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We investigate the properties of crystalline phantom membranes, at the crumpling transition and in the flat
phase, using a nonperturbative renormalization group approach. We avoid a derivative expansion of the effective
average action and instead analyze the full momentum dependence of the elastic coupling functions. This leads
to a more accurate determination of the critical exponents and further yields the full momentum dependence of
the correlation functions of the in-plane and out-of-plane fluctuation. The flow equations are solved numerically
for D = 2 dimensional membranes embedded in a d = 3 dimensional space. Within our approach we find a
crumpling transition of second order which is characterized by an anomalous exponent ηc ≈ 0.63(8) and the
thermal exponent ν ≈ 0.69. Near the crumpling transition the order parameter of the flat phase vanishes with a
critical exponent β ≈ 0.22. The flat phase anomalous dimension is ηf ≈ 0.85 and the Poisson’s ratio inside the
flat phase is found to be σf ≈ −1/3. At the crumpling transition we find a much larger negative value of the
Poisson’s ratio σc ≈ −0.71(5). We discuss further in detail the different regimes of the momentum dependent
fluctuations, both in the flat phase and in the vicinity of the crumpling transition, and extract the crossover
momentum scales which separate them.
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I. INTRODUCTION

Crystalline membranes have a fixed connectivity of their
constituent particles and therefore a finite in-plane shear
modulus which distinguishes them from fluid membranes
[1]. Physical crystalline membranes are two-dimensional
membranes embedded in three-dimensional space and the
embedding allows for out-of-plane fluctuations into the third
dimension which are absent in a truly two-dimensional crystal.
The coupling of the in-plane modes to the out-of-plane ones
is responsible for a strong renormalization of the infrared
(IR) character of both modes. Both acquire large anomalous
dimensions which render the fluctuation of the local normals
of the membrane finite and thus stabilize a flat phase in
which the normals are ordered [2]. The physics of such flat
crystalline membranes has recently received renewed attention
because of the discovery of graphene [3], the thinnest possible
crystalline membrane [4]. At higher temperatures, the flat
phase eventually becomes unstable and looses its orientational
order of the normals at the crumpling transition [5]. Several
approaches have been used to investigate the crumpling tran-
sition of phantom membranes. In contrast to real membranes,
phantom membranes have no self-avoiding contact interaction
which makes them more accessible to analytical approaches.
Paczuski et al. studied a generalized model of a D-dimensional
elastic manifold embedded in a d-dimensional space within
a leading order ε = 4 − D expansion and found for D = 2
(ε = 2) a first order transition for all d < 219. The accuracy
of this approach, which is well controlled only for small ε, at
ε = 2 is however in doubt. The results from the ε expansion
disagree for D = 2 with the results of a large d expansion [6,7]
and its extension, the self-consistent screening approximation
(SCSA) [8–10] where a continuous transition was found for
D = 2 and d = 3. Further support for a continuous transition
came from an elastic model with a constraint arising from
infinitely large coupling constants for the stretching modes

[11], from a Monte Carlo (MC) renormalization group analysis
[12], and from early MC simulations, see references in [13].
More recent MC simulations found however evidence for the
coexistence of two separate phases at the critical temperature
which would be consistent with a first order transition [14,15],
see also [16,17]. A recent nonperturbative renormalization
group (NPRG) analysis, based on a derivative expansion of
the effective average action, could reproduce both the leading
order results of the ε = 4 − D expansion as well as the leading
order of a large d expansion, within a unified framework [18].
The technique has recently also been applied to anisotropic
membranes [19]. For D = 2 and d = 3 evidence of a second
order phase transition was found, but a weak first order
transition could not be ruled out because of a weak dependence
of the flow on the employed cutoff scheme.

Crystalline membranes are characterized by an anomalous
elasticity in which none of the local elastic constants remain
finite. The elasticity becomes fully nonlocal in the IR limit
and the elastic coupling constants become coupling functions
with a momentum dependence which for asymptotically small
momenta is characterized by anomalous exponents. Here
we present a NPRG analysis where the full momentum
dependence of the coupling functions is kept, which allows
for a more accurate analysis of the crumpling transition which
we find to be continuous. Our approach further allows us to
calculate the thermal fluctuations of the membrane beyond the
asymptotic regime. We recover the results of Ref. [18] if the
momentum dependence of the coupling functions is neglected.
We previously applied our approach to compute the thermal
fluctuations of free standing graphene [20] and found excellent
agreement for all momenta with MC simulations [21,22]. This
analysis allowed us to identify the characteristic scale of ripples
in free standing graphene [4] with the Ginzburg scale of the
nonlinear elastic theory of crystalline membranes. The SCSA
is also capable of accessing fluctuations at finite momenta
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and was applied to investigate the thermal fluctuations of
graphene [10], but proved to be, at finite momenta, less
accurate than the NPRG approach. Here, we extend our
approach and investigate in detail the behavior of a crystalline
membrane inside the flat phase and at the crumpling transition
critical point.

All approximations of our approach are included in our
nonlocal ansatz of the effective average action and not at the
level of the flow equations for irreducible vertices. Once the
effective average action, which respects the full symmetry
of the symmetric phase, is specified, the flow equations of the
irreducible vertices are uniquely determined and can be solved
exactly. In all previous schemes to calculate the full momentum
dependence of self-energies of classical models (see Refs. [23]
for approaches for the �4 theory), some approximations were
done in addition to the truncation of the effective average
action which in principle can lead to a violation of Ward
identities. Our approach is quite general and could also be
applied to other physical models. Similar flow equations were
derived for a model of interacting bosons [24]. However,
additional approximations had to be employed to solve the flow
equations in which case the approach becomes equivalent to
that presented in [25]. The approach presented here assumes
an ordered state but allows us to approach and analyze the
critical point from within the low temperature phase.

The structure of this manuscript is the following. In Sec. II
we introduce and define the usual Landau-Ginzburg model of
crystalline phantom membranes, which are membranes with
no self-avoiding contact interaction. In Sec. III we present the
derivation of our NPRG flow equations for the nonlocal elastic
coupling functions. Expressions for the two longest diagrams
of the flow equations can be found in the Appendix. In Sec. IV
we present results from a completely self-consistent numerical
solution of the flow equations. We analyze the different scaling
regimes in the momentum dependence of the out-of-plane and
in-plane fluctuations and determine the critical exponents of
the membrane both in the flat phase and at the crumpling
transition fixed point. We further discuss the Poisson’s ratio,
which is different at the crumpling transition and inside the flat
phase. Finally, in Sec. V we present a summary and conclusion
of this work.

