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Fractional Langevin equations of distributed order
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Distributed-order fractional Langevin-like equations are introduced and applied to describe anomalous
diffusion without unique diffusion or scaling exponent. It is shown that these fractional Langevin equations of
distributed order can be used to model the kinetics of retarding subdiffusion whose scaling exponent decreases with
time and the strongly anomalous ultraslow diffusion with mean square displacement which varies asymptotically
as a power of logarithm of time.
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I. INTRODUCTION

Anomalous transport phenomena occur in many physical
systems. Particles in complex media undergo anomalous
diffusion instead of normal diffusion. The basic property
commonly used to characterize different types of diffusion
is the mean-squared displacement (MSD) of the diffusing
particles. The diffusion is known as anomalous diffusion if
the MSD is no longer linear in time as in normal diffusion or
Brownian motion; instead, it satisfies a power-law behavior
and varies as tα , 0 < α < 2. MSD with α < 1 corresponds
to subdiffusion, which is slower than normal diffusion. It
is known as superdiffusion when α > 1; this is faster than
the normal one. Just like normal diffusion, which can be
described by the diffusion equation and the Langevin equation,
it is possible to model anomalous diffusion using a fractional
version of these equations. The stochastic processes com-
monly associated with anomalous diffusion include fractional
Brownian motion and Levy motion [1–3]. In order to describe
anomalous diffusion, the usual random walk model for normal
diffusion has to be replaced by the continuous-time random
walk model [1,4,5].

Anomalous diffusion forms only a portion of the diffusion
processes in nature. There also exist many diffusion processes
which do not have a MSD that varies as a power law with a
unique diffusion or scaling exponent α. For such systems α

is no longer a constant; instead it can be a function of certain
physical parameters like position, time, temperature, density,
and so on. Kinetic equations of constant fractional order
such as the fractional diffusion equation and the fractional
Langevin equation are successful in describing anomalous
diffusion. However, for diffusion process with a nonunique
scaling exponent, constant-order fractional kinetic equations
are not applicable. It is necessary to introduce kinetic equations
of multifractional order or variable fractional order [6–8].
We remark that variable-order fractional differential equations
are mathematically intractable except for a few very simple
cases. On the other hand, there is a subclass of diffusion
processes which have different regimes with distinct scaling
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exponents, for example, single-file diffusion of Brownian
particles confined to narrow channels or pores [2,9,10]. There
also exists ultraslow diffusion such as the diffusion observed
in the Sinai model [11] which has an MSD that varies
asymptotically as power of a logarithm of time. It is possible
to model such diffusion processes with a different type of
multifractional differential equation based on a distributed-
order derivative first introduced by Caputo [12].

Since its introduction in the 1960s by Caputo [12],
the distributed-order differential equation was subsequently
developed by Caputo himself [13,14] and by Bagley and Torvik
[15,16]. Various authors [17–33] have applied fractional
differential equations of distributed order to model anomalous,
nonexponential relaxation processes and anomalous diffusion
with nonunique diffusion or scaling exponent.

The distributed-order time derivative is defined by

D(ϕ)f (t) =
∫ β2

β1

ϕ(α)Dαf (t)dα, (1)

where the weight function ϕ(α) is a positive integrable function
defined on [β1,β2]. For our purposes, it is assumed that
0 � β1 < α < β2 � 1. Here the fractional time derivative Dα

can be either the Riemann-Liouville or Caputo type [1,34,35],
which are defined respectively for n − 1 < α < n as

Dα
RLf (t) = 1

�(n − α)

dn

dtn

∫ t

0

f (u)du

(t − u)α−n+1
(2)

and

Dα
Cf (t) = 1

�(n − α)

∫ t

0

f (n)(u)du

(t − u)α−n+1
. (3)

For our purposes, we let β1 = 0 and β2 = 1 in the subsequent
discussion.

