 400
y

0

0.1

0.2

0.3

0.4

0.5

0.6

ν

initial density
final density
calc. from Δy

FIG. 14. (Color online) The initial and final density are almost
constant when first depositing and then collapsing the system (Bog =
103). Using the linear dependence of the avalanches �y on the vertical
position (see Fig. 15), the final density can be calculated from the
initial density using Eqs. (4) and (6). Results support the analytical
considerations.

keeping the initial density fixed (Fig. 16). A logarithmic fit
matches the data best. This fit certainly cannot continue to
infinity, as there is a limit for the density ρmax given by the
random close packing (see also Fig. 3), leading to a (�ν/νi)max

of 1.19 (�ρmax/ρini − 1).
Using initial capture radii as described above we study the

influence of the initial density on the relative density increase
�ν/νi (Fig. 17). We obtain the best fit when using a power
law with an exponent ofabout 1.64.

We have shown in this section that the linear avalanche
profile is a characteristic feature of compacting from a structure

FIG. 15. (Color online) The linear dependence of the avalanche
sizes �y(yi,e) explains the homogeneous density increase shown in
Fig. 14. Linear fits are �y(ye) = 2.2 − 0.62ye and �y(yi) = 1.9 −
0.39yi .
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FIG. 16. (Color online) Dependence of volume fraction increase
�ν/νi on system height H when the system is first deposited and
then collapsed. A logarithmic fit matches the data best [here y =
−0.94 + 0.26 ln(x)]. The limit of random close packing defines the
largest possible value for �ν/νi of 1.19, which will be approached
for infinite system heights.

with depth-independent density to a structure with again depth-
independent density, obtained here for systems generated by
ballistic deposition collapsing due to gravity. More complex
avalanche profiles with nonconstant derivatives will transform
homogeneous structures into inhomogeneous structures. Thus,
we expect the linear profile to be obtained in all cases where
a homogeneous initial system compacts to a homogeneous
final system. These homogeneous compaction processes are
investigated in different research areas, as discussed, for
example, in Refs. [53–57]. In addition, in the next section
we show that also for the more complex process when gravity
acts during deposition (Sec. III), this linear profile can be used
to derive the parabolic profile of the avalanches.

0.1 0.15 0.2 0.25 0.3 0.35 0.4
ν

i

1

1.5
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2.5

3

Δν
 /ν

i

FIG. 17. (Color online) Dependence of volume fraction increase
�ν/νi on volume fraction νi of the initial system (system first
deposited and then collapsed). Different densities were reached by
increasing the capture radius for ballistic deposition (Fig. 13). A
power-law fit with exponent 1.64 fits relatively well (power-law fit
results in y = 0.158x−1.64).

VII. RELATION BETWEEN DEPOSITION UNDER
GRAVITY AND SWITCHING ON GRAVITY

AFTER DEPOSITION

For the very fast process a linear profile for �y depending
on vertical position has been found (cf. Fig. 15), whereas
the slow deposition limit shows a parabolic profile for �y

depending on vertical position (cf. Figs. 6 and 11). In this
section we discuss how a relation between both can be
established. By this relation also the parabolic profile is put
into a more fundamental basis like the linear profile for the
homogeneous collapse.

Let us imagine depositing particles slice by slice as sketched
in Fig. 18. The slices are thin parts of the system in the vertical
direction spanning the full system width in the horizontal
direction. They can be considered as systems with a very
small initial height h0. In each slice the deposition will be
immediately followed by the collapse. However, there will be
not only an “internal collapse” within the “freshly” deposited
slice, but also a compaction of the slices below, due to the
additional weight of the “freshly” deposited slice.

