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Generalized thermodynamic and transport properties. I. Simple liquids
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We propose a method by which the generalized transport properties and coefficients at all wavelengths and
frequencies can be obtained by inversion of an exact kinetic equation. The necessary data are the density-density,
energy-energy, and density-energy time correlation functions, which can be obtained by molecular-dynamics
simulation. In addition, also the coupling between viscous stress tensor and energy flux vector can be obtained
without approximation. This allows one to check the validity of the Markov assumption in a straightforward
way. As a first test case, the theory is applied to liquid argon in two thermodynamic states. For this system, we
calculate and discuss generalized thermodynamic (enthalpy, specific heats, and thermal expansion) and transport
properties (longitudinal viscosity, thermal conductivity).
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I. INTRODUCTION

Generalized hydrodynamics extends from the macroscopic
to the microscopic scale the domain of ordinary hydrody-
namics. Retaining the form of the Navier-Stokes equations,
it describes how the thermodynamic properties and transport
coefficients depend on distance and time scales typical of
the microscopic structure and dynamics of the fluids. With
this extension, one will then be able to predict, for example,
the momentum with which neutrons are scattered at various
angles by a fluid. In the study of liquids since 1965, the
generalized hydrodynamics theory [1–6] has been developed
by many authors. At the same time, computer simulations
started their enormous increase in scope and applications
[7–9]. In addition, the neutron scattering technique [10,11]
was continuously improved, complemented, after 1990, by
inelastic x-ray scattering [11,12]. From a theoretical point
of view, an important reference is the paper by de Schepper
et al. [13], which stimulated and inspired a large part of the
work reported here. Despite the fact that the core of the theory
was the same as that in the classical works [1–6], the elegant
development of the arguments was full of implications, not all
of them completely realized and exploited in our opinion.

The authors [13] suggested to adopt a base of microscopic
variables that includes fluctuations of density, n, longitudinal
velocity, u, energy, e, longitudinal stress tensor, σ , and longi-
tudinal heat flux, q. They showed that only three independent
time correlation functions (cf’s), namely the density-density,
density-energy, and energy-energy cf, are sufficient to derive
the entire set of microscopic hydrodynamic cf’s. As a test,
the method was applied to the Lennard-Jones (LJ) fluid
at one thermodynamic state. For this system, a number
of k-dependent thermodynamic functions were calculated:
the enthalpy per particle, the generalized thermal expansion
coefficient, the generalized specific heat at constant volume
and pressure, and the generalized ratio of specific heats. The
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k-dependent transport properties (at ω = 0) also also obtained,
but using the Markov approximation and assuming that the
three fundamental time cf’s can be described by the sum
of five complex exponentials. By means of a diagonaliza-
tion procedure, de Schepper et al. [13] obtained the five
k-dependent eigenvalues: two (also complex conjugate for
higher k values) were related to the two kinetic real modes
at small k values, while the remaining three were a direct
extension of the heat mode (always real) and complex acoustic
modes. For the latter, the common real part corresponded to
the sound damping and the conjugate imaginary part to the
sound dispersion.

The authors also introduced five k-dependent orthonormal
linear combinations of the five microscopic quantities de-
scribed above. The advantage of this procedure is that the
temperature replaces energy in the basis set, and with the
three new orthonormal density-density, density-temperature,
and temperature-temperature cf’s, it is possible to describe all
the transport properties of the fluids. In addition, they obtained
an exact kinetic equation that relates the Laplace transform
of the new orthonormal cf’s with all the transport properties
and hence transport coefficients (see Appendixes A and B of
Ref. [13]).

Another interesting approach to the same issues is that of
generalized collective modes (GCM) of Mryglod et al. [14]:
the starting point was practically the same as that in [13],
with the exact kinetic equation described above, although the
set of variables was not normalized. Assuming the Markov
approximation for the memory functions of the cf’s obtained
from the hydrodynamic variables (density, current, and energy,
and their time derivative), by means of a diagonalization
procedure the authors obtained the above cf’s as a linear
combination of complex exponential terms, as in Ref. [13].
The first application was made for the LJ fluid at the same
thermodynamic state as in Ref. [13] in the five-, seven-,
and nine-variable approximations (note that the five-variable
approximation must coincide with the approximate procedure
of Ref. [13]). The method was also applied to the transverse
modes, to binary and multicomponent mixtures, to a magnetic
and polar fluid, and more recently to single-particle dynamics
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[15] and to the transverse modes of the TIP4P model of
water [16]. According to the authors [14], increasing the
number of variables led to more accurate results, even though
the used cf’s are not independent. However, as will be shown
in the following, although the approach of Mryglod et al.
may account for the k,ω dependence of the coupling between
viscous stress and energy flux, at least for not too high k values
(not in the Gaussian regime), it is impossible to check if the
results actually converge to the “exact” ones.

The kinetic equation mentioned above inspired the method-
ological approach we outline in Sec. II of this paper. Our most
remarkable result is that in the frequency domain (and hence,
in principle, in the time domain) it is possible to obtain an
exact expression for the transport properties and coefficients
at all k and frequency values, without the need of the Markov
approximation or any other restrictive hypothesis. This result
is attained from the three density-density, density-temperature,
and temperature-temperature correlation functions, after a
simple linear transformations of the density-density, density-
energy, and energy-energy cf’s calculated by molecular-
dynamics (MD) simulation. The exact solution also allows
one to test the Markov approximation, as it gives not only the
generalized longitudinal viscosity, thermal conductivity, and
generalized ratio of specific heats at all k’s and frequencies, but
also the generalized transport coefficients. It is worth observing
that the latter are usually obtained with use of the Markov
approximation.

Section II F is devoted to a discussion of a memory
function approach that leads to an interesting and simple
connection of the second- and third-order memory functions
of the density-density and temperature-temperature cf’s with
the two corresponding k,ω-dependent transport coefficients,
especially in the proper physical limit. Note that the coupling
between viscous stress and energy flux can also be obtained
without approximation, as well as the free-streaming limit.
This regime, where the cf’s gradually change from a complex
exponential to a Gaussian-like behavior, can be treated with
the same procedure, as the method is general and not restricted
to a functional fitting type.

To conclude, we remark that despite the enormous amount
of work in this field, many questions are still not answered
satisfactorily, and a more detailed description of the theoretical
problems over the whole k-value regime is of interest [17,18].
Also, the experimental neutron and x-ray scattering results,
which become more and more accurate [19,20], still need to
be explained. For instance, it is worth remarking that the
data of the dynamic structure factor can be interpreted in
two seemingly equivalent ways, which correspond to focusing
on viscous or thermal effects. At present, no experimental
technique allows us to complement the data of density
fluctuations with those of energy or temperature fluctuations,
which could be used to resolve this ambiguity. However, ex-
perimental results of the dynamic structure factor are matched
by molecular simulation to such an accuracy that those
concerning energy or temperature cf’s can also be considered
reliable.

The availability of a broad range of cf’s for a wide spectrum
of k,ω, in its turn, demands a theoretical framework that has
to be general and, possibly, free from approximations. This
paper attempts to propose a viable theoretical scheme for

simple liquids, while its extension to molecular liquids is
presented in the following paper. The method is outlined in
Sec. II, with formal details collected in the appendixes. The
results of generalized thermodynamic properties and k- and
ω-dependent transport coefficients are presented and discussed
in the following section. Section IV presents a summary and
the main conclusions.

II. THEORETICAL BACKGROUND FOR SIMPLE LIQUIDS

A. Fundamental definitions

We consider a three-dimensional fluid of N particles
interacting through a potential �(r) [13]. The time-evolution
operator that replaces the position and velocity of an arbitrary
particle α at t = 0 by its position and velocity at time t is eL̂t ,
where L̂ is the Liouville operator defined as

L̂ =
N∑

α=1

vα · ∂

∂rα

− 1

M

N∑
α=1,α �=β

∂�
αβ

(rαβ)

∂rαβ

· ∂

∂vα

. (2.1)

The five wave vector (k) microscopic quantities am(k) are
given by

am(k) = 1√
N

N∑
α=1

Aα,m(k) e−ık·rα . (2.2)

In Eqs. (2.2), m = 1, . . . ,5 refers to the density, longitudi-
nal velocity, energy, longitudinal stress tensor, and longitudinal
heat-flux fluctuations, respectively.