II. LANDAU-GINZBURG MODEL

Our starting point is the usual Landau-Ginzburg model
for crystalline phantom membranes (which have no contact
interaction) [5], with H = Hb + Hst. The bending part of the
membranes is described by (silent indices are summed over)

Hb = κ̃

2

∫
dDx (∂a∂a R)2 (1a)

and the stretching is described by

Hst =
∫

dDx

[
r̃0

2
(∂a R)2 + μ̃

4
(∂a R · ∂b R)2

+ λ̃

8
(∂a R · ∂a R)2

]
, (1b)

where R is a D + 1 dimensional vector parametrizing the
D-dimensional membrane which is embedded in a d = D + 1

dimensional space. For notational convenience we restrict our
analysis to d = D + 1; it is however straightforward to extend
our analysis to arbitrary d. In terms of the derivatives ma =
∂a R the stretching part becomes

Hst =
∫

dDx

[
r̃0

2
ma · ma + μ̃

4
(ma · mb)2 + λ̃

8
(ma · ma)2

]
,

(2)

and one can already anticipate a transition near r̃0 � 0 from a
flat configuration, which exists for negative r̃0 and where the
fields ma acquire a finite expectation value ma,0 = 〈ma〉 �= 0,
to a crumpled phase with 〈ma〉 = 0. The stretching part Eq. (2)
is appropriate for an isotropic membrane whose constituent
particles have a fixed connectivity (such membranes are
also referred to as tethered or polymerized membranes). A
crystalline membrane has in general a lower symmetry and
additional terms quartic in ma are allowed, except for a
two-dimensional hexagonal lattice [6]. We here concentrate
on models described by Eq. (2), appropriate for isotropic
manifolds or membranes with hexagonal lattices and D = 2.

For the flat phase, we introduce J �= 0 as the magnitude
of the order parameter which is defined as 〈R(x)〉 = Jxaea ,
where a = 1 . . . D and ea are orthonormal vectors which span
the plane of the membrane. Defining Uab = (ma · mb − ma,0 ·
mb,0)/2 and ma,0 = J ea , one can write [6]

Hst =
∫

dDx

[
μ̃ U 2

ab + λ̃

2
U 2

aa

]

+
∫

dDx(r̃0 + J 2[μ̃ + Dλ̃/2])Uaa. (3)

The last term has to vanish to guarantee thermodynamic
stability and we thus have the mean field result

J 2
�0

= −r̃0/
[
μ̃�0 + Dλ̃�0/2

]
, (4)

where the subscript �0 indicates that this is a relation among
the bare parameters which are assumed to be defined at some
scale �0.

III. DERIVATION OF THE NONPERTURBATIVE
RENORMALIZATION GROUP FLOW EQUATIONS

The NPRG approach is based on the exact flow equation of
the effective average action �� [26]:

∂��

∂�
= 1

2
Tr

[(
∂2��

∂φ∂φ′ + R�

)−1
∂R�

∂�

]
, (5)

where the fields φ,φ′ here represent the components of the
vector field R and the trace stands for a momentum integral
and a sum over internal indices. The function R� is a regulator
that removes IR divergences arising from modes with k < �

and will be specified below.
In principle, since the NPRG is not based on an expansion

in a small parameter, the NPRG is not a priori controlled.
It has however been applied with much success to critical
phenomena [27] and it usually reproduces leading order results
of perturbative RG techniques such as ε expansions around the
upper (or lower) critical dimension. For the case of crystalline
membranes, the simplest possible NPRG ansatz [18] already
reproduces the leading order results of both an ε = 4 − D
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expansion as well as a 1/d expansion. The approach presented
here allows us to calculate the momentum dependence of the
membrane fluctuations which were found to be in perfect
agreement with large scale MC simulations of unsuspended
graphene [20]. The NPRG technique thus seems to be quite
reliable when applied to crystalline membranes.

A. Nonlocal elasticity

Our approximation of the effective average action consists
of a nonlocal bending part �b, which is quadratic in the fields,
and a nonlinear stretching part �st, which also includes quartic
terms,

�� = �b
� + �st

�

= 1

2

∫
dDx dDx ′κ̃�(x − x′)∂2

a R(x)∂2
b R(x′)

+
∫

dDx dDx ′
[
μ̃�(x − x′)Uab(x)Uab(x′)

+ 1

2
λ̃�(x − x′)Uaa(x)Ubb(x′)

]
. (6)

This ansatz is simply a nonlocal generalization of the bare
model defined via Eqs. (1a) and (3). Nonlocal correlations
are known to be dominant in the IR limit of crystalline
membranes where the Fourier-transformed coupling functions
scale anomalously. Both in the flat phase and at the critical
point of the crumpling transition, one has a pronounced
hardening of the out-of plane fluctuations and a softening of the
in-plane fluctuations. This is expressed by a divergent form of
the bending coupling function and a vanishing of the bulk and
shear modulus. In the flat phase one has κ̃(q) ∼ q−ηf whereas
the elastic coupling functions vanish as μ̃(q) ∼ λ̃(q) ∼ qηu

.
Here, ηf and ηu are the anomalous exponents of the out-of
plane fluctuations and the in-plane fluctuations, respectively.
Note that these anomalous exponents are in fact not indepen-
dent. Invariance of the original model under rotations implies a
relation (Ward identity) among the anomalous dimensions [6],

ηu = 4 − D − 2ηf . (7)

Since all fluctuations become anomalous in the IR limit,
neither κ̃(q), μ̃(k), nor λ̃(k) are analytic functions in the limit
� → 0 and all fluctuations become nonlocal, a situation
familiar from the behavior at a critical point of a continuous
phase transition. In a leading order derivative expansion only
the momentum independent parts of the coupling functions are
kept, which is sufficient to extract their asymptotic momentum
dependence by approximating f�=0(k) ≈ f�=k(0) where f is
any of the three coupling functions. We choose a more accurate
approach, which also captures the corrections to the asymptotic
behavior, and simply keep the full momentum dependence of
the coupling functions for all �.

It is convenient to write the flow equation (5) of the
functional �� as a flow equation of vertex functions, which
can be obtained from a field expansion of both sides of (5).
Since we are interested in the symmetry broken phase, we
work with fields corresponding to the in-plane fluctuations
u and out-of-plane fluctuations h rather than the original R
fields. These are introduced via the fluctuations of ma around

the ordered state, �ma = ∂a R − ma,0 with �ma = (∂au,∂ah)
and ma,0 = J�ea . We therefore write the expansion

��[u,h] =
∞∑

n,m=0

1

n!m!