Let us first consider systems composed of a small number n

of slices. The case n = 1 (one slice) is the same as discussed in
the previous section: the system collapses “internally,” leading

1

1

2

i
i+1

n

ρ0

ρ0

ρ1

ρi−1
ρi

ρn−1

h0

h0h0

h1

hi−1
hi

hn−1

h1

h1

h2

hi
hi+1

hn

ρ1

ρ1

ρ2

ρi
ρi+1

ρn

FIG. 18. Sketch illustrating the procedure of depositing the grains
slice by slice. The first slice deposited is compacted by internal
collapse. The same is true for each “freshly” deposited slice. The
slices below are compacted by the added weight of the slices above.
Periodic boundary conditions in the horizontal direction are imposed
(dashed lines). The figure also illustrates the definition of the symbols
used here. The n slices are numbered from 1 to n. A slice i collapses
from ρi−1 to ρi while its height decreases from hi−1 to hi , where
hi = ρi−1/ρihi−1.
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to an increase in the density from ρ0 to ρ1, while the height
decreases from h0 to h1. Here we denote the slice number as 1
(cf. Fig. 18). As shown in the previous section the avalanche
sizes have a linear profile �y(y(1)

e ) = S1y
(1)
e . S1 is the slope in

slice 1 and is the same for all freshly deposited slices when the
height h0 is kept constant. The vertical position y(1)

e within slice
1 is measured from its bottom (y(1)

e = 0, . . . ,h1). This notation
is used in the following for each slice i: y(i)

e = 0, . . . ,hi . The
case n = 2 (two slices) means adding an additional slice to
the case n = 1. Then the lower slice (slice 2) experiences
an additional compaction by the added weight expressed by
the corresponding avalanche size C2y

(2)
e assuming a linear

behavior for this relatively fast process, similar to that for
the internal collapse. This is justified at least for the limit of
small slices considered later in this section. The upper slice
(slice 1) will be compacted internally and, additionally, will
move downward by C2h2 (= h1 − h2), as the slice below is
compacted. Summarizing for the two slices, we get

�y(1)
(
y(1)

e

) = S1y
(1)
e + C2h2︸︷︷︸

h1−h2

,

(9)
�y(2)

(
y(2)

e

) = C2y
(2)
e + S1 (1 + C2)y(2)

e︸ ︷︷ ︸
y

(1)
e

.

For slice 2 the internal compaction from the first step S1y
(1)
e

has been transformed by using that ρ2 = (1 + C2)ρ1 [cf.
Eq. (8)], leading to h2 = ρ1/ρ2h1 = 1/(1 + C2)h1. Adding
a further slice leads to the case n = 3, where the two slices
are compacted due to the additional weight. Each of these
compactions is accompanied by a downward shift of the slices
above. This leads to

�y(1)
(
y(1)

e

) = S1y
(1)
e + C2h2 + C3h3︸ ︷︷ ︸

(h1−h2)+(h2−h3)=h1−h3

,

�y(2)(y(2)
e

) = C2y
(2)
e + S1(1 + C2)y(2)

e + C2h2︸ ︷︷ ︸
from step 2

+C3h3,

�y(3)
(
y(3)

e

) = C3y
(3)
e

+ C2(1 + C3)y(3)
e + S1(1 + C2)(1 + C3)y(3)

e︸ ︷︷ ︸
from step 2

.

(10)

Imagining continuing this iterative procedure, one obtains the
case of n slices. For the top slice this results in

�y(1)
(
y(1)

e

) = S1y
(1)
e + C2h2 + C3h3 + · · · + Cnhn︸ ︷︷ ︸

h1−hn

. (11)

The first term is the internal collapse, whereas the other terms
are the shift due to the compaction of all slices below (2 to n)
in this last step. For the bottom slice we get

�y(n)
(
y(n)

e

) = S1(1 + C2)(1 + C3) × · · · × (1 + Cn)y(n)
e

×Cny
(n)
e + Cn−1(1 + Cn)y(n)

e + · · · + C2

× (1 + Cn)(1 + Cn−1) × · · · × (1 + C3)y(n)
e .

(12)

Here all terms represent a collapse in the slice either internally,
by its own weight, when deposited in the first step or when

collapsing due to added weight in the following steps. In
addition, these collapses have to be transformed to a y(n)

e

dependence (see above). For an arbitrary slice i somewhere
in the system we get both types of terms as in Eqs. (11) and
(12):

�y(i)
(
y(i)

e

) = S1(1 + C2) × · · · × (1 + Ci)y
(i)
e

×Ciy
(i)
e + Ci−1(1 + Ci)y

(i)
e

+ · · · + C2(1 + C3) × · · · × (1 + Ci)y
(i)
e

+ Cnhn + Cn−1hn−1 + · · · + Cn−i+1hn−i+1︸ ︷︷ ︸
hn−i−hn

+ Cn−1hn−1 + · · · + Cn−ihn−i︸ ︷︷ ︸
hn−i−1−hn

...