The quantities A(m)
α (k) are defined as follows:

Aα,1(k) = 1, (2.3)

Aα,2(k) = vα · k
k
, (2.4)

Aα,3(k) = 1

2
Mv2

α + 1

2

N∑
β=1,β �=α

�
αβ

(rαβ), (2.5)

Aα,4(k) =
[

vα · k
k

]2

+ i

2Mk2

×
N∑

β=1,β �=α

k·∂�
αβ

(rαβ)

∂rαβ

[eik·rαβ − 1], (2.6)

Aα,5(k) = 1

2

⎡
⎣Mv2

α +
N∑

β=1,β �=α

�
αβ

(rαβ)

⎤
⎦ vα · k

k

+ i

2k

N∑
β=1,β �=α

vα·∂�
αβ

(rαβ)

∂rαβ

[eik·rαβ − 1]. (2.7)

The correlation functions (cf’s) of interest are

Fml(k,t) = 〈am(k)∗eL̂t al(k)〉 = 〈am(k)∗ al(k,t)〉, (2.8)

with m,l = 1, . . . ,5. Fml(k,t) are 25 cf’s with initial val-
ues Vml(k) ≡ Fml(k,0) and symmetry condition Fml(k,t) =
Flm(k,t). Then, the (5,5) matrix of the initial values Vml(k)
contains only nine nonvanishing terms (the other initial values
are zero for different parity):
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The conservation laws for l = 1,2,3,4,5,

F2l(k,t) = i

k

∂

∂t
F1l(k,t), (2.9)

F4l(k,t) = i

k

∂

∂t
F2l(k,t), (2.10)

F5l(k,t) = i

k

∂

∂t
F3l(k,t), (2.11)

reduce the nonvanishing initial values to seven and the different
cf’s Fml(k,t) to twelve. Applying Eqs. (2.9) and (2.11), we
have F22(k,t) = F14(k,t),F25(k,t) = F34(k,t), and F23(k,t) =
F15(k,t), so that V22(k) = V14(k) and V25(k) = V34(k).

Note that the remaining 12 cf’s Fml(k,t) are not indepen-
dent, because from the conservation laws it is possible to
obtain nine additional relations, five connecting the first time
derivative and four the second time derivative to the simple
functions. In conclusion, within the 25 Fml(k,t), only three are
independent, that is, F11(k,t), F13(k,t), and F33(k,t), while all
the other cf’s can be obtained from these three basic functions.

B. Orthonormal linear transformation

As is well known, in generalized hydrodynamics (as well
as in any other approach based on memory functions) it
is advantageous to deal with a set of mutually orthogonal
variables. This reduction can be achieved by introducing five
k-dependent orthonormal linear combinations bm(k) of the five
microscopic quantities am(k) of Eq. (2.2):

bm(k) =
5∑

l=1

Uml(k) al(k), (2.12)

which satisfy the orthonormal conditions 〈[bm(k)]∗bl(k)〉 =
δml .

The (5 × 5) matrix U (k) is related to matrix V (k) by
UT (k)U (k) = V −1(k).

A successive orthogonalization of n, u, e, σ , and q defines
the matrix U (k), whose elements as a function of Vml(k) and
of thermodynamic parameters are reported in Appendix A.

C. Generalized hydrodynamics and Gml (k,t)

We start with the 25 cf’s Gml(k,t) defined as follows:

Gml(k,t) = 〈[bm(k)]∗bl(k,t)〉. (2.13)

The cf’s Gml(k,t) can readily be calculated from the
relevant Fij (k,t), and the expressions of the four fundamental
functions G11,G22,G13, and G33(k,t) are given by Eqs. (3.16)–
(3.18) of Ref. [21].

In generalized hydrodynamics, it is impossible to connect
the above time cf’s to the transport properties, in the time
domain, without approximations. In contrast, this is possible
in the frequency domain, through the exact kinetic equations
(derived in Appendix B),

z G̃ml(k,z) = −
5∑

r=1

Hmr (k,z) G̃rl(k,z) + δml, (2.14)

where Hmr (k,z) are the elements of the matrix

H (k,z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ifun(k) 0 0 0

ifun(k) 0 ifuT (k) ifuσ (k) 0

0 ifuT (k) 0 0 ifT q(k)

0 ifuσ (k) 0 zσ (k,z) izqσ (k,z)

0 0 ifT q(k) izqσ (k,z) zq(k,z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.15)

and are derived and defined in the same appendix. In
this matrix, there are four k-dependent characteristic fre-
quencies [defined by Eqs. (B6)–(B9)] and three (k,z)-
dependent transport parameters [Eqs. (B10)–(B11)]. Now,
solving the linear system of Eq. (2.14), it is possible to
obtain all the G̃ml(k,z) as a function of these four frequencies
and three (k,z)-dependent transport parameters. Notice that
the three functions F11(k,t), F13(k,t), and F33(k,t) and their
Laplace transform are sufficient to calculate all the G̃ml(k,z).
We report in the following only the result for the Laplace
transform of the three fundamental functions [the results for
the other independent G̃ml(k,z) are reported in Appendix C].
We obtain

G̃11(k,z) = [z + zT (k,z)][z + zφ(k,z)] + [fuT (k) +
(k,z)]2

D(k,z)
,

(2.16)

G̃13(k,z) = −fun(k)[fuT (k) + 
(k,z)]

D(k,z)
, (2.17)

G̃33(k,z) = [z2 + fun(k)2 + zzφ(k,z)]

D(k,z)
, (2.18)

with


(k,z) = −fuσ (k) fT q(k) zqσ (k,z)

D1(k,z)
, (2.19)

zφ(k,z) = fuσ (k)2 [z + zq(k,z)]

D1(k,z)
, (2.20)

zT (k,z) = fT q(k)2 [z + zσ (k,z)]

D1(k,z)
, (2.21)

and

D(k,z) = z[z + zT (k,z)][z + zφ(k,z)]

+ fun(k)2[z + zT (k,z)] + z[fuT (k) + 
(k,z)]2.

(2.22)

In Eqs. (2.19)–(2.21),

D1(k,z) = [z + zσ (k,z)][z + zq(k,z)] + zqσ (k,z)2. (2.23)

The standard problem of generalized hydrodynamics is to
obtain information on sound propagation and dispersion, and
on transport properties (viscosities and thermal diffusivity).
From the experimental point of view, however, scattering
experiments provide data of the structure factor, S(k,ω) ∝
Re{G̃11(k,z)}. With these data only, it is impossible to obtain
all seven quantities of matrix H (k,z), the four frequencies and
the three complex quantities, which are connected directly
to the transport properties. Hence, to obtain this information
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on transport properties, it is usually necessary to resort to a
model for the memory functions [5,6] (viscoelastic model,
two exponential model, etc.). By MD simulation, on the
contrary, it is possible to calculate all three cf’s density-density,
density-energy, and energy-energy directly, F11(k,t), F13(k,t),
and F33(k,t), and, by orthonormal transformations, the three
cf’s G11(k,t), G13(k,t), and G33(k,t); note that in the last cf’s
the index 3 relates to temperature, so that G33(k,t) is the nor-
malized temperature-temperature fluctuation. In conclusion, in
MD “experiments,” with the above-mentioned three cf’s one
can perform the inversion of Eqs. (2.16)–(2.18) to obtain the
three quantities zσ (k,z), zq(k,z), and zqσ (k,z), together with
the four generalized frequencies, without approximations and
models.

If the higher-order cf’s, with m or l = 4,5, are eliminated,
Eq. (2.14) reduces to

z G̃ml(k,z) = −
3∑

r=1

H (h)
mr (k,z) G̃rl(k,z) + δml, (2.24)

with Hh, the hydrodynamic matrix, defined as follows:

H (h)(k,z)

=

⎡
⎢⎣

0 ifun(k) 0

ifun(k) zφ(k,z) i[fuT (k) + 
(k,z)]

0 i[fuT (k) + 
(k,z)] zT (k,z)

⎤
⎥⎦ .