Due to the fact that the distributed-order derivative modifies
the fractional order of the derivative by integrating all possible
orders over a certain range, the solution of the resulting
fractional equation is not characterized by a definite scaling
exponent. One can regard the distributed-order fractional
time derivatives as time derivatives on various time scales.
Derivatives with a distributed fractional order can be used
to describe transport phenomena in complex heterogeneous
media with multifractal properties. Such processes exhibit
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memory effects over various time scales. Distributed-order
time-fractional diffusion equations and space-fractional dif-
fusion equations have been considered by various authors
[7–10,14–18]. Solutions of these equations can be used to
describe retarding subdiffusion and accelerating subdiffusion,
as well as accelerating superdiffusion [18,19,22,23,26,31] and
ultraslow diffusion [18–21,25,26,28,30,31].

Distributed-order fractional diffusion equations of various
types have been quite well studied. On the other hand, studies
of distributed-order fractional Langevin equations have not
been carried out explicitly. There exists related work on
multifractal random walks [36,37], which has been extended
to describe multifractal phenomena based on generalized
fractional Langevin equations with memory kernel functions
which have a random scaling exponent [38–40]. The link of
such an approach with that of fractional Langevin equations of
distributed order has yet to be clarified. The main aim of this
article is to study the Langevin-like equations of distributed
order and to consider their possible applications. This article
considers several types of fractional Langevin equations of
distributed order. The statistical properties, in particular the
MSD, of the solutions to these equations are studied. Possible
applications of these equations to model retarding subdif-
fusion, such as single-file diffusion and ultraslow diffusion,
such as in the Sinai model and some other systems, will be
discussed.

II. FRACTIONAL LANGEVIN OF DISTRIBUTED ORDER

Let us consider a simple free fractional Langevin equation
without a frictional term,

Dαx(t) = ξ (t), n − 1 < α < n, (4)

where ξ (t) is stationary Gaussian random noise with mean
zero and covariance C(τ ) = 〈x(t + τ )x(t)〉 to be specified
later. Using the Laplace transform of the Riemann-Liouville
derivative Dα

RLf (t) and the Caputo derivative Dα
Cf (t) [19,21]:

L
[
Dα

RLf (t)
]
(s) = sαf̃ (s) −

n−1∑
k=0

sk
[
Dα−k−1

RL f (t)
]
t=0 (5)

and

L
[
Dα

Cf (t)
]
(s) = sαf̃ (s) −

n−1∑
k=0

sα−k−1f (k)(0), (6)

one gets the Laplace transform of (4) for the Riemann-
Liouville and Caputo cases respectively:

sαx̃(s) −
n−1∑
k=0

sk
[
Dα−k−1

RL x(t)
]
t=0 = ξ̃ (s) (7)

and

sαx̃(s) −
n−1∑
k=0

sα−k−1x(k)(0) = ξ̃ (s). (8)

The solution is

x(t) = a(t) + 1

�(α)

∫ t

0
(t − u)α−1ξ (u)du, (9)

where a(t) is the inverse Laplace transform of∑n−1
k=0 sk[Dα−k−1

RL x(t)]t=0 and
∑n−1

k=0 sα−k−1x(k)(0) for the
Riemann-Liouville and Caputo case, respectively. If the
random noise is white noise η(t) with covariance 〈η(t)η(s)〉 =
δ(t − s), then the variance of the process is given by

σ 2(t) = 1

�(α)2

∫ t

0
(t − u)2α−2du = t2α−1

(2α − 1)�(α)2
, (10)

and it is the same for both the Caputo and Riemann-Liouville
derivatives. If one assumes a(t) = 0, Eq. (9) can be regarded
as the definition of Riemann-Liouville fractional Brownian
motion with the Hurst index H = α − 1

2 [41,42]. When
α = 1, we get Brownian motion with H = 1/2.