+ Ci+1hi+1 + . . . + C2h2︸ ︷︷ ︸
h1−hi+1

. (13)

The part of the expression independent of y(i)
e represents the

shift due to compaction by the weight of the slices added above
in n − i steps considering all slices below. It consists of n − i

times i − 1 terms and can be written shortly as

�y
(i)
shift =

n−i∑
j=1

hj − hj+i . (14)

The limit of large n while keeping the total system height
constant gives very small slices where the part �y

(i)
shift domi-

nates, as for very small systems the internal collapse almost
vanishes (cf. Fig. 16). Therefore, in the following we only
consider this term to show that we obtain an approximately
parabolic behavior. Let us assume that the hi are linear in i:

hi =
(

1 − a
i

n

)
h0, a < 1. (15)

This means that deeper in the system (larger i), the width of
the slice is smaller. Note that for the case a 	 1 this can be
understood as a linearization. This case means that the overall
compaction is not large as it is in the case for intermediate
Bond numbers. From Eqs. (14) and (15) we obtain

�y
(i)
shift =

n−i∑
j=1

(
1 − a

j

n

)
h0 −

(
1 − a

j + i

n

)
h0

=
n−i∑
j=1

a
i

n
h0 = (n − i)a

i

n
h0. (16)

This is a quadratic dependence on the slice number i. For
comparison with our results we have to transform i to a vertical
position ye, which is obtained when summing up the height hi

of all slices:

ye(i) =
i+1∑
j=n

hj =
n−i∑
j=1

hj+i . (17)

031301-10



DENSITY PROFILES OF LOOSE AND COLLAPSED . . . PHYSICAL REVIEW E 83, 031301 (2011)

Using approximation (15) we obtain

ye(i) �
n−i∑
j=1

(
1 − a

j + i

n

)
h0 (18)

= h0

[
n − a

2
(n2 − n)

]
− ih0[1 − a(n − 1/2)]. (19)

The detailed derivation is given in Appendix B. From this
equation we can obtain i(ye)

i = −ye

h0 [1 − a(n − 1/2)]
+ n − a/2(n2 − n)

1 − a(n − 1/2)
. (20)

We assume that we are in the limit of relatively small
a. Neglecting all terms in a in Eq. (20) corresponds to
neglecting terms in a2 in Eq. (16). With this simplification
and additionally using h0 = H/n, we obtain i = n − ye/h0 =
n(1 − ye/H ), leading to

�yshift(ye(i)) = [n − i(ye)]i(ye)
Ha

n2
(21)

= aye

(
1 − ye

H

)
. (22)

This behavior is plotted in Fig. 6 (green curve). Note that in
this figure the �y is negatively defined, as opposed to the
definition used in this section. This curve fits the measured
curves relatively well except coming close to the top. This
can be explained by the existence of a small “crust,” that
is, an accumulation of particles at the top of the system
in the simulations that is not considered in the analysis in
this section. Probably this is also the reason for the slightly
different prefactors of the parabola: from Eq. (22) we obtain
a = 0.39, leading to a prefactor of the quadratic term of
a/H = 0.000 49, which is somewhat larger than the value
of 0.000 38 obtained previously. The value of a = 0.39 is at
least reasonably small, to ensure that the considerations of this
section agree roughly with the simulation results. Previously
by scaling �y for different system sizes we obtained that
the prefactor of the parabola scales as 1/H [cf. Eq. (2)]. This
implies that a is independent fn system size H , for each specific
Bond number, additionally indicating by its value how good
the approximations in this section are.

Thus, in the limit of small a we could show that the
linear behavior of �y when collapsing after deposition is
complete leads to a parabolic behavior when collapsing during
deposition. Note that this a represents the difference in height
of the top and the bottom slice; that is, the assumption of small
a is true when the density difference between the density close
to the bottom and that at the top is small, which is the case
in all cases studied here (cf. Fig. 2). In the structures studied
within our model in the previous sections (see, e.g., Sec. III),
a small “crust” (particle accumulation) at the top again leads
to a density increase. This will lead to a shift in the parabolic
profile to the right (to the top). As discussed previously the
deposition and collapse process is not continuous, so that the
parabola is only an average of a very noisy distribution of �y.