(2.25)

The comparison with the standard hydrodynamic model
leads to the following generalizations:

zφ(k,z) = k2 ηL(k,z)

ρ
, (2.26)

where ηL(k,z) is the generalized longitudinal viscosity;

zT (k,z) = k2 λ(k,z) M

ρ cV (k)
, (2.27)

with λ(k,z) the generalized thermal conductivity; and

γ (k,z) = 1 + [fuT (k) + 
(k,z)]2

fun(k)2
(2.28)

the generalized ratio of specific heats. In the hydrodynamic
model (h) it is assumed that the z dependence of these
three properties can be neglected, so that G̃11(k,ω) = S(k,ω)

S(k)
becomes a sum of three Lorentzians that correspond to the
three eigenmodes of matrix H (h)(k).

D. Generalized transport properties

To obtain an explicit expression of the three functions
zσ (k,z), zq(k,z), and zqσ (k,z), it is convenient to rewrite
Eqs. (2.16)–(2.18) using the three new complex variables:

ñφ(k,z) ≡ 1

z + zφ(k,z)
, (2.29)

ñT (k,z) ≡ 1

z + zT (k,z)
, (2.30)

f̃uT (k,z) ≡ fuT (k) + 
(k,z). (2.31)

Using these functions, Eqs. (2.16)–(2.18) become

G̃11(k,z) = 1 + ñφ(k,z)̃nT (k,z)f̃uT (k,z)2

den(k,z)
, (2.32)

G̃13(k,z) = −fun(k)̃nφ(k,z)̃nT (k,z)f̃uT (k,z)

den(k,z)
, (2.33)

G̃33(k,z) = [z + fun(k)2ñφ(k,z)]̃nT (k,z)

den(k,z)
, (2.34)

where

den(k,z) = z+fun(k)2ñφ(k,z)+z ñφ(k,z)̃nT (k,z)f̃uT (k,z)2.

(2.35)

Combining the three equations above, we can derive

G̃11(k,z) G̃33(k,z) − G̃13(k,z)2 ≡ �13(k,z) = ñT (k,z)

den(k,z)
.

(2.36)

Then from Eq. (2.34), we obtain

ñφ(k,z) = 1

fun(k)2

G̃33(k,z) − z�13(k,z)

�13(k,z)

= 1

fun(k)2


13(k,z)

�13(k,z)
. (2.37)

Replacing Eqs. (2.36) and (2.37) in Eq. (2.33), we have

f̃uT (k,z) = −fun(k) G̃13(k,z)


13(k,z)
, (2.38)

and from Eq. (2.32),

ñT (k,z) = 
13(k,z)

1 − z G̃11(k,z)
≡ 
13(k,z)

�11(k,z)
. (2.39)

Using Eqs. (2.29)–(2.31), it is now possible to calculate

(k,z), zφ(k,z), and zT (k,z) as a function of the three Laplace
transforms G̃11(k,z), G̃13(k,z), and G̃33(k,z),


(k,z) = f̃uT (k,z) − fuT (k) = −fun(k) G̃13(k,z)


13(k,z)
− fuT (k),

(2.40)

zφ(k,z) + z = 1

ñφ(k,z)
= fun(k)2�13(k,z)


13
, (2.41)

zT (k,z) + z = 1

ñT (k,z)
= �11(k,z)


13(k,z)
. (2.42)

The three (k,z)-dependent transport properties zqσ (k,z),
zσ (k,z), and zq(k,z) of matrix (2.15) can now be expressed
as follows:

zqσ (k,z)

fuσ (k) fT q(k)

= −
(k,z)

[zφ(k,z) zT (k,z) + 
(k,z)2]

= [fun(k)G̃13(k,z) + fuT (k)
13(k,z)]
13(k,z)

Dqσ (k,z)
, (2.43)
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zσ (k,z) + z

fuσ (k)2
= zT (k,z)

[zφ(k,z) zT (k,z) + 
(k,z)2]

= [�11(k,z) − z
13(k,z)]
13(k,z)

Dqσ (k,z)
, (2.44)

zq(k,z) + z

fT q(k)2
= zφ(k,z)

[zφ(k,z) zT (k,z) +
(k,z)2]

= [fun(k)2�13(k,z) − z
13(k,z)]
13(k,z)

Dqσ (k,z)
,

(2.45)

where

Dqσ (k,z)

= [�11(k,z) − z
13(k,z)][fun(k)2�13(k,z) − z
13(k,z)]

+ [fun(k)G̃13(k,z) + fuT (k)
13(k,z)]2. (2.46)

As shown in Sec. III B, from the short time behavior and
the initial values of these functions, also the generalized ther-
modynamic properties h(k), α(k), cP (k), cV (k), and therefore
γ (k) can be calculated [see Eqs. (3.3)–(3.8)].

In conclusion, we have obtained exact and explicit expres-
sions for all elements of matrix (2.15), which can be calculated
from the three cf’s F11(k,t), F13(k,t), and F33(k,t) through the
transforms G11(k,z), G13(k,z), and G33(k,z). This result is the
main original contribution of the present paper.

E. Physical interpretation of transport properties
and limiting cases

In a number of interesting cases, the three generalized
parameters ηL(k,z), λ(k,z), and γ (k,z) can be related to the
transform of the MD cf’s in a clearer way.

To achieve this result, it is convenient using G̃22(k,z), the
transform of the longitudinal current cf, instead of that of the
density-density cf, G̃11(k,z). Using Eq. (C4), we obtain

ηL(k,z)

= ρ

k2

{
1

G̃22(k,z)

[
1 − δ13(k,z)

1 + δ13(k,z)

]
− z − fun(k)2

z

}
,

(2.47)

λ(k,z)

= ρcV (k)

k2M

{
1

G̃33(k,z)

[
1 − δ13(k,z)

1 + δ13(k,z)

]
− z

}
, (2.48)

and

γ (k,z) − 1 =
[

δ13(k,z)

z G̃13(k,z)[1 + δ13(k,z)]

]2

, (2.49)

where

δ13(k,z) = z2G̃13(k,z)2

fun(k)2G̃22(k,z)G̃33(k,z)
. (2.50)

The equations above show that ηL(k,z) is related to
G̃22(k,z), the transform of the longitudinal current cf, being
mostly determined by its memory function. In a similar

way, λ(k,z) is connected to the temperature-temperature
correlations, as this parameter also is related to its memory
function of G̃33(k,z). As to γ (k,z), this parameter reflects
density-temperature correlations, being ruled by G̃13(k,z).

The connection between transport properties and the
Laplace transform of the correlation functions becomes more
apparent when the condition |δ13(k,z)| 	 1 is fulfilled. In this
case, we obtain

Re{ηL(k,z)} ∼= ρ

k2
Re

{
1

G̃22(k,z)

}
, (2.51)

Re{λ(k,z)} ∼= ρcV (k)

k2M
Re

{
1

G̃33(k,z)

}
(2.52)

and γ (k,z) − 1 ∼= 0.
From a physical point of view, this condition corresponds to

a liquid with a small generalized thermal expansivity γ (k) −
1α ∝ (k)2 	 1 and relatively small temperature-density cou-
pling, that is, relatively small cross correlation between stress
tensor and longitudinal heat-flux fluctuations, |
(k,z)| � 0.

A sort of opposite limiting behavior is observed if the
conditions

zqσ (k,z) = 0, |
(k,z)| 	 fuT (k) or γ � 1 (2.53)

are verified. This means that the coupling between the stress-
tensor and heat-flux fluctuations becomes negligible, but the
specific-heat ratio is much greater than 1. In this case, also
the calculation of the elements of the matrix (2.15) can be
simplified. We have

f̃uT (k,z) ∼= fuT (k) =
[
V22(k)

V11(k)
[γ (k) − 1]

] 1
2

k. (2.54)

From the relations among the basic functions G11(k,z),
G13(k,z), and G33(k,z),

G̃33(k,z) − z [G̃11(k,z)G̃33(k,z) − G̃13(k,z)2]

≡ 
13(k,z) = −fun(k) G̃13(k,z)

fuT (k)
(2.55)

and

fun(k)2G̃22(k,z)G̃33(k,z) + z2G̃13(k,z)2

= −z fun(k) G̃13(k,z)

fuT (k)
= z
13(k,z), (2.56)

we can rewrite Eqs. (2.47) and (2.48) as

ηL(k,z)

= ρ

k2

{
1

G̃22(k,z)

[
1 + z fuT (k)G̃13(k,z)

fun(k)

]
− z − fun(k)2

z

}
,

(2.57)

λ(k,z)

= ρM

k2cV (k)

{
1

G̃33(k,z)

[
1 + z fuT (k)G̃13(k,z)

fun(k)

]
− z

}
.