∫ ∫
p1... pm
q1...qn

(2π )Dδ

(
m∑

i=1

pi +
n∑

i=1

qi

)

×
D∑

a1...am=1

�
(n+m)

�,h . . . h︸ ︷︷ ︸
n times

a1...am

(q1, . . . ,qn; p1, . . . , pm)

×hq1 . . . hqn
ua1

p1
. . . uam

pm
, (8)

where the momentum integrals are defined as∫
q

=
∫

dDq

(2π )D
. (9)

The irreducible vertices entering Eq. (8) can be related
to correlation functions. The simplest example is the Dyson
equation which relates the one particle Green’s function to the
irreducible self-energies. The Dyson equation for the Green’s
function Ghh of the h field, with

〈hqh−q ′ 〉 = V δq,q ′Ghh(q), (10)

where V is the D-dimensional volume, is

G−1
hh (q) = G−1

0,�(q) + �hh(q). (11)

The self-energy is of the form (here and below we suppress
in our notation the explicit � dependence of the coupling
parameters κ̃q μ̃q , and λ̃q)

�hh(q) = �
(2)
hh (q, − q) = (κ̃q − κ̃�0 )q4, (12)

and the cutoff dependent noninteracting Green’s function is

G−1
0,�(q) = κ̃�0q

4 + R�(q), (13)

where κ̃�0 denotes the bare and momentum independent value
of the initial coupling constant κ̃ defined at the ultraviolet (UV)
cutoff �0. Here, we introduced the regulator function R�(q),
which regulates the IR limit of the propagator in such a way
that the IR divergence at q → 0 is removed at finite �. Since
we will later solve the NPRG flow equations numerically, we
choose an analytic cutoff [18],

R�(q) = κ̃
(0)
�

q4

exp[(q/�)4] − 1
, (14)

where

κ̃
(0)
� = κ̃q=0 (15)

is the q = 0 component of the Fourier transform of κ̃�(x).
For finite �, we then have limq→0 G−1

0,� = κ̃
(0)
� �4 and G0,� is

nondivergent for q → 0.
The Green’s functions of the in-plane modes, defined via〈

ua
ku

b
−k′

〉 = V δk,k′Gab(k), (16)

can be written in terms of transverse (⊥) and longitudinal (‖)
components using the projectors

P ⊥
ab(k) = δab − kakb/k2, (17a)

P
‖
ab(k) = kakb/k2. (17b)
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This yields

Gab(k) = G⊥(k)P ⊥
ab(k) + G‖(k)P ‖

ab(k) (18)

with G−1
α = G−1

0,� + �α for α =⊥ , ‖ and where the self-
energies are defined as projections of

�ab(k) = �
(2)
ab (k, − k). (19)

With the two-point irreducible vertex

�
(2)
ab (k1, − k2) = J 2

�

{
μ̃k1

(
δabk1 · k2 + ka

2kb
1

) + λ̃k1k
a
1kb

2

}
+ (

κ̃k1 − κ̃�0

)
k2

1k
2
2, (20)

one finds the in-plane self-energies

�⊥(k) = J 2
�μ̃kk

2 + (
κ̃k − κ̃�0

)
k4, (21a)

�‖(k) = J 2
�(2μ̃k + λ̃k)k2 + (

κ̃k − κ̃�0

)
k4. (21b)

The effective average action Eq. (6) contains further three-
and four-point vertices of the form (we use k for momenta of
u fields and p for momenta of h fields)

�(3)
a1a2a3

(k1,k2,k3) = −iJ�

2

∑
(αβγ )=P123

{
2μ̃kα

(kα · kβ)kaα

γ

+λ̃kα
(kβ · kγ )kaα

α

}
δaβ ,aγ

, (22a)

�
(3)
hha( p1, p2; k) = −iJ�

{
μ̃k

[
( p1 · k)pa

2 + ( p2 · k)pa
1

]
+λ̃k( p1 · p2)ka

}
, (22b)

�(4)
a1...a4

(k1 . . . k4) = 1

8

∑
(αβγ δ)

=P1234

{
2μ̃kαβ

(kα · kγ )(kβ · kδ)

+ λ̃kαβ
(kα · kβ)(kγ · kδ)

}
δaα,aβ

δaγ ,aδ
,

(22c)
�

(4)
hha1a2

( p1, p2; k1,k2) = {
μ̃p12 [( p1 · k1)( p2 · k2)

+ ( p1 · k2)( p2 · k1)]

+ λ̃p12 ( p1 · p2)(k1 · k2)
}
δa1,a2 ,

(22d)
�

(4)
hhhh( p1 . . . p4)

= 1

8

∑
(αβγ δ)=P1234

{
2μ̃pαβ

+ λ̃pαγ

}
( pα · pγ )( pβ · pδ),

(22e)

where kαβ = |kα + kβ | and
∑

(αβγ )=P123
denotes a summation

over all permutations of (123). The subscript h refers to h fields
while subscripts a and ai refer to u fields. Since we neglect
all irreducible correlations not explicitly included in Eq. (6),
higher order vertices, with more than four legs, do not appear
in our approximation. Finally, we shall also need the single
scale propagators which are defined via

Ġab = −(G2
⊥P ⊥

ab + G2
‖P

‖
ab)∂�R�, (23a)

Ġhh = −G2
hh∂�R�. (23b)

= − 1/2 − 1/2

FIG. 1. (Color online) Diagrammatic representation of the flow
equation which determines the flow of the order parameter and which
arises from the vanishing flow of the one-point vertex [28]. Wavy
lines correspond to Gab propagators and solid lines to Ghh. Lines
with a dash correspond to single-scale propagators. The small open
circle with a dot denotes a derivative of the order parameter with
respect to �.

B. Flow equations for momentum dependent vertices

We will now derive the flow equations for the order
parameter J� and the coupling functions κ̃q , μ̃q , and λ̃q .
The flow of J 2

� can be extracted from the flow equation of
the one-point vertex of the u fields whereas the other three
coupling functions can be extracted from the flow equations
of the self-energies. All higher order vertices presented in
Sec. III A are completely determined by J 2

�, κ̃q , μ̃q , and λ̃q ,
and the flow equations for the one- and two-point vertices are
thus closed.

The only approximation of our approach is the approxi-
mation for the effective average action as expressed through
Eq. (6) and in the derivation below no further approximation
is required. The resulting flow equations are uniquely deter-
mined by Eqs. (5) and (6) and obey the full symmetry of
Eq. (6).

The NPRG flow of the one-point function �(1)
a is

∂��(1)
a (k) = −i(∂�J�)(2π )Dδ(D)(k)

∂

∂k′b �
(2)
ab (k, − k′)|k′=k

+ 1

2

∫
q

{
Ġhh(q)�(3)

hha(q, − q; k)

+ Ġbc(q)�(3)
abc(k,q, − q)

}
(2π )Dδ(D)(k), (24)

where we used the k-space representation of the order
parameter field

〈Ra〉(k) = −iJ�(2π )Dδ(D)(k)
∂

∂ka
. (25)

The condition ∂��(1)
a (k) = 0 then yields an equation which

is shown diagrammatically in Fig. 1 and from which the flow
of the order parameter can be determined. One finds

∂�J 2
� = KD

[2μ̃0 + Dλ̃0]D

∫
dq qD+1{(D − 1)Ġ⊥(q)

× [2μ̃q + 2μ̃0 + Dλ̃0]

+ Ġ‖(q)[2(2μ̃q + μ̃0) + 2λ̃q + Dλ̃0]

+ Ġhh(q)[2μ̃0 + Dλ̃0]}, (26)

where

KD = 1

2D−1πD/2�[D/2]
. (27)
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+ 1/2 + 1/2=

__

FIG. 2. (Color online) Diagrams which enter the flow of the self-
energy �hh of the out-of-plane fluctuations. The solid dot above the
self-energy on the left-hand side denotes a derivative with respect to
�; the other symbols are defined in the caption of Fig. 1.