One can now generalize (4) to the case of the
distributed-order fractional Langevin equation

D(ϕ)x(t) = ξ (t), t � 0, (11)

with D(ϕ) as defined as in (1). Note that though (11) is in the
form of free fractional Langevin equation of distributed order,
we shall see in the next section that the distributed-order deriva-
tive term will introduce “frictional” terms depending on the
type of weight function ϕ(α). The Laplace transform of (11) is

A(s)x̃(s) − B(s) = ξ̃ (s) (12)

with

A(s) =
∫ 1

0
ϕ(α)sαdα, 0 � α � 1, (13)

B(s) =
∫ 1

0
dαϕ(α)

{ �α�∑
k=0

sk
[
Dα−k−1

RL x(t)
]
t=0

}
(14a)

for the Riemann-Liouville case and

B(s) =
∫ 1

0
dαϕ(α)

[ �α�∑
k=0

sα−k−1x(k)(0)

]
(14b)

for the Caputo case. Here �α� denotes the largest integer
smaller or equal to α.

Solving (12) gives

x̃(s) = B(s)

A(s)
+ ξ̃ (s)

A(s)
, (15)

with the inverse Laplace transform

x(t) = m(t) +
∫ t

0
G(t − τ )ξ (τ )dτ, (16)

where m(t) and G(t) are the inverse Laplace transforms of
B(s)/A(s) and 1/A(s), respectively.

The mean and variance of the process x(t) are given by

x̄ = 〈x(t)〉 = m(t), (17)

and

σ 2(t) = 〈
(x(t) − x̄)2〉 =

∫ t

0

∫ t

0
G(u)C(u − v)G(v)dudv

= 2
∫ t

0
G(u)

∫ u

0
C(u − v)G(v)dvdu. (18)

031136-2



FRACTIONAL LANGEVIN EQUATIONS OF DISTRIBUTED ORDER PHYSICAL REVIEW E 83, 031136 (2011)

Thus, the solution to the distributed-order fractional Langevin
equation (11) has the same variance for both the Riemann-
Liouville and Caputo cases. Their means differ except when
x(k)(0) and [Dα−k−1

RL x(t)] = 0, k = 0,1, . . . ,n, and in this
case the MSD for the two types of fractional derivatives
are the same and equal to the variance. This is in contrast
to time-fractional diffusion equations of distributed order,
which leads to the use of a stochastic process with differing
MSDs or variance for the Riemann-Liouville and Caputo
cases [18,19,22,23,26,31]. In our subsequent discussion, Dα

and D(ϕ) shall denote respectively the fractional derivative
and distributed-order fractional derivative of either Riemann-
Liouville or Caputo type. The terms MSD and variance shall
be used interchangeably.

Before we discuss various examples of distributed-order
Langevin equations, we first derive expressions of MSD
for two types of Gaussian noise. First, we let ξ (t) be the
simple case of Gaussian white noise η(t) with zero mean
and covariance Cη(t − s) = 〈η(t)η(s)〉 = δ(t − s). Then (18)
becomes

σ 2(t) =
∫ t

0
[G(u)]2du. (19)

Evaluating (19) is in general complicated and it usually does
not lead to a closed expression. One way to obtain a simpler
expression for the MSD is to impose the following condition
on the Laplace transform of the covariance C̃ξ (s) of ξ (t):

G̃(s)C̃(s) = 1

s
. (20)

The condition (20) reduces (18) to

σ 2(t) = 2
∫ t

0
G(u)du. (21)

As we shall show in subsequent sections, Gaussian random
noise with a Laplace transform of its covariance satisfying
condition (20) not only facilitates the calculation of MSD but
also allows (11) to model ultraslow diffusion, which otherwise
cannot be done with Gaussian white noise.

Let us consider the properties of Gaussian random noise
ξ (t) that satisfies condition (20). From (20) one gets

C̃(s) = 1

sG̃(s)
= A(s)

s

=
∫ 1

0
ϕ(α)sα−1dα. (22)

By noting that the inverse Laplace transform of sα−1 is
t−α/�(1 − α), one gets

Cξ (t) =
∫ 1

0

t−α

�(1 − α)
ϕ(α)dα, 0 � α � 1. (23)