(2.58)
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In other words, in this case G13(k,t) becomes the funda-
mental function.

F. Memory functions approach

A very useful and frequently used approach involves the
memory functions [5,6,19,22]. From a Laplace transform of a
normalized cf N (t), we obtain the respective memory function
by the relation

Ñ (z) = 1

z + M̃(z)
, (2.59)

where M̃(z) = M(t = 0)Ñ1(z) and Ñ1(z) is the Laplace
transform of the normalized memory function of order 1,
N1(t), of the correlation function N (t). Applying this relation
to the autocorrelation functions G11(k,t) and G33(k,t), we
obtain

Ñ11,1(k,z) = M̃11,1(k,z)

fun(k)2
= 1

z + M̃11,2(k,z)
, (2.60)

where

M̃11,2(k,z) = zφ(k,z) + f̃uT (k,z)2

z + zT (k,z)
(2.61)

and

G̃33(k,z) = 1

z + M̃33,1(k,z)
, (2.62)

where

M̃33,1(k,z) = zT (k,z) + z f̃uT (k,z)2

z2 + z zφ(k,z) + fun(k)2
. (2.63)

Note the different order of the G11(k,t) and G33(k,t)
cf’s with respect to the memory function formalism and the
transport coefficients: M̃11,2(k,z), the memory function of
order 2 of G11(k,t), has zφ(k,z) at the same order as zT (k,z) of
M̃33,1(k,z), the memory function of order 1 of G33(k,t). From
this point of view, G22(k,t) behaves as G33(k,t) does. In fact,
from Eq. (C4) we obtain

G̃22(k,z) = 1

z + M̃22,1(k,z)
= 1

z + M̃11,2(k,z) + fun(k)2/z
.

(2.64)

It is worth pushing the procedure one step further: as a
consequence of Eqs. (2.19)–(2.23), with a simple calculation,
finally we obtain

Ñ11,2(k,z) = M̃11,2(k,z)

fuσ (k)2 + f̃uT (k,0)2
= 1

z + M̃11,3(k,z)
,

(2.65)

where

M̃11,3(k,z) = zσ (k,z)
1 + Ãn(k,z)

1 + Ãd (k,z)
(2.66)

with

Ãn(k,z) = fun(k)2fuT (k)2

fuσ (k)2zσ (k,z)

z + zσ (k,z) + 2 z zqσ (k,z) {fuσ (k)/[fuT (k)fT q(k)]}
z [z + zq(k,z)] + fT q(k)2

(2.67)

and

Ãd (k,z) = fuT (k)2

fuσ (k)2

D1(k,z) − 2 zqσ (k,z) fuσ (k)fT q(k)/fuT (k)

z [z + zq(k,z)] + fT q(k)2
. (2.68)

Moreover, for the memory functions of G33(k,t), we obtain

Ñ33,1(k,z) = M̃33,1(k,z)

fT q(k)2 + f̃uT (k,0)2
= 1

z + M̃33,2(k,z)
, (2.69)

where

M̃33,2(k,z) = zq(k,z)
1 + z B̃n(k,z)

1 + z B̃d (k,z)
(2.70)

with

B̃n(k,z) = fuσ (k)2fuT (k)2

fT q(k)2zq(k,z)

z + zq(k,z) + 2 z zqσ (k,z) {fT q(k)/[fuT (k)fuσ (k)]}
[z + zσ (k,z)][z2 + fun(k)2] + z fuσ (k)2

(2.71)

and

B̃d (k,z) = fuT (k)2

fT q(k)2

D1(k,z) − 2 zqσ (k,z) fuσ (k)fT q(k)/fuT (k)

[z + zσ (k,z)][z2 + fun(k)2] + z fuσ (k)2
. (2.72)

III. RESULTS AND DISCUSSION

A. Simulation details

Two thermodynamic states of argon have been simulated, at
T = 88 and 200 K and a corresponding density of ρ = 1.3 and

1.4 g/cm3. In all cases, 864 atoms have been used and
the length of the runs, after a long equilibration time, has
been about 2 ns [23]. We calculated a range of time corre-
lation functions between the microscopic variables defined
in Eqs. (2.3)–(2.7), namely, F11(k,t), F22(k,t), F13(k,t), and
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F33(k,t) and also F43(k,t), F44(k,t), and F55(k,t). The latter
three functions have been used as a check of the accuracy
of our results. The values of k ranged from k � 1.8 nm−1

to k � 300 nm−1, while the correlation time was significantly
larger than that required for the functions to vanish in the noise.

B. Initial values Vml (k) and generalized
thermodynamic functions

As a consequence of the theory of critical phenomena, some
of the seven functions Vml(k) of matrix V (k) are connected to
the generalized thermodynamic properties:

V13(k) = h(k)S(k) − kBT 2α(k), (3.1)

V33(k) = [kBT 2cP (k) + h(k)2S(k) − 2kBT 2α(k)h(k)], (3.2)

where S(k) ≡ V11(k is the structure factor). Moreover, the
mean-square longitudinal velocity is connected to the initial
value of the longitudinal current kBT

M
= V22(k), and the

generalized enthalpy per particle is defined as

h(k) = − 1

V22(k) k2
lim
t→0

∂2

∂t2
F13(k,t) = V34(k)

V22(k)
. (3.3)

The remaining properties are the generalized thermal
expansion coefficient, α(k), and the generalized specific heat
at constant pressure, cP (k). We obtain

α(k) = h(k) V11(k) − V13(k)

kBT 2
, (3.4)

cp(k) = h(k)2V11(k) − 2 h(k)V13(k) + V33(k)

kBT 2
. (3.5)

Furthermore, from the thermodynamic equation,

cV (k) = cP (k) − kBT 2α(k)2

S(k)
, (3.6)

it is possible to calculate the generalized specific heat at
constant volume,

cv(k) =
V33(k) − V13(k)2

V11(k)

kBT 2
, (3.7)

and hence the generalized ratio of the specific heats,

γ (k) = 1 + [h(k) V11(k) − V13(k)]2

V11(k)
[
V33(k) − V13(k)2

V11(k)

] . (3.8)

It is also necessary to add the two functions

V44(k) = − 1

k2
lim
t→0

∂2

∂t2
F22(k,t), (3.9)

V55(k) = − 1

k2
lim
t→0

∂2

∂t2
F33(k,t), (3.10)

which will be used in fuσ (k) and fT q(k) [see Eqs. (B8)
and (B9)]. In conclusion, except for the two last functions, the
five generalized properties S(k), h(k), α(k), cV (k), and cP (k)
can be calculated by a proper combination of V11,V22,V13,V33,
and V34.

The generalized thermodynamic functions for argon at 88
and 200 K are shown in Fig. 1. At the higher temperature,
these functions depend on k in a more smooth fashion and their
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FIG. 1. Generalized thermodynamic functions for argon: black
squares, T = 88 K; white crossed squares, T = 200 K; the horizontal
thick full and dashed lines relate to k → ∞ values.

values are in good agreement with the corresponding values
obtained in Refs. [13] and [24] for the same thermodynamic
state. In particular, for k > 15 nm−1, the correlation between
S(k) and α(k) is remarkable, and is due [see Eq. (3.4)] to the flat
behavior of h(k) and the proportionality of S(k) and V13(k)
for these values of k. On the contrary, at low k’s also h(k) affects
α(k) and is responsible of the increasing α(k) for k → 0.

In its turn, the behavior of h(k) [see Eq. (3.3)] is completely
determined by V43(k), V22(k) being constant. At low k and
at T = 200 K, h(k) is positive, denoting the prevalence of
the kinetic term, while at lower temperature h(k) is always
negative, denoting the prevalence of the potential term. Note
also the great increase of γ (k) for k → 0, especially at lower
temperature.

As remarked in Ref. [24], the k → ∞ values differ from
the corresponding ideal-gas values because the liquid system
interacts via a potential that does not vanish in this limit.
The ideal-gas limits are h(G) = 5kBT /2, c

(G)
V = 3kB/2, and

γ (G) = 5/3. This difference is evident in the quantities that
are potential-dependent such as h(k), cV (k), and γ (k), the only
exception being α(k)T , where a cancellation of terms leads to
the ideal-gas limit value [α(k)T → 1] in Eq. (3.4) also in the
liquid case [h(∞) − V13(∞) = kBT ].