The flow of κ̃(q) follows directly from the flow equation
for �hh. The flow equation is shown diagrammatically in
Fig. 2 and is given by the expression

∂��hh(k) = k4∂�κ̃k

= k2 ∂�J 2
�

2
(2μ̃0 + Dλ̃0)

+[
Sh

hh(k) + Su
hh(k)

]
/2 − Suh

hh (k) − Shu
hh (k). (28)

The diagrams entering the flow of �hh(k) are

Sh
hh(k) =

∫
q
Ġhh(q)�(4)

hhhh(k, − k,q, − q), (29a)

Su
hh(k) =

∫
q
Ġab(q)�(4)

hhab(k, − k; q, − q), (29b)

Shu
hh (k) =

∫
q
Ġhh(q)Gab(q ′)

×�
(3)
hha(k,q; −q ′)�(3)

hhb(−k, − q; q ′), (29c)

Suh
hh (k) =

∫
q
Ġab(q)Ghh(q ′)

×�
(3)
hha(k, − q ′; q)�(3)

hhb(−k,q ′; −q), (29d)

where the direction of k on the right-hand side of these
equations can be chosen arbitrarily since the diagrams only
depend on the modulus k, and q ′ = k + q. The subscript hh

indicates two external h legs and the superscript indicates the
composition of the internal loop; i.e., Sh

hh indicates a diagram
where the loop consists of one h line. Suh

hh differs from Shu
hh in

that in Suh
hh the single-scale propagator is a u line whereas in

= + 1/2 + 1/2

__

FIG. 3. (Color online) Diagrams which determine the flow of the
self-energy �ab of the in-plane fluctuations. The symbols are defined
as in Figs. 1 and 2.

Shu
hh it is an h line. With the vertices given in Eqs. (22a)–(22e)

these diagrams become

Sh
hh(k) = k2

∫
q
q2Ġhh(q)

×[2μ̃q ′ + λ̃0 + 2y2(μ̃0 + μ̃q ′ + λ̃q ′)], (30a)

Su
hh(k) = k2

∫
q
q2[Ġ⊥(q)(D − 1) + Ġ‖(q)](2y2μ̃0 + λ̃0),

(30b)

Shu
hh (k) = k2J 2

�

∫
q
q2Ġhh(q ′)

{
G⊥(q)μ̃2

q(1 − y2)(2ky + q)2

+G‖(q)[2μ̃qy(q + ky) + λ̃q(k + qy)]2}, (30c)

Suh
hh (k) = k2J 2

�

∫
q
q2Ghh(q ′)

{
Ġ⊥(q)μ̃2

q(1 − y2)(2ky + q)2

+ Ġ‖(q)[2μ̃qy(q + ky) + λ̃q(k + qy)]2
}
. (30d)

Note that each of the diagrams given in Eqs. (30a)–(30d) is
to leading order quadratic in k. However, their sum cancels
to leading order exactly the first term in Eq. (28) so that
the overall leading term of the flow of �hh is indeed quartic
in k.

Finally, using the flow equation of �ab(k), one can
determine the flow of μ̃k and λ̃k . The flow of �ab(k) has
the form (see Fig. 3)

∂��ab(k) = [(Dλ̃0 + 2μ̃k + 2μ̃0)k2δab

+ 2(λ̃k + μ̃k)kakb]∂�J� + (1/2)Su
ab(k)

+ (1/2)Sh
ab(k) − Shh

ab (k) − Suu
ab (k), (31)

where the first term arises from the diagram with one external
leg coupled to the derivative of the order parameter field and
Su

ab(k) stands for a diagram with external u lines with flavors
a,b and momentum k, and an internal loop which consists of
one u line. Similarly, for Suu

ab (k) the internal loop consists of
two u lines and for Shh

ab (k) the internal loop consists of two h

lines. The analytic expressions for these diagrams are

Sh
ab(k) =

∫
q
Ġhh(q)�(4)

hhab(k, − k; q, − q), (32a)

Su
ab(k) =

∫
q
Ġcd (q)�(4)

abcd (k, − k, q, − q), (32b)

Shh
ab (k)

=
∫

q
Ġhh(q)Ghh(q ′)�(3)

hha(q, − q ′; k)�(3)
hhb(−q,q ′; −k),

(32c)
Suu

ab (k)

=
∫

q
Ġcd (q)Gef (q ′)�(3)

ace(k, q, − q ′)�(3)
bdf (−k, − q, q ′),

(32d)

where q ′ = k + q. After projecting on transversal and longi-
tudinal components, one finds from Eq. (31) and the form of
the projected self-energies in Eqs. (21a) and (21b)

k2∂�μ̃k = k2(μ̃0 + Dλ̃0/2)∂�J 2
� + (1/2)Su

⊥(k)

+ (1/2)Sh
⊥(k) − Shh

⊥ (k) − Suu
⊥ (k)

− k4∂�κ̃k, (33a)
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k2∂�(2μ̃k + λ̃k) = k2(μ̃0 + Dλ̃0/2)∂�J 2
� + (1/2)Su

‖ (k)

+ (1/2)Sh
‖ (k) − Shh

‖ (k) − Suu
‖ (k)

− k4∂�κ̃k. (33b)

The projected diagram Su
α(k), with α =⊥ or ‖, is defined via

P α
ac(k)Su

cb(k) = P α
ab(k)Su

α(k) and the other projected diagrams
are similarly defined. With y = k · q/kq, the transverse
projected diagrams have the form

Sh
⊥(k) = k2

∫
q
q2Ġhh(q)[2μ̃0y

2 + λ̃0], (34a)

Su
⊥(k) = k2

D − 1

∫
q
q2{[Ġ⊥(q)(D − 1) + Ġ‖(q)]

× (D − 1)[2μ̃0y
2 + λ̃0]

+ [Ġ⊥(q)(D − 2 + y2) + Ġ‖(q)(1 − y2)]

× 2[μ̃q ′ (1 + y2) + λ̃q ′y2]}, (34b)

Shh
⊥ (k)

= J 2
�k2

D − 1

∫
q
q2Ġhh(q)Ghh(q ′)μ̃2

k(k + 2yq)2(1 − y2).

(34c)

The expression of the diagram Suu
⊥ (k) is rather long and can

be found in the Appendix. The longitudinal projections are

Sh
‖ (k) = Sh

⊥(k), (35a)

Su
‖ (k) = k2

∫
q
q2{[Ġ⊥(q)(D − 1) + Ġ‖(q)]

× (D − 1)[2μ̃0y
2 + λ̃0]

+ [Ġ⊥(q)(1 − y2) + Ġ‖(q)y2]

× 2[μ̃q ′ (1 + y2) + λ̃q ′y2]}, (35b)

Shh
‖ (k) = J 2

�k2
∫

q
q2Ġhh(q)Ghh(q ′)

× [λ̃k(q + ky) + 2μ̃k(k + qy)y]2, (35c)

and the expression for Suu
‖ (k) is given in the Appendix.