Let us define the Gaussian random noise ξα(t) by

〈ξα(t)〉 = 0 (24)

and

〈ξα(t)ξα(s)〉 = (t − s)−α

�(1 − α)
(25)

such that

Cξ (t − s) = 〈ξ (t)ξ (s)〉 =
∫ 1

0

∫ 1

0
ϕ(α)〈ξα(t)ξβ(s)〉dαdβ

=
∫ 1

0
〈ξα(t)ξα(s)〉ϕ(α)dα, (26)

where we have used the orthogonality property of
〈ξα(t)ξβ(s)〉 = δ(α − β)〈ξα(t)ξα(s)〉. Recall that the increment
process of fractional Brownian motion or fractional Gaussian
noise has the covariance CH t2H−2, where 0 < H < 1 is the
Hurst index for the fractional Brownian motion and CH =
2H (2H − 1). By letting α = 2 − 2H , one can then identify
ξα(t) with the fractional Gaussian noise (up to a multiplicative
constant). Note that the fractional Gaussian noise is to be
regarded as generalized derivatives of fractional Brownian
motion or a generalized Gaussian random process [43]. We
shall denote the distributed-order fractional Gaussian noise
with covariance (26) by ξϕ(t), and it can be defined either as

ξϕ(t) =
∫ 1

0
ϕ(α)ξα(t)dα, (27a)

or

ξϕ(t) =
∫ 1

0

√
ϕ(α)ξα(t)dα, (27b)

depending on the nature of the weight function ϕ(α), as we
shall demonstrate in subsequent sections.

Before we end this section, it is necessary to point out some
problems associated with the stochastic differential equation
driven by fractional Gaussian noise. The question on whether
a stochastic integral with respect to fractional Brownian
motion leads to a well-defined stochastic integral is a long-
standing problem which has attracted considerable attention
(see Refs. [44,45] and references therein). Fractional Brownian
motion is not a semimartingale if the Hurst index of the process
H �= 1/2, that is, when the process is not Brownian motion.
As a result, the usual stochastic calculus of Ito cannot be used
to define the integrals with respect to fractional Brownian
motion. Various methods such as Sokorohod-Stratonovich
stochastic integrals, Malliavin calculus, and pathwise stochas-
tic calculus have been suggested to overcome this problem (see
Refs. [44,45] for details). However, theory based on abstract
integrals will encounter difficulty in physical interpretations
in certain applications. Since our subsequent discussion deals
with applications involving 1/2 < H < 1, it is possible to
consider the integrals with respect to fractional Brownian
motion as the pathwise Riemann-Stieltjes integrals (see, for
example, Ref. [46] and references given there). In this way
we can handle such integrals in a manner similar to that for
ordinary integrals.

III. DOUBLE δ FUNCTION DISTRIBUTED-ORDER
FRACTIONAL LANGEVIN EQUATION

A fractional Langevin equation of double order results in
the choice of the following weight function:

ϕ(α) = a1δ(α − α1) + a2δ(α − α2), (28)
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where 1/2 � α1 < α2 � 1. The distributed-order Langevin
equation (11) becomes

a2D
α2x(t) + a1D

α1x(t) = ξ (t). (29)

For both Riemann-Liouville and Caputo cases, one has

A(s) = a1s
α1 + a2s

α2 (30)

such that the Green function is given by the inverse Laplace
transform of

1

A(s)
= 1

a1sα1 + a2sα2
= 1

a2

s−α1

sα2−α1 + (a1/a2)
. (31)

That is,

G(t) = 1

a2
tα2−1Eα2−α1,α2

(
− a1

a2
tα2−α1

)
, (32)

where

Eμ,ν(z) =
∞∑

j=0

zj

�(μj + ν)
, μ > 0, ν > 0, (33)

is the Mittag-Leffler function [34].
We consider first the case where the random noise is given

by white noise η(t), and then the MSD of the process is
given by

σ 2(t) =
∫ t

0

∫ t

0
G(u)δ(u − v)G(v)dudv =

∫ t

0
[G(u)]2 du

= 1

a2
2

∫ t

0
u2(α2−1)

[
Eα2−α1,α2

(
−a1u

α2−α1

a2

)]2

du, (34)

which cannot be evaluated analytically. However, its asymp-
totic limits can be obtained and are given by