C. Generalized transport coefficients (k dependence)

The aim of this subsection is to discuss the k dependence of
the transport coefficients [see Eqs. (2.40)–(2.45)] in the ω → 0
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FIG. 2. Generalized transport coefficients of argon at ω = 0. (a)
and (d) zφ(k), (b) and (e) zT (k), (c) and (f) 
(k); the full circles
in the zφ(k) and zT (k) plot refer to approximate values obtained for

(k) = 0. The crossed squares reported for 
(k) at T = 200 K are
calculated from the results of Ref. [25] (see text).

limit. It is worth recalling that the results we obtain with the
theory outlined in the previous sections are not connected with
a linear combination of complex Lorentzian components, as
in Ref. [13] or other possible models. Rather, the generalized
hydrodynamic transport properties are obtained by inverting
exact algebraic relations for the Laplace transform of the three
fundamental cf’s G11(k,t), G13(k,t), and G33(k,t), calculated
from the density-density, density-energy, and energy-energy
cf’s. In fact, also the transforms of the cross cf’s 
(k,z) and
zqσ (k,z) can be obtained “exactly” from simulation data.

zφ(k,0), zT (k,0), and 
(k,0) are shown in Fig. 2. The
first two functions are proportional to generalized viscosity
and thermal conductivity, respectively, while the last can be
considered a measure of the coupling between stress and heat
currents. zφ(k,0) and zT (k,0) increase almost linearly at low
k’s to produce a peak that ends with a minimum at the k of
the maximum of S(k). The k dependence is more apparent
if these functions are calculated assuming 
(k,0) = 0. In
fact, the results diverge as soon as k reaches �10 nm−1, see
Fig. 2. This is where 
(k,0) starts decreasing much more
rapidly than fuT (k) = fun(k) [γ (k) − 1]

1
2 , so that the condition

of the second limiting case discussed in Sec. II E is no longer
fulfilled. In conclusion, at intermediate and high k values it is
not correct to neglect the contribution of the cross correlation
term, 
(k,0).

A dynamical coupling coefficient between stress and heat
currents [ξ (k,0) ∝ −
(k,0) cV (k)/k2] has also been com-
puted for the LJ fluid by Mryglod and Omelyan (Ref. [25])
from simulation results, at a thermodynamic state very close
to our own at T = 200 K. The results obtained from our data
of cV (k) and 
(k,0) show a good agreement with those of
Ref. [25]. The coefficient ξ (k,0) has a large increase at low k’s,
then a minimum at the k value corresponding to the maximum
of S(k), and a similar oscillation at higher k’s around a value
roughly an order of magnitude lower than the value at low
k’s. The corresponding results at T = 88 K show a similar
trend with a minimum at k ∼ 10 nm−1 roughly one-half of
that corresponding to the maximum of S(k). To compare more
quantitatively the two results, in Fig. 2 the values of 
(k,0)
calculated combining our results of zqσ (k,0) with cV (k) of
Ref. [24] and ξ (k,0) of Ref. [25] are reported for seven
k values. The agreement is satisfactory, apart for some points
at low k, where the magnitude of this quantity decreases
and the error in the calculation of this coefficient becomes
higher.

In Fig. 3, the values of zσ (k,0), zq(k,0), and zqσ (k,0)
calculated from Eqs. (2.43)–(2.45) are reported. The first two
quantities increase as a function of k with an oscillation at
k ∼ 20 nm−1, and also zqσ (k,0) at higher temperature shows
a small maximum at this k value. The latter quantity at 88 K
increases with k, after a small minimum at low k values. For
T = 200 K, the three quantities show a reasonable agreement

FIG. 3. Generalized transport coefficients of argon at ω = 0.
(a) and (d) zσ (k), (b) and (e) zq (k), (c) and (f) zqσ (k).
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FIG. 4. Generalized transport properties of argon at two temper-
atures. (a) and (c) longitudinal viscosity, ηL(k); (b) and (d) thermal
conductivity, λ(k).

with the results of Ref. [13] in the same thermodynamic state.
Note that the results of Ref. [13] are obtained assuming that
Fij (k,t) can be expressed in terms of the eigenmodes as a sum
of five exponentials and neglecting the dependence of the three
parameters on the frequency. This is correct only if the decay
time of the cf’s Jσ (k,t), Jq(k,t), and Jqσ (k,t), which are related
via Laplace transform to zσ (k,z), zq(k,z), and zqσ (k,z) (see
Appendix B), is shorter than that of Gij (k,t). In other words,
zσ (k), zq(k), and zqσ (k) are the results of a fitting procedure,
which means that these parameters perform a sort of mean of
Jσ (k,t), Jq(k,t), and Jqσ (k,t) over the time scale in which the
Gij (k,t) decay to zero.

The generalized longitudinal viscosity, ηL(k), and thermal
conductivity, λ(k), obtained from Eqs. (2.26) and (2.27),
are reported in Fig. 4. Both functions decay rapidly and
monotonically as a function of k, consistently with the behavior
of the “parent” coefficients zφ(k,0) and zT (k,0) shown in
Fig. 2. The values at k = 0 are calculated from the Green-Kubo
relations and the results are in reasonable agreement with
the experimental data [26,27]. The viscosity and thermal
conductivity of argon change slightly (10%–20%) in the
two thermodynamic states despite their large difference of
temperature, and this is due to a compensation effect of the
density contribution (the density at T = 200 K is 1.4 g/cm3

versus 1.3 g/cm3 at T = 88 K), in perfect agreement with
experimental results.

Finally, note that from relations (2.19)–(2.21) and (2.43)–
(2.45) in the k → 0 limit, zqσ (k,0) must tend to zero as
k, 
(k,0) as k3, z�(k,0) and zT (k,0) as k2, while zσ (k,0)
and zq(k,0) tend to finite values zσ (0,0) = {[fuσ (k)2/k2]ρ/

ηL(k)}k→0 and zq(0,0) = {[fT q(k)2/k2]ρcV (k)/Mλ(k)}k→0,
respectively. As we can see from Figs. 2 and 3, these limits
are respected with just a little deviation for k → 0 especially
in zqσ (k,0), likely due to some residual computational inaccu-
racy.

D. Generalized spectra of transport coefficients (ω dependence)

From the exact kinetic Eq. (2.14) and using Eqs. (2.40)–
(2.45), it is possible to obtain, for all k values, the Laplace
transforms and then the time dependence of all the transport
properties, without approximation or intermediate models. An
important consequence is that this procedure can be used to
test the validity of the Markovian hypothesis that consists of
neglecting the z (or ω) dependence of the three quantities
zσ (k,z), zq(k,z), and zqσ (k,z) in the low frequency range. As
noted in the preceding paragraph, this is correct only if G̃ij (k,z)
decays completely in the same frequency range in which the
three quantities zσ (k,z), zq(k,z), and zqσ (k,z) can be assumed
frequency-independent.

An example of this situation is shown in Fig. 5 for argon
at k � 265 nm−1. Note that for very high values of k, the
shape of the Fij (k,t) [or Gij (k,t)] cf’s is practically Gaussian
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FIG. 5. Generalized spectra of the transport properties, of the
ratio of specific heats, and of the three cf’s G22(k,t), G13(k,t), and
G33(k,t) in the free-streaming limit, k � 265 nm−1, at T = 88 K
(full lines) and T = 200 K (broken lines): (a) Real part of zφ(k,z),
zT (k,z), and 
(k,z); (b) real part of γ (k,z); (c) real part of
zσ (k,z), zq (k,z), and zqσ (k,z); (d) real part of G̃22(k,z), G̃13(k,z), and
G̃33(k,z).
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or a time derivative of a Gaussian [28]. The six transport
properties for argon at the two temperatures are reported in
parts (a) and (c) of the figure, while the spectra of the three
fundamental cf’s G22(k,t), G13(k,t), and G33(k,t) are shown
in part (d). The spectra of these functions are essentially zero
beyond ω ∼ 125 ps−1 at 88 K and ω ∼ 200 ps−1 at 200 K. In
the same frequency range, the real part of zσ (k,z) and zq(k,z)
decays roughly 20%–10% at 88 K and 60%–40% at 200 K.
Moreover, the real part of zqσ (k,z) shows a flat behavior with
a small maximum at ω ∼ 110 ps−1 at 88 K and ω ∼ 220 ps−1

at 200 K. This means that the Markovian approximation is not
accurate at high k, especially in the high temperature state.
Furthermore, the values of zqσ (k,z) are not negligible. In fact,
the values of the real part of zσ (k,z) and zq(k,z), calculated
by Eqs. (2.44) and (2.45) assuming 
(k,z) = 0, are 10%–15%
higher than that of Fig. 5(c), for ω = 0, as it happens for zφ(k,z)
and zT (k,z), see Fig. 2.