IV. RESULTS

The set of Eqs. (26), (28), (33a), and (33b) form a set of
coupled integrodifferential equations which we solve numer-
ically. We are mainly interested in the behavior of the D = 2
dimensional membrane embedded in three-dimensional space
near its critical regime. For simplicity we use as initial
conditions momentum independent coupling constants,

κ̃�0 = 1 and μ̃�0 = λ̃�0 = �2
0. (36)

The initial mean field value of the order parameter J�0 will
be tuned to reach the critical point of the crumpling transition.
Since our approach breaks down within the crumpled phase,
we can approach the critical point only from the flat phase. We
begin by discussing the properties of the flat phase.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

10-4 10-3 10-2 10-1 1

η Λ

Λ/Λ0

1

2

3
4

5 6

FIG. 4. Flow of the critical exponent η for different initial values
of J 2

�0
(solid dots). For finite J 2 = lim�→0 J 2

�, η� saturates at the flat
phase fixed point value ηf ≈ 0.85; this value is indicated by the upper
vertical line. At the crumpling transition (with J�0 = Jc) η� saturates
at the critical fixed point value ηc ≈ 0.638 (see curve 1); this value
is indicated by the lower vertical line. The values for (J 2

�0
− J 2

c )/J 2
c

are 8.0 × 10−7 (curve 2), 3.0 × 10−5 (curve 3), 5.0 × 10−4 (curve 4),
9.1 × 10−3 (curve 5), and 1.9 × 10−1 (curve 6).

A. Flat phase

The flat phase is characterized by a finite order parameter
J = lim�→0 J�. Asymptotically, the out-of-plane fluctuations
are governed by the anomalous dimension ηf associated with
the flat phase fixed point,

Ghh(k) ∼ q−(4−ηf ), (37)

while the in-plane fluctuations are governed by the anomalous
dimension ηu,

G⊥(q) ∼ G‖(q) ∼ q−(2+ηu). (38)

We can extract the flow of the anomalous dimension from the
leading q = 0 term of κ̃(q),

�∂�κ̃
(0)
� = −η�κ̃

(0)
� , (39)

where κ̃
(0)
� = κ̃q=0. In accordance with the derivative ex-

pansion result [18] and recent MC simulations of graphene
[22] we find for D = 2 the anomalous dimension ηf ≈ 0.85
which yields ηu ≈ 0.30. These values are also close to the
SCSA result ηf ≈ 0.821 [8] and the MC results η ≈ 0.750(5)
[29] and η ≈ 0.81(3) [30]. A typical flow of the anomalous
dimension far away from the critical point is shown in the
upmost curve in Fig. 4. There is some scatter of the numerical
data for η� since η� has to be extracted from the � derivative
of the very small q dependence of κ̃q . The numerical noise in
the function κ̃q itself is however very small. The anomalous
scaling of the propagators, as expressed through Eqs. (37) and
(38), is observable only for momenta smaller than the Ginzburg
scale qG. This scale can be obtained perturbatively and has for
D = 2 the form [1,2]

qG ≈ [3K̃0/(2π )]1/2/(4κ̃) (40)
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1
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G
hh

(k
) 

k3  [Λ
0-1

]

k/Λ0

pert. scaling
flat FP scaling

critical FP scaling

FIG. 5. The correlation function Ghh(k) (solid lines) for different
values of J 2

�0
− J 2

c (curves are multiplied with k3 for easier visibility
of the different scaling regimes). At the critical point of the crumbling
transition (upmost curve) a single crossover from the perturbative
scaling to a critical scaling with ηc ≈ 0.63(8) is observed. Slightly
away from criticality (middle curve), Ghh enters at small momenta
the flat phase fixed point scaling with ηf ≈ 0.85. Even further away
(lower curve), the intermediate regime, where Ghh obeys critical
scaling, disappears and a direct crossover from perturbative to flat
phase fixed point scaling is observed. Dashed lines indicate the
different scaling behaviors.

where

K̃0 = 4J 2
�0

μ̃(μ̃ + λ̃)/(2μ̃ + λ̃) (41)

is the (bare) Young’s modulus. Since for all our calculations
we used Eq. (36) and similar values of J 2

�0
≈ 0.5, one finds for

all the data we present here to a good approximation a common
Ginzburg scale of the order of qG ≈ 0.2�0. For q  qG the
Green’s functions are strongly renormalized and the flat phase
fixed point scaling regime appears. This behavior is clearly
seen in both Ghh(q) and G⊥(q); see the lowest curves in
Figs. 5 and 6, which where obtained for J 2

�0
= 1/2 or

δJ = J�0 − Jc ≈ 0.08, where Jc is the critical J�0 value of
the crumpling transition for the initial values of the elastic
constants stated in Eq. (36). In the small q limit, we find
Ghh(q) ∝ 1/q4−ηf , as expected from the analysis of the flow
of η�. Similarly, for the in-plane correlation functions we
find Gα ∝ 1/q2+ηu

with α =⊥ , ‖ and an anomalous exponent
ηu = 2 − 2ηf , as expected from the Ward identity Eq. (7).

The upper curve in Fig. 7 shows the flow of the Poisson’s
ratio

σ� = λ̃q=0

2μ̃q=0 + λ̃q=0
, (42)

which in the flat phase is known to acquire a negative value
for � → 0. For � → 0 one finds in the flat phase a Poisson’s
ratio σf ≈ −1/3, as in the NPRG derivative expansion [18],
and in perfect agreement with both the SCSA result [8] and MC
results for phantom membranes [31] and in good agreement
with MC results for self-avoiding membranes [32].

10-1

1

101

102

103

104

10-4 10-3 10-2 10-1 1

G
⊥
(k

) 
k2  [Λ

0-2
]

k/Λ0

pert. scalingflat FP scaling

critical FP scaling

FIG. 6. The correlation function G⊥(k) (solid lines) for different
values of J 2

�0
− J 2

c (curves are multiplied with k2 for easier visibility
of the different scaling regimes). At the critical point of the
crumbling transition (upmost curve) a single crossover from the
perturbative scaling to a critical scaling with ηc ≈ 0.63(8) is observed.
At criticality, we have Ghh(k) = G⊥(k) = G‖(k) since the order
parameter J vanishes. Slightly away from criticality (middle curve),
Ghh enters at small momenta the flat phase fixed point scaling with
ηu = 4 − D − 2ηf ≈ 0.30. Even further away (lower curve), the
intermediate regime, where Ghh obeys critical scaling, disappears
and a direct crossover from perturbative to flat phase fixed point
scaling is observed. Dashed lines indicate the different scaling
behaviors.