Additionally, the deposition density is not constant, but slightly
increasing (cf. Figs. 10 and 12), accompanied by relatively
large fluctuations. For these reasons we can only expect a rough
matching of our theory with the simulations. Nevertheless the
parabolic behavior has been observed relatively clearly.

VIII. CONCLUSION AND OUTLOOK

We have studied the generation of fragile granular structures
by a deposition and collapse process. In one extreme case
where the deposition is sufficiently slow to allow the system to
collapse and relax due to gravity after the deposition of each
single grain, we studied the influence of the granular Bond
number on the density profile. For intermediate Bond numbers
the density decreases with height due to the compaction of
the powder’s own weight. We studied the generation process
dynamics, which is discontinuous in small avalanches. These
avalanches show a parabolic behavior and can be used to calcu-
late the final density profile from the deposition density. In the
other extreme case of collapse after deposition is complete, we
found that the density is constant with vertical position and that
the avalanche size depends linearly on the vertical position. We
related the parabolic behavior to the linear one by imagining
a slice-by-slice deposition and collapse process. Note that
the linear behavior investigated here for the case of ballistic
deposition followed by a gravitational collapse will be found
for all collapse or compaction processes of homogeneous
initial structures to homogeneous final structures. Therefore
the concept of avalanches introduced in this paper is of general
applicability to granular structures collapsing due to gravity or
similar forces.

Our results may be directly verified experimentally, as
already mentioned in Sec. I, for example, by using a Hele-Shaw
cell [43–45], which can be tilted to effectively change gravity.
To apply the model presented here more specifically, for
example, for snow compaction, more realistic microscopic
properties including aging processes would have to be used.
For cake formation processes, instead of gravity, a porosity-
dependent drag force could be applied. In this context an
explicit consideration of the pore fluid or gas could be needed.
The influence of the pore fluid or gas should be studied, in
particular, for the fast compaction process presented in this
paper.
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APPENDIX A: RELATION BETWEEN SLOPES

The linear dependence of avalanches is found as well in ye

as in yi (see Fig. 15). In this section the relation between the
two lines is derived in detail. Assuming

�y(ye) = a − bye and �y(yi) = a′ − b′yi, (A1)

the values a′ and b′ can be calculated from a and b as shown
in the following. The relation between yi and ye can be
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written as

yi = ye − �y(ye) = ye − (a − bye) (A2)

= ye(1 + b) − a (A3)

=⇒ ye = a

1 + b
+

1+b−b︷︸︸︷
1

1 + b
yi (A4)

= yi

(
1 − b

1 + b

)
+ a

1 + b
. (A5)

According to Eqs. (4) and (A1) ye can be written as

ye = yi + (a′ − b′yi). (A6)

Comparing Eqs. (A5) and (A6) results in

b′ = b

1 + b
, a′ = a

1 + b
. (A7)

From this or by a similar derivation the inverse relations can
also be obtained:

b = b′

1 − b′ , a = a′

1 − b′ . (A8)

APPENDIX B: DERIVATION OF ye(i) IN LINEAR
APPROXIMATION FOR hi

Here we show the details of the derivation to obtain Eq. (19)
from Eq. (18):

ye(i) �
n−i∑
j=1

(
1 − a

j + i

n

)
h0

= h0(n − i) − ha

n

⎛
⎜⎜⎜⎜⎜⎝

n−i∑
j=1

i

︸︷︷︸
(n−i)i

+
n−i∑
j=1

j

︸ ︷︷ ︸
(n−i+1)(n−i)/2

⎞
⎟⎟⎟⎟⎟⎠

= h0(n− i) − h0a(n− i)i/n− h0a(n− i − 1)(n− i)/2

= h0(n − i) − h0a
[n

2
(n + 1) − i((n + 1)/2 + n/2)

]

= h0

[
n − a

2
(n2 − n)

]
− ih0 [1 − a(n − 1/2)] .
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