In Fig. 5(b), we report the real part of γ (k,z) defined by
Eq. (2.28). Note that the values reported in Fig. 1(d) relate to
the ω → ∞ limit (or t → 0) for the definitions (3.3) and (3.8),
so that this limit (1.5–1.55) must coincide with the values
at high k’s of Fig. 1(d) and actually does. Note also that
γ (k,ω → ∞) = γ (k) �= γ (k,0), because in Eq. (3.8) there
are only quantities calculated at t = 0 or t → 0 and in this
limit 
(k,ω → ∞) → 0, hence the real part of γ (k,z) has an
ω-dispersion behavior starting from γ (k,ω = 0) and reaching
γ (k) for ω → ∞ (or t → 0). At lower frequencies, γ (k,z) is
determined also by the 
(k,z) contribution [see Eq. (2.28)].
In fact, its form is similar to that of the real part of 
(k,z) [see
the corresponding maximum in the Fig. 5(a)].

Given that the Markovian hypothesis is not correct at high
k’s for argon, we report in Fig. 6 the analogous results for
the k value (k � 20 nm−1), where S(k) has its maximum. At
T = 200 K, the cf’s Gij (k,t) decay in the range of 15 ps−1,
while in the same range zφ(k,z) and zT (k,z) decay only 5%–
10% and the real part of zqσ (k,z) is roughly flat, so that the
three functions may be considered ω-independent. This is the
reason why the results of Ref. [13], if properly scaled, are in
good accord with our results. The ω dependence of the real
part of 
(k,z) can be compared with the theoretical prediction
shown in Fig. 6(d) of Ref. [25], taking into account that because
of different definitions, the sign is opposite and the value must
be scaled. Doing so, the shape is in quite good agreement,
especially in the case of the five-mode approximation. Note
that in Ref. [25] (Figs. 6 and 7), only the theoretical prediction
for the frequency dependence of ξ (k,z) ∝ −
(k,z) is reported.
In fact, the authors could not obtain the exact simulation results
(as for generalized shear viscosity and thermal conductivity)
for ξ (k,z) ∝ −
(k,z), as we do in the present paper.

For T = 88 K, the results are similar, apart for a relatively
large increase (20%–30%) of z′

q(k,ω) in the low-ω region that
leads to a corresponding decrease of z′

T (k,ω) (and then of
thermal conductivity) for ω → 0. Another observation is that
the variation of the amplitude of the real part of 
(k,z) is
smaller than at T = 200 K, while the effect on the real part of
γ (k,z) is more pronounced, probably due to the smaller value
of fuT (k) = fun(k)[γ (k) − 1]0.5, being fun(k) ∝ T 0.5. In the
case of z′

q(k,ω), the Markovian assumption is more correct at
T = 200 K, because at T = 88 K it rapidly increases in the
low ω region.
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FIG. 6. Generalized spectra of the transport properties, of the
ratio of the specific heats, and of the three fundamentals cf’s G22(k,t),
G13(k,t), and G33(k,t), at the k of the peak of S(k), k � 20 nm−1,
at T = 88 K (full lines) and T = 200 K (broken lines), and for k �
20 nm−1 : (a) Real part of zφ(k,z), zT (k,z), and 
(k,z); (b) real part
of γ (k,z); (c) real part of zσ (k,z), zq (k,z), and zqσ (k,z); (d) real
part of G̃22(k,z), G̃13(k,z), and G̃33(k,z). The inset shows the low
frequency region.

IV. CONCLUSIONS

We have presented an approach that provides an explicit
solution of the exact kinetic equations (2.14) in the frequency
and wavelength domain.

The data necessary to implement this approach are the
three independent density-density, F11(k,t); density-energy,
F13(k,t); and energy-energy, F33(k,t) time correlation func-
tions. They are most easily obtained in an MD simulation, but
theoretical or experimental data could also be used, provided
they cover a time span large enough to allow an accurate
Laplace transformation.

In fact, orthonormal combinations of the Laplace trans-
forms of the three basic cf’s [Gij (k,z)] are the functions that
enter Eqs. (2.14) as input. With a basis of five variables,
the matrix Hmr (k,z) that enters Eq. (2.14) contains elements
that are related to generalized thermodynamic properties (e.g.,
enthalpy, thermal expansivity, and heat capacities), and are
given by proper combinations of the initial values of the three
cf’s mentioned above.

The matrix Hmr (k,z) also contains frequency-dependent
functions, related to generalized transport coefficients such
as longitudinal viscosity, thermal conductivity, and ratio of
specific heats. Solving Eq. (2.14) leads to explicit expressions
for these quantities, which offers the additional advantage of
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testing the reliability of the common assumptions usually made
to calculate generalized transport parameters. Among them are
the Markov approximation, which amounts to considering fre-
quency independent the generalized transport coefficients until
the spectra Gij (k,z) essentially vanish, and the approximation
of assuming negligible the coupling between stress tensor and
energy flux fluctuations.

When our approach is applied to the LJ fluid (argon), it turns
out that the latter approximation is not correct, as the parameter
that measures the coupling [
(k,0)] is actually negligible only
in the limit of k = 0, at 88 and 200 K. This approximation be-
comes even less accurate as k increases, except for the k range
around the maximum of S(k). The range of wavelengths where
the maximum of S(k) is corresponds to longer-lived positional
correlations. In its turn, this leads to relatively slowly decaying
time correlation functions and then to spectra that vanish more
quickly. This explains why, if the Markov approximation is
adopted, one obtains more accurate results for k in the range
of the peak of S(k) rather than in the free-streaming limit.
On the same basis, higher temperatures worsen the Markov
approximated results, with the possible exception of z′

q(k,ω).
In any case, the most important factor for the reliability of
the Markov assumption remains the distance scale of the
correlations, as measured by k, at least for the LJ fluid.

Moreover, the exact calculation of the generalized thermo-
dynamic coefficients allows one to resolve the ambiguity on the
relative role [essentially due to γ (k)] of the viscous and thermal

contribution to S(k,ω), which is the only experimentally
measurable physical quantity [17–20].

Confidence in the simulation results is based on their
agreement with experimental data. This is achieved for the
thermal conductivity [26], as well as for the longitudinal
viscosity [27], calculated from the Green-Kubo relations at
k = 0. The latter is also in accord with recent results from a
very long simulation of the LJ fluid [29].

As a final remark, we note that Appendix D details an
alternative route to the results described in this paper. This
alternative approach leads to a higher accuracy in the high
frequency region, at the cost of computing twelve Fij (k,t)
cf’s instead of three. In the same appendix we show that it
is possible to write an alternative definition of generalized
longitudinal viscosity and thermal conductivity. This permits
us to obtain a correct definition of the generalized bulk
viscosity [23] for argon and simple liquids, and can be
extended to molecular liquids as well. With this definition,
bulk viscosity remains positive at all k’s, unlike what was
reported for the LJ fluid [25] and, recently, for liquid metals
[30].