B. Behavior close to and at the crumpling transition

Upon lowering the initial value of J 2
�0

, we can tune
the membrane toward the critical regime of the crumpling
transition. Exactly at the crumpling transition the value of the
anomalous dimension is changed from the flat phase fixed
point value. The lowest curve in Fig. 4 shows the flow of η� at

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

10-4 10-3 10-2 10-1 1

σ Λ

Λ/Λ0

FIG. 7. Flow of the Poisson’s ratio σ�. In the flat phase, we
find σ = −1/3 whereas at the crumpling transition we find a much
larger magnitude, σ ≈ −0.71(5). Both fixed point values for σ� are
indicated by dashed lines. The flow in the middle shows a flow of
σ� for a membrane close to the critical point, with the IR properties
however dominated by the flat phase fixed point.
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the critical value of J 2
�0

. One can clearly observe a fixed point
value ηc which is different from the one obtained for the flat
phase. We find a value

ηc ≈ 0.63(8), (43)

which is larger than the SCSA result ηc = 0.535 [8], and the
value ηc = 0.47 from a MC renormalization group analysis
[12], but rather close to the large D result η = 2/3 and the
derivative expansion approach to the NPRG [18] η ≈ 0.627,
obtained with a sharp cutoff. In the derivative expansion, a
weak dependence of the critical properties on the form of
the regulator was reported. In our numerical approach, we
are for reasons of numerical stability restricted to analytical
regulators [33]. We would expect however a much weaker
dependence on the form of the regulator in our approach
since we keep the entire momentum dependence of all
two-point vertices and since the regulator, for a given �,
only affects the momentum dependence of the two-point
functions.

A small distance J 2
�0

− J 2
c > 0 away from the critical value

J 2
c , η� initially approaches the critical fixed point value ηc but

deviates from it in the IR limit to finally saturate at the flat phase
fixed point. This behavior can be seen for different values of
J 2

�0
> J 2

c in Fig. 4.
The behavior of the Green’s function Ghh(q) at the critical

point is shown in Fig. 5. There is again a crossover from
perturbative scaling to anomalous scaling near qG, similar
to that in the flat phase. The anomalous scaling is now the
critical scaling with η = ηc. As expected from an analysis of
the flow of the critical exponent, there is a second crossover at a
smaller scale qc at which the critical scaling regime terminates
and scaling associated with the flat phase fixed point critical
exponent ηf appears. A similar two-parameter scaling is in
fact also present in �4 models at weak coupling [34].

The scale qc can be estimated from the simple observation
that the crossover occurs for κ̃qc

q2
c ≈ J 2μ̃qc

. Since κ̃q ∝ q−ηc

and μ̃q ∝ q4−D−2ηc , we find for D = 2 the relation

qc ∝ J 2/ηc , (44)

where J is the fully renormalized magnitude of the order
parameter which vanishes at the critical point.

The in-plane fluctuations show a similar behavior, see
Fig. 6 [we only show results for G⊥(k), but G‖(k) shows a
very similar behavior]. Directly at the crumpling transition the
order parameter J vanishes and one therefore has Ghh(q) =
G⊥(q) = G‖(q) for all q. Similarly, a finite distance away
from the critical surface, but for momenta in the regime
qc  q  qG, the fluctuations are still dominated by the
vicinity of the critical fixed point and consequently the in-plane
modes scale anomalously with the same exponent as Ghh, i.e.,
with α =⊥ , ‖,

Gα(q) � Ghh(q) ∝ 1

q4−ηc
for qc  q  qG. (45)

On the other hand, for very small q one obtains

Gα ∝ 1

q2+ηu for q  qc, (46)

as expected, since at small � (or small q), the NPRG
flow is away from the crumpling transition fixed point and
toward the flat phase fixed point. Note that the crossover
at qc takes the in-plane modes thus directly from a q−4+ηc

scaling to a q−2−ηu

scaling. Thus, a regime where the in-plane
modes scale with an anomalous dimension 4 − D − 2ηc is not
present. While we do observe a μ̃q ∼ λ̃q ∼ qηu

c scaling with
ηu

c = 4 − D − 2ηc in D = 2, this exponent is not observ-
able in the in-plane correlation functions because J 2

� ∼
(�/�0)D−2+ηc on approaching the crumpling transition
such that the contribution to the self-energies via J 2

�μ̃qq
2

∼ J 2
�λ̃qq

2 ∼ q4−ηc (with � ∼ q) scale with the same exponent
as κ̃qq

4.
Rather interesting is the behavior of the Poisson’s ratio,

defined in Eq. (42), at the crumpling transition, see Fig. 7. It
is more than twice the value found for the flat phase,

σc ≈ −0.71(5). (47)

The smallest possible value of σ is −1 which is achieved when
the ratio of the bulk modulus to the shear modulus vanishes,
i.e., limk→0(μ̃k + λ̃k)/μ̃k → 0. The large negative value of σc

thus implies that at criticality the bulk modulus is very small
compared to the dominant shear modulus. While several other
approaches (e.g., the SCSA [8] or the derivative expansion
approach to the NPRG [18]) would allow one to extract the
value of the Poisson’s ratio at criticality, we are not aware
of any earlier results. If the crumpling transition is indeed
of second order, its Poisson’s ratio would be comparable to
those of the most strongly auxetic materials (materials with
a negative Poisson’s ratio) presently known [35]. The lack
of orientational order at criticality, and the resulting absence
of a D = 2 dimensional plane along which the membrane
extends, complicate however the physical interpretation of a
large negative Poisson’s ratio calculated for D = 2. The flow
of σ� is shown in Fig. 7 as a function of the IR cutoff �.
The lowest curve is the flow toward the fixed point of the
crumpling transition. Also shown is the flow of the Poisson’s
ratio for parameters close to the critical ones but where the
flow is ultimately to the value σf = −1/3 associated with the
flat phase.

The magnitude of the order parameter J scales near the
crumpling transition with an exponent β,

J � (δr)β, (48)

where δr = r̃c − r̃0 > 0 measures the distance to the critical
temperature, δr ∝ (Tc − T )/Tc. Mean field theory predicts
β = 1/2, see Eq. (4), while our NPRG calculation yields a
significantly different value for β,

β ≈ 0.22, (49)

which was obtained from a fit for small values of J , see
Fig. 8. Note that from Eqs. (44) and (48) one finds a simple
relation between the crossover scale qc and the distance to the
crumpling transition critical point,

qc ∝ (δr)
2β

ηc . (50)

This is just the usual hyperscaling relation β = ν(D − 2 +
ηc)/2 [6] for D = 2 where ν is the thermal exponent
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FIG. 8. Dependence of the fully renormalized order parameter J

as a function of δr = r̃c − r̃0. The critical exponent is found to be
β ≈ 0.22.

characterizing the divergence of the correlation length, with
ξ−1 ∝ (δr)ν . Identifying qc ≈ ξ−1, we can deduce

ν ≈ 0.69. (51)

This value is in reasonable agreement with numerical works
which find ν ≈ 0.85 [12] and ν = 0.71(5) [36] (older results
on ν can be found in Ref. [12]), but is somewhat larger than
the value found in the derivative expansion of the NPRG,
ν ≈ 0.52 [18]. When approaching the crumpling transition
from the ordered side, the in- and out-of-plane correlation
functions do not decay algebraically for distances r � ξ with
a characteristic scale ξ but merely decay with a different power
law. This is why we refer to this scale as a crossover scale rather
than a correlation length.