σ 2(t) ∼ t2α2−1

a2
2(2α2 − 1)[�(α2)]2

, as t → 0 (35)

and

σ 2(t) ∼ t2α1−1

a2
1(2α1 − 1)[�(α1)]2

, as t → ∞. (36)

One can see that the short time limit of MSD is obtained
by ignoring the Dα1x(t) in (29) when t → 0 and treating it
like a2D

α2x(t) = ξ (t). On the other hand, the long time limit
of MSD results when Dα2x(t) is neglected and (29) reduces to
a1D

α1x(t) = ξ (t) as t → ∞. Therefore the process described
by (29) initially diffuses with scaling exponent α2, and it
then slows down to become a process with a smaller scaling
exponent α1 as t becomes very long. In other words, the process
is asymptotically locally self-similar of order α2 − 1/2 with
x(ct) = cα2−1x(t) for c > 0, and long-time asymptotically
self-similar of order α1 − 1/2 with x(ct) = cα1−1x(t). Thus
the resulting process describes retarding subdiffusion, which
becomes more and more anomalous (or slower and slower)
as time progresses. If we allow the limits of integration in
(1) to be β1 = 1, β2 = 3/2, and 1 < α1 < α2 < 3/2 in (28),
then the resulting process becomes a retarding superdiffusion.
However, there is no way for one to obtain accelerating
subdiffusion or superdiffusion based on (29).

Next we consider the case where the random noise ξ (t) in
(11) is given by the distributed-order fractional Gaussian noise

ξϕ(t) =
∫ 1

0
ξα(t)ϕ(α)dα = √

a1ξα1 (t) + √
a2ξα2 (t) (37)

with covariance given by

Cξ (t) = a1
t−α1

�(1 − α1)
+ a2

t−α2

�(1 − α2)
. (38)

The random noise ξ (t) can be regarded as the sum of two
fractional Gaussian noise elements corresponding to Hurst
indices Hi = 1 − αi

2 , i = 1,2.
The stochastic process associated with the distributed-order

fractional Langevin equation (29) with the above Gaussian
random noise ξϕ(t) has the following MSD:

σ 2(t) = 2

a2

∫ t

0
uα2−1Eα2−α1,α2

(
− a1

a2
uα2−α1

)
du

= 2

a2
tα2Eα2−α1,α2+1

(
− a1

a2
tα2−α1

)
. (39)

The long and short time limits are then given by

σ 2(t) ∼ 2

a2�(α2 + 1)
tα2 as t → 0 (40)

and

σ 2(t) ∼ 2

a1�(α1 + 1)
tα1 as t → ∞. (41)

Thus we see that the solution of (29) with Gaussian white noise
and Gaussian distributed fractional noise both lead to power-
law types of MSD with different exponents for the short and
long time limits of the MSD. Now we want to see whether the
processes in the above examples can be used to describe certain
transport phenomena in physical systems. Clearly, such a
process must not have a unique characteristic scaling exponent;
instead, it has piecewise scaling exponents. One such physical
process which has different scaling for short and long time
behaviors of MSD is single-file diffusion. Recall that in single-
file diffusion, the particles are geometrically constrained to
move in a line and are unable to pass each other [2,9,10].
For very short times the MSD of the diffusing particles varies
with time, just like in normal diffusion. Brownian particles
in a confined geometry such as in nanopores or nanochannels
cannot alter their relative ordering, therefore the subsequent
motion of each particle is always constrained by the same
two neighboring particles. Thus, in the long time limit this
effect of caging slows down the diffusion and changes the
MSD from linear growth to one that varies with