APPENDIX A: ELEMENTS OF THE ORTHONORMAL
TRANSFORMATION MATRIX

For the nine elements Uml(k), we obtain

U11(k) = [V11(k)]−
1
2 = [S(k)]−

1
2 , (A1)

U22(k) = [V22(k)]−
1
2 =

[
kBT

m

]− 1
2

, (A2)

U33(k) =
[
V33(k) − V13(k)2

V11(k)

]− 1
2

= [kBT 2cV (k)]−
1
2 , (A3)

U31(k) = −U33(k)
V13(k)

V11(k)
= U33(k)

[
kBT 2α(k)

S(k)
− h(k)

]
, (A4)

U44(k)2 = V44(k) − V11(k)V34(k)2 − 2V13(k)V14(k)V34(k) + V33(k)V14(k)2

V11(k)V33(k) − V13(k)2
= V44(k) −

(
kBT

m

)2
γ (k)

S(k)
, (A5)

U43(k) = −U44(k)
V11(k)V34(k) − V13(k)V14(k)

V11(k)V33(k) − V13(k)2
= −U44(k)

kBT

mS(k)

α(k)

cV (k)
, (A6)

U41(k) = −U44(k)
V33(k)V14(k) − V13(k)V34(k)

V11(k)V33(k) − V13(k)2
= −U44(k)

kBT

mS(k)

[cP (k) − α(k)h(k)]

cV (k)
, (A7)

U55(k) =
[
V22(k)V55(k) − V25(k)2

V22(k)

]− 1
2

=
[
V55(k) − kBT

m
h(k)2

]− 1
2

, (A8)

U52(k) = −U55(k)
V25(k)

V22(k)
= −U55(k)h(k). (A9)
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APPENDIX B: EXACT KINETIC EQUATIONS FOR THE
LAPLACE TRANSFORM OF THE CF’S OF

ORTHONORMAL QUANTITIES

We resume here, for the reader’s convenience, part of the
appendix A of [13]. The Laplace transforms of the Gml(k,t)
are

G̃ml(k,z) = 〈bm(k) | bl(k,z)〉 (B1)

with

|bl(k,z)〉 = 1

z − L̂
|bl(k)〉. (B2)

Equation (B2) can be written as

z |bl(k,z)〉 = L̂ |bl(k,z)〉 + |bl(k)〉. (B3)

Defining the projection operators,

P =
5∑

l=1

|bl(k)〉〈bl(k)|, (B4)

P⊥ = 1 − P, (B5)

applying both operators to Eq. (B3), and eliminating
P⊥ |bl(k,z)〉 and using the definition (B5), we obtain the
exact kinetic equation Eq. (2.14), which involves the matrix
Hmr (k,z); see Eq. (2.15).

The elements of the matrix that do not depend on frequency
are given by the initial value of the relevant correlation
functions, so they are related to the generalized thermodynamic
functions:

fun(k) =
[
V22(k)

V11(k)

] 1
2

k, (B6)

fuT (k) =
[
V22(k)

V11(k)
[γ (k) − 1]

] 1
2

k, (B7)

fuσ (k) =
[
V44(k)

V22(k)
− V22(k)

V11(k)
γ (k)

] 1
2

k, (B8)

fT q(k) =
[
V11(k)

V55(k) − V22(k) h(k)2

V33(k)V11(k) − V13(k)2

] 1
2

k. (B9)

The matrix Hmr (k,z) also contains frequency-dependent
functions, related to transport coefficients and defined by

zσ (k,z) =
∫ ∞

0
dt e−zt Jσ (k,t), (B10)

zq(k,z) =
∫ ∞

0
dt e−zt Jq(k,t), (B11)

zqσ (k,z) =
∫ ∞

0
dt e−zt Jqσ (k,t) + i � 〈b5(k)|L̂|b4(k)〉,

(B12)

where

Jσ (k,t) ≡ −〈b4(k)|L̂P⊥etP⊥L̂P⊥P⊥L̂|b4(k)〉, (B13)

Jq(k,t) ≡ −〈b5(k)|L̂P⊥etP⊥L̂P⊥P⊥L̂|b5(k)〉, (B14)

Jqσ (k,t) ≡ i〈b5(k)|L̂P⊥etP⊥L̂P⊥P⊥L̂|b4(k)〉. (B15)

Note that when the time scale on which Jσ (k,t), Jq(k,t),
and Jqσ (k,t) decay to zero is shorter than that of the functions

Gij (k,t), the z dependence of the transport coefficients zσ (k,z),
zq(k,z), and zqσ (k,z) can be neglected. As a consequence, we
obtain

zσ (k) =
∫ ∞

0
dt Jσ (k,t), (B16)

zq(k) =
∫ ∞

0
dt Jq(k,t), (B17)

zqσ (k) =
∫ ∞

0
dt Jqσ (k,t) + i 〈b5(k)| L̂ |b4(k)〉 . (B18)

This approximation is equivalent to assuming that a
transport coefficient, which must go to zero when ω → ∞,
has a flat behavior in the low-ω range, in which the spectra
of the fundamental functions Gij (k,t) decay to zero, so that
it is possible to use the ω = 0 value for this coefficient in
Eqs. (B10)–(B11). This approximation, expressed equivalently
in the time regime, is usually referred to as the Markov
assumption (see also Ref. [4], p. 969).

APPENDIX C: CORRELATION FUNCTIONS
CALCULATED FROM TRANSPORT PARAMETERS

According to Eqs. (2.24), the G̃ml(k,z) are calculated as a
function of the three generalized parameters zφ(k,z), zT (k,z),
and 
(k,z),

G̃12(k,z) = −ifun(k)[z + zT (k,z)]

D(k,z)
, (C1)

G̃14(k,z)

= − fun(k)

fuσ (k)

zφ(k,z)[z + zT (k,z)] + 
(k,z)f̃uT (k,z)

D(k,z)
,

(C2)

G̃15(k,z) = ifun(k){fuT (k)[z + zT (k,z)] − zf̃uT (k,z)}
fT q(k)D(k,z)

,

(C3)

G̃22(k,z) = iz

fun(k)
G̃12(k,z)

= z[1 − zG̃11(k,z)]

fun(k)2
= z[z + zT (k,z)]

D(k,z)
, (C4)

G̃23(k,z) = iz

fun(k)
G̃13(k,z) = −i

zf̃uT (k,z)

D(k,z)
, (C5)

G̃24(k,z) = iz

fun(k)
G̃14(k,z)

= −iz
zφ(k,z)[z + zT (k,z)] + 
(k,z)f̃uT (k,z)

fuσ (k)D(k,z)
,

(C6)

G̃25(k,z) = iz

fun(k)
G̃15(k,z)

= − z

fT q(k)

fuT (k)[z + zT (k,z)] − zf̃uT (k,z)

D(k,z)
,

(C7)
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G̃34(k,z) = 
(k,z)[z2 + fun(k)2] − zzφ(k,z)fuT (k)

fuσ (k)D(k,z)
, (C8)

iG̃35(k,z)

= zT (k,z)[z2 + fun(k)2 + zzφ(k,z)] + z
(k,z)f̃uT (k,z)

fT q(k)D(k,z)
,

(C9)

fuσ (k)2D(k,z)G̃44(k,z)

= zzφ(k,z)[z2 + fun(k)2 + fuT (k)2]

+ [z2 + fun(k)2][zφ(k,z)zT (k,z) + 
(k,z)2], (C10)

fuσ (k) fT q(k)D(k,z)G̃45(k,z)

= iz
(k,z)[z2 + fun(k)2 + fuT (k)2]

+ izfuT (k)[zφ(k,z)zT (k,z) + 
(k,z)2], (C11)

fT q(k)2D(k,z)G̃55(k,z)

= zzT (k,z)[z2 + fun(k)2 + fuT (k)2]

+ z2[zφ(k,z)zT (k,z) + 
(k,z)2], (C12)

where

D(k,z) = z[z + zT (k,z)][z + zφ(k,z)]

+ fun(k)2[z + zT (k,z)] + zf̃uT (k,z)2. (C13)

The symmetry property G̃ml(k,z) = G̃lm(k,z) and
Eqs. (2.16)–(2.18) define the remaining elements G̃11(k,z),
G̃13(k,z), and G̃33(k,z). Apart from the functions G̃12(k,z)
and G̃22(k,z) easily connected to G̃11(k,z) and the functions
G̃23(k,z), G̃24(k,z), and G̃25(k,z) that can readily be obtained
from the functions G̃13(k,z), G̃14(k,z), and G̃15(k,z), the other
ten functions may be divided into the following three groups:
the three fundamental functions G̃11(k,z), G̃13(k,z), and
G̃33(k,z), the four intermediate functions G̃14(k,z), G̃15(k,z),
G̃34(k,z), and G̃35(k,z) that involve only one second time
derivative of a2 and a3, and the three functions G̃44(k,z),
G̃45(k,z), and G̃55(k,z) that involve two second time
derivatives of a2 and a3. These three groups can be considered
as corresponding to low, intermediate, and high order in
frequency, respectively.