While our analysis shows that the crumpling transition is
of second order, we based our analysis on the assumption
that initially, at the UV cutoff �0, all coupling functions are
momentum independent. We ran a few tests to verify that
our results are stable also in the presence of a weak initial
momentum dependence, but we cannot rule out that an unusual
initial momentum dependence of the coupling constants
could lead to an instability, e.g., at a finite momentum, in
the renormalized model which would lead to a first order
transition. It is also possible that including terms of third order
in the stress tensor could modify the order of the transition.

V. CONCLUSIONS

To conclude, we have presented a thorough analysis of
crystalline phantom membranes using a NPRG scheme which
includes the full momentum dependence of the elastic coupling
functions. It is a natural extension of the NPRG scheme based
on a derivative expansion [18] but yields significantly more
information on the nature of the fluctuations. Since conflicting
results on the order of the crumpling transition exist, it is
important to include as many correlations as possible in the
ansatz for the effective average action. A priori, it is difficult
to decide which terms will be relevant near the transition since
the anomalous dimension of the crumpling transition is very

large and the crumpling transition could even be of weakly
first order. Our nonlocal ansatz goes well beyond previous
renormalization group treatments of crystalline membranes
which relied on a finite number of coupling parameters and
should thus yield more reliable results.

In our approach we find a continuous crumpling transition
for physical membranes, i.e., D = 2 dimensional membranes
embedded in d = 3 dimensional space, and we compute the
associated critical exponents. We find an anomalous dimension
ηc ≈ 0.63(8) and a thermal exponent ν ≈ 0.69. An analysis
of the scaling of the renormalized order parameter near the
crumpling transition yields the critical exponent β ≈ 0.22. In-
side the flat phase we find an anomalous dimension ηf ≈ 0.85
which characterizes the asymptotic small momentum behavior
of the out-of-plane fluctuations and an additional anomalous
dimension ηu = 4 − D − 2ηf ≈ 0.30 which characterizes the
asymptotic behavior of the in-plane fluctuations. We further
analyzed in detail the momentum dependence of the thermal
fluctuations of the membrane at finite momenta. In both the flat
phase and at the crumpling transition there is a crossover scale
qG which separates the anomalous scaling regime at small
momenta from the perturbative regime. Near the crumpling
transition, there is an additional crossover momentum scale
qc ∝ [(T − Tc)/Tc]ν which separates an intermediate scaling
regime, whose properties are determined by the crumpling
transition fixed point, from the asymptotic small scaling regime
where the flow is dominated by the flat phase fixed point.

We further calculated the Poisson’s ratio both at the
crumpling transition and inside the flat phase. Inside the flat
phase we recover the value σf ≈ −1/3 whereas we find a
Poisson’s ratio of much larger magnitude at the crumpling
transition, σc ≈ −0.71(5).
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APPENDIX A: TRANSVERSE AND LONGITUDINAL
PROJECTION OF THE DIAGRAM Suu

ab (k)

Here we present the expression for the transverse and lon-
gitudinal projection of the diagram Suu

ab (k) given in Eq. (32d),
which enters the NPRG flow equations of �ab(k). While
straightforward to evaluate, they have a complicated structure.
The projections of Suu

ab (k) can be written as

Suu
⊥ = J 2

�

∫
q
(D⊥⊥

⊥ Ġ⊥(q)G⊥(q ′) + D
‖‖
⊥ Ġ‖(q)G‖(q ′)

+D
⊥‖
⊥ Ġ⊥(q)G‖(q ′) + D

‖⊥
⊥ Ġ‖(q)G⊥(q ′)), (A1a)

Suu
‖ = J 2

�

∫
q
(D⊥⊥

‖ Ġ⊥(q)G⊥(q ′) + D
‖‖
‖ Ġ‖(q)G‖(q ′)

+D
⊥‖
‖ Ġ⊥(q)G‖(q ′) + D

‖⊥
‖ Ġ‖(q)G⊥(q ′)), (A1b)

where we defined q ′ = k + q. If we further introduce

X = q · k, Y = q · q ′, Z = k · q ′, (A2)
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the functions D
βγ
α with α,β,γ =‖ , ⊥ can be written as

D⊥⊥
⊥ = μ̃2

q ′

(
k2Y 2 + q2Z2 + 2X YZ − 4

Y 2Z2

q ′2

) (
D − 2 + X2

k2q2

)
+ 2μ̃q ′μ̃qXZ

(
1 − 2Y

q2

) (
q2 − X2

k2

) (
1 − 2

Y

q ′2

)

+ 2μ̃q ′μ̃k (X + Z) Y

(
− X

q2
+ 2

YZ

q2q ′2 − 2Z

q ′2

) (
q2 − X2

k2

)
+ μ̃2

k

(
D − 2 + Y 2

q2q ′2

)
(X + Z)2

(
q ′2 − Z2

k2

)

+ μ̃2
q

[
Y 2

(
k2 − 4X2

q2

)
+ 2XYZ + X2q ′2

] (
D − 2 + Z2

k2q ′2

)

+ 2μ̃kμ̃qY (X + Z)

(
−2

X

q2
+ 2

XY

q2q ′2 − Z

q ′2

) (
q2 − X2

k2

)
, (A3a)

D
‖‖
⊥ = 4μ̃2

q ′
Y 2Z2

q ′2

(
1 − X2

q2k2

)
+ λ̃2

q ′X
2q ′2

(
1 − X2

k2q2

)
+ 4μ̃q ′ λ̃q ′XYZ

(
1 − X2

k2q2

)
+ 8μ̃qμ̃q ′

ZY 2X

q2q ′2

(
q2 − X2

k2

)

+ 2λ̃q λ̃q ′XZ

(
q2 − X2

k2

)
+ 4μ̃q λ̃qXYZ

(
1 − Z2

k2q ′2

)
+ 4μ̃q λ̃q ′X2Y

(
1 − X2

q2k2

)
+ 4μ̃q ′ λ̃q

YZ2

q ′2

(
q2 − X2

k2

)

+ 4μ̃kμ̃q ′
ZY 2

q ′2 (X + Z)

(
1 − X2

q2k2

)
+ 2μ̃kλ̃q ′ (X + Z) XY

(
1 − X2

q2k2

)
+ 4μ̃2

q

X2Y 2

q2

(
1 − Z2

k2q ′2

)

+ λ̃2
qZ

2q2

(
1 − Z2

k2q ′2

)
+ 4μ̃kμ̃q (X + Z)

XY 2

q ′2

(
1 − X2

q2k2

)
+ 2μ̃kλ̃q (X + Z)

ZY

q ′2

(
q2 − X2

k2

)

+ μ̃2
k (X + Z)2 Y 2

q ′2

(
1 − X2

q2k2

)
, (A3b)

D
⊥‖
⊥ = 1

q ′2
(

2μ̃q ′YZ + λ̃q ′Xq ′2
)2

(
D − 2 + X2

k2q2

)
+ 4μ̃qμ̃q ′

XYZ

q ′2

(
1 − 2

Y

q2

) (
q2 − X2

k2

)
+ 2μ̃q λ̃q ′X2

(
1 − 2

Y

q2

)

×
(

q2 − X2

k2

)
+ 4μ̃kμ̃q ′ (X + Z)

YZ

q ′2

(
1 − Y

q2

)(
q2 − X2

k2

)
+ μ̃2

q

[
Y 2

(
k2 − X2

q2

)
+ 2XY

(
Z − YX

q2

)

+X2

(
q ′2 − Y 2

q2

) ](
1 − Z2

k2q ′2

)
+ 2μ̃kμ̃q (X + Z)

[
X

(
1 − 2Y 2

q2q ′2

)
+ YZ

q ′2

](
q2 − X2

k2

)

+ μ̃2
k (X + Z)2

(
q2 − X2

k2

)(
1 − Y 2

q2q ′2

)
+ 2μ̃kλ̃q ′ (X + Z) X

(
1 − Y

q2

) (
q2 − X2

k2

)
, (A3c)

D
‖⊥
⊥ = μ̃2

q ′

(
k2Y 2 + q2Z2 + 2XYZ − 4

Y 2Z2

q ′2

) (
1 − X2

k2q2

)
+ 4μ̃qμ̃q ′XYZ

(
1 − 2

Y

q ′2

) (
1 − X2

k2q2

)

+ 2μ̃q ′ λ̃qZ
2

(
1 − 2

Y

q ′2

)(
q2 − X2

k2

)
+ 2μ̃kμ̃q ′ (X + Z)

(
YX

q2
+ Z − 2

Y 2Z

q2q ′2

) (
q2 − X2

k2

)

+ 4μ̃2
qX

2 Y 2

q2

(
D − 2 + Z2

k2q ′2

)
+ λ̃2

qZ
2q2

(
D − 2 + Z2

q ′2k2

)
+ 4λ̃q μ̃qXYZ

(
D − 2 + Z2

k2q ′2

)

+ 4μ̃qμ̃k (X + Z) XY

(
1 − Y

q ′2

) (
1 − X2

k2q2

)
+ 2λ̃q μ̃k (X + Z) Z

(
1 − Y

q ′2

) (
q2 − X2

k2

)

+ μ̃2
k (X + Z)2

(
q2 − X2

k2

) (
1 − Y 2

q2q ′2

)
. (A3d)

For the terms of the longitudinal projection one finds

D⊥⊥
‖ = μ̃2

q ′

[
Y 2

(
k2 − Z2

q ′2

)
+ 2YZ

(
X − YZ

q ′2

)
+ Z2

(
q2 − Y 2

q ′2

)] (
1 − X2

k2q2

)
+ 2μ̃qμ̃q ′

[
Y

(
k2 − Z2

q ′2

)

+Z

(
X − YZ

q ′2

)][
X

k2

(
Z − XY

q2

)
+ Y

(
1 − X2

k2q2

)]
+ 2μ̃q ′Y

(
2μ̃k

XZ

k2
+ λ̃kY

)(
k2 − X2

q2
− 2

Z2

q ′2 + 2
XYZ

q2q ′2

)
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+ μ̃2
q

[
X2

(
q ′2 − Y 2

q2

)
+ Y 2

(
k2 − X2

q2

)
+ 2XY

(
Z − XY

q2

)] (
1 − Z2

q ′2k2

)
+ 2μ̃qY

(
2μ̃k

XZ

k2
+ λ̃kY

)

×
(

k2 − 2X2

q2
+ 2XYZ

q2q ′2 − Z2

q ′2

)
+

(
D − 2 + Y 2

q2q ′2

)(
2
XZ

k2
μ̃k + Y λ̃k

)2

k2, (A4a)

D
‖‖
‖ = 4μ̃q ′ (μ̃q ′ + 2μ̃q)

X2Y 2Z2

k2q2q ′2 + 4μ̃q ′ λ̃q ′
X3YZ

k2q2
+ λ̃2

q ′
X4q ′2

k2q2
+ 2λ̃q ′ λ̃q

X2Z2

k2
+ 4μ̃q ′ λ̃q

XYZ3

k2q ′2 + 4λ̃q ′μ̃q

X3YZ

q2k2

+ 4XY

q2k2q ′2
(
μ̃kXZ + λ̃kY k2) (

2YZμ̃q ′ + Xq ′2λ̃q ′
)

+ Z2

k2q2q ′2
(
2μ̃qXY + λ̃qq

2Z
)2

+ 2YZ

k2q ′2
(
2μ̃kXZ + λ̃kY k2

) (
2
XY

q2
μ̃q + Zλ̃q

)
+ (

2μ̃kXZ + λ̃kY k2
)2 Y 2

k2q2q ′2 , (A4b)

D
⊥‖
‖ = 2λ̃q ′

X

k2

(
Z − XY

q2

) (
2μ̃kXZ + λ̃kY k2

) +
(

1 − X2

q2k2

)
q ′−2

(
2μ̃q ′YZ + λ̃q ′q ′2X

)2

+ 4μ̃q ′μ̃qYZ2

[
X

(
Z − XY

q2

)
+ Y

q ′2k2

(
k2 − X2

q2

)]
+ 2λ̃q ′μ̃q

X

k2

(
XZ2 − 2

X2YZ

q2
+ YZk2

)

+ 4μ̃q ′
YZ

q ′2k2

(
Z − XY

q2

) (
2μ̃kXZ + λ̃kY k2

) + μ̃2
qZ

2

k2q ′2

[
X2

(
q ′2 − Y 2

q2

)
+ Y 2

(
k2 − X2

q2

)
+ 2XY

(
Z − XY

q2

)]

+ 2μ̃q

Z

k2

(
2μ̃kXZ + λ̃kY k2

) [
X

(
1 − 2Y 2

q2q ′2

)
+ YZ

q ′2

]
+ (

2XZμ̃k + λ̃kY k2
)2

(
1 − Y 2

q2q ′2

)
k−2, (A4c)

D
‖⊥
‖ = μ̃2

q ′X2

k2q2

[
Y 2

(
k2 − 4Z2

q ′2

)
+ 2XYZ + Z2q2

]
+ 2μ̃q ′

X

k2

(
2μ̃q

XY

q2
+ λ̃qZ

) [
Y

(
k2 − 2Z2

q ′2

)
+ ZX

]

+ 2
μ̃q ′X

k2q2

(
2μ̃kXZ + λ̃kY k2

) (
XY + Zq2 − 2

ZY 2

q ′2

)
+ q−2

(
2μ̃qXY + λ̃qZq2

)2
(

1 − Z2

k2q ′2

)

+ 2

(
2μ̃q

XY

q2
+ λ̃qZ

) (
X − YZ

q ′2

)(
2μ̃k

XZ

k2
+ λ̃kY

)
+

(
2μ̃k

XZ

k2
+ λ̃kY

)2 (
1 − Y 2

q2q ′2

)
k2. (A4d)
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