APPENDIX D: TRANSPORT PARAMETERS AND
INTERMEDIATE AND HIGH FREQUENCY ORDER CF’S

In this appendix, we explore the possibility of defining
the transport properties by means of intermediate or high
frequency order cf’s according to the scheme outlined in the
previous appendix. Note that

G̃24(k,z)

G̃22(k,z)
= G̃14(k,z)

G̃12(k,z)
= − i

fuσ (k)
zφ(k,z)

− i

fuσ (k)

(k,z)

f̃uT (k,z)

z + zT (k,z)
, (D1)

and

G̃35(k,z)

G̃33(k,z)
= − i

fT q(k)
zT (k,z) − i

fT q(k)

(k,z)

× zf̃uT (k,z)

[z2 + fun(k)2 + zzφ(k,z)]
. (D2)

From these two equations and Eqs. (2.26) and (2.27), it is
possible to obtain an alternative definition of generalized
longitudinal viscosity and thermal conductivity,

k2ηL(k,z)

ρ
= zφ(k,z)

= ifuσ (k)
G̃24(k,z)

G̃22(k,z)
+ 
(k,z)

fun(k)

zG̃13(k,z)

G̃22(k,z)
, (D3)

k2λ(k,z)M

ρcV (k)
= zT (k,z)

= ifT q(k)
G̃35(k,z)

G̃33(k,z)
+ 
(k,z)

fun(k)

zG̃13(k,z)

G̃33(k,z)
.

(D4)

By means of two additional intermediate order functions
[G̃34(k,z) and G̃25(k,z)], we can write


(k,z)

fun(k)fuσ (k)

= fun(k)G̃22(k,z)G̃34(k,z) − izG̃13(k,z)G̃24(k,z)

fun(k)2G̃22(k,z)G̃33(k,z) + z2G̃13(k,z)2
,

(D5)


(k,z)

fun(k)fT q(k)

= fun(k)G̃25(k,z)G̃33(k,z) − izG̃13(k,z)G̃35(k,z)

fun(k)2G̃22(k,z)G̃33(k,z) + z2G̃13(k,z)2
.

(D6)

The above relation can be exploited to eliminate G̃13(k,z),
so that, replacing the value of 
(k,z) into Eqs. (D3) and (D4),
it turns out that only six intermediate- to low-order functions
G̃ij (k,z) [constructed by nine Fij (k,t) cf’s, only three of
them independent] are required to obtain zφ(k,z), zT (k,z), and

(k,z). Hence,

zG̃13(k,z)

fun(k)
= i

N13(k,z)

D13(k,z)
(D7)

and

(k,z)

fuσ (k)fT q(k)

= G̃22(k,z)G̃34(k,z)G̃35(k,z) − G̃33(k,z)G̃24(k,z)G̃25(k,z)

G̃22(k,z)G̃33(k,z)D13(k,z)2 − N13(k,z)2
.

(D8)

In Eqs. (D7) and (D8), we have defined

N13(k,z) = fT q(k)G̃33(k,z)G̃25(k,z)

− fuσ (k)G̃22(k,z)G̃34(k,z) (D9)

and

D13(k,z) ≡ fT q(k)G̃35(k,z) − fuσ (k)G̃24(k,z). (D10)

Moreover, Eq. (D6) shows that the first term of Eq. (D3)
is sufficient to describe the dependence of the longitudinal
component (m = 4) of the stress tensor. In fact, Eq. (D6) does
not depend explicitly on this component, so that 
(k,z) and the
second term of Eq. (D3) do not depend on the stress tensor. In
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conclusion, to generalize the longitudinal component (zz) of
the stress tensor with another component such as xx or yy, as
in the case of a generalized definition of bulk viscosity, only the
first term of Eq. (D3) is necessary. It is also possible to obtain
the three generalized quantities (as detailed in Ref. [13]) only
employing intermediate and higher order functions. We have

zφ(k,z)

fuσ (k)2
= G̃44(k,z)D35(k,z) + ifT q(k)G̃45(k,z)G̃34(k,z)

DJ (k,z)
,

(D11)

zT (k,z)

fT q(k)2
= G̃55(k,z)D24(k,z) + ifuσ (k)G̃45(k,z)G̃25(k,z)

DJ (k,z)
,

(D12)


(k,z)

fuσ (k)fT q(k)

= fT q(k)G̃34(k,z)G̃55(k,z) − i G̃45(k,z)D35(k,z)

DJ (k,z)
,

(D13)


(k,z)

fuσ (k)fT q(k)

= fuσ (k)G̃25(k,z)G̃44(k,z) − i G̃45(k,z)D24(k,z)

DJ (k,z)
,

(D14)

where

DJ (k,z) = D35(k,z)D24(k,z)

− fuσ (k)fT q(k)G̃34(k,z)G̃25(k,z), (D15)

D24(k,z) = 1 − ifuσ (k)G̃24(k,z), (D16)

D35(k,z) = 1 − ifT q(k)G̃35(k,z). (D17)

Equations (D3) and (D14) being equal implies

G̃45(k,z)

= fT q(k)G̃34(k,z)G̃55(k,z) − fuσ (k)G̃25(k,z)G̃44(k,z)

fT q(k)G̃35(k,z) − fuσ (k)G̃24(k,z)

(D18)

so that Eqs. (D3) and (D14) become

i
(k,z)

[
G̃35(k,z)

fuσ (k)
− G̃24(k,z)

fT q(k)

]
DJ (k,z)

= fT q(k)G̃34(k,z)G̃55(k,z)D24(k,z)

− fuσ (k)G̃25(k,z)G̃44(k,z)D35(k,z) (D19)

and the cf’s required to calculate the three parameters
zφ(k,z), zT (k,z), and 
(k,z) are just six G̃ij (k,z) [constructed
by eleven Fij (k,t) cf’s, only three of them independent].
It is worth noting that the simpler definitions are more
convenient at low frequency, while the latter definitions are
more accurate at high frequency. The second intermediate
definitions (D3)–(D7) have the great advantage of allowing
an easy generalization of bulk viscosity. Finally, we will
calculate the three coefficients zσ (k,z), zq(k,z), and zqσ (k,z) by
means of the three higher-order functions G̃44(k,z), G̃45(k,z),
and G̃55(k,z), as opposed to the calculation of zφ(k,z),
zT (k,z), and 
(k,z) by means of the three lower-order
functions G̃11(k,z) [or G̃22(k,z)], G̃13(k,z), and G̃33(k,z).
The latter three functions are, as that of the lower fre-
quency order, independent and sufficient to invert the cal-
culation. Unlike what was shown in Sec. II D, the re-
sults for zσ (k,z), zq(k,z), and zqσ (k,z) are much simpler
than that for zφ(k,z), zT (k,z), and 
(k,z). In fact, we
obtain

z + zσ (k,z) = G̃55(k,z)

D45(k,z)
− z fuσ (k)2

z2 + fun(k)2 + fuT (k)2
,

(D20)

z + zq(k,z) = G̃44(k,z)

D45(k,z)
− [z2 + fun(k)2] fT q(k)2

z[z2 + fun(k)2 + fuT (k)2]
,

(D21)

zqσ (k,z) = iG̃45(k,z)

D45(k,z)
+ fuσ (k) fT q(k) fuT (k)

z2 + fun(k)2 + fuT (k)2
, (D22)

with

D45(k,z) = G̃55(k,z)G̃44(k,z) − G̃45(k,z)2. (D23)

Note that in Eqs. (D20) and (D21), the terms on the
rhs are purely imaginary, and as a consequence the real
part of zσ (k,z) and zq(k,z) is obtained by only the first
corresponding term. This simplification is compensated by
a more complicated calculation of G̃44(k,z),G̃55(k,z), and
G̃45(k,z), in fact, b4 = U41a1 + U43a3 + U44a4 and b5 =
U52a2 + U55a5 [see Eqs. (2.12)] and, as a consequence,
twelve instead of three Fij (k,t) cf’s are necessary for
this calculation, even if only three are independent. More-
over, if G̃45(k,z)2 	 G̃55(k,z)G̃44(k,z), we obtain z′

σ (k,z) �
1/G̃44(k,z) and z′

q(k,z) � 1/G̃55(k,z). Finally, from Eq. (D2)
we may remark that for ω → 0, the right term is always
positive, but the first term is not zero, even if both G̃45(k,z) and
G̃55(k,z), unlike G̃44(k,z), go to zero [see Eqs. (C10)–(C13)].
This is a consequence of the ratio G̃45(k,z) /G̃55(k,z), which
is not zero in the same limit.
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