√
t . If white

noise is used in (29), when α2 = 1 and 2α1 − 1 = 1/2, or
α1 = 3/4, the limits (35) and (36) give the correct asymptotic
behavior of the MSD for single-file diffusion [2,9,10]. On the
other hand, if we use distributed-order Gaussian fractional
noise in (29), then for α2 = 1 and α1 = 1/2, one obtains the
correct short and long time limits for the MSD of single-file
diffusion. Figure 1(a) shows the comparison of MSD obtained
using Gaussian white noise and distributed-order fractional
Gaussian noise, and Figures 1(b) and 1(c) show the short and
long time limits of MSD for these two cases.
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FIG. 1. (Color online) MSD of a double δ-function distributed-order process with a1 = a2 = 1, α2 = 1, and α1 = 3/4. (a) MSD associated
with distributed-order equation with white noise (WN) and double δ-function distributed-order fractional Gaussian noise (FGN1); (b) log-log
plot of the MSD associated with a double-order distributed-order fractional Langevin equation with WN; (c) log-log plot of MSD associated
with a double-order distributed-order fractional Langevin equation with FGN1.

Recall that Brownian motion is related to white noise (in the
sense of generalized function) by the free Langevin equation
Dx(t) = η(t). If we regard the process as Brownian motion
that experiences a retardation due to the confined geometry,
then with α2 = 1 and α1 = 3/4, the second term, with the
fractional derivative in (29), can be regarded as a damping or
retarding term that slows down the Brownian motion so the
motion which begins as normal diffusion becomes single-file
subdiffusion after a long time. Since we use (29) only to
describe the asymptotic properties of single-file diffusion, it
does not give a unique description of single-file diffusion. It
is necessary to consider the behavior of single-file diffusion
at intermediate times to see whether it also agrees with
the corresponding description given by the distributed-order
fractional Langevin equation (29).

Here we would like to remark that a similar asymptotic
behavior for the MSD can also be obtained by using fractional

time diffusion equation of distributed order [8,10,14]∫ 1

0
ϕ(α)Dα

t W (x,t)dα = ∂2W (x,t)

∂x2
, (42)

where x ∈ R,t � 0 and W (x,t) is the probability distribution
function. Using the same weight function ϕ(α) as in (29) and
Dα as Caputo fractional derivative one gets

(
a1D

α1
C + a2D

α2
C

)
W (x,t) = ∂2W (x,t)

∂x2
, (43a)

where D
αi

C , i = 1,2 are Caputo fractional time derivatives as
defined by (3). Using the initial condition W (x,0+) = δ(x),
the solution of (III) is a diffusion process with variance having
asymptotic behavior σ 2 ∼ tα1 and σ 2 ∼ tα2 as the long time
and short time limits respectively. However, if the fractional
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time derivative of Riemann-Liouville type is used in (42), then
it becomes

∂W (x,t)

∂t
= (

a1D
1−α1
RL + a2D

1−α2
RL

)∂2W (x,t)

∂x2
, (43b)

where D
1−αi

RL , i = 1,2 are Riemann-Liouville fractional time
derivatives which are defined by (2). In this case the asymptotic
behavior is opposite that for the Caputo derivative with the
smaller exponent α1 dominating for short times and the larger
exponent α2 dominating for long times. Thus, in contrast to
(29), it is possible to obtain accelerating subdiffusion based
on the Riemann-Liouville version of (42). Another major
difference between these two approaches is that the description
based on the distributed-order time-fractional diffusion equa-
tion (42) is a non-Gaussian model, whereas the distributed-
order fractional Langevin equation (29) is a Gaussian one.
We would like to remark that there also exists an effective
Fokker-Planck equation which leads to a similar result, and it
provides a Gaussian model for single-file diffusion [47].

IV. UNIFORMLY DISTRIBUTED-ORDER FRACTIONAL
LANGEVIN EQUATION

There exists a class of strongly anomalous diffusion with a
long time limit and its MSD decays logarithmically as (lnt)κ ,
κ > 0. Such ultraslow diffusion occurs in Sinai diffusion
of a particle in a one-dimensional quenched random-energy
landscape [11,48], in charged polymers [49], in aperiodic
environments [50], in a class of iterated maps [51], in
area-preserving parabolic maps [52], and charged tracer
particles on a two-dimension lattice [53], for example. It has
been shown that uniformly distributed-order time-fractional
diffusion equations can be used to model ultraslow diffusion
[18–21,25,26,28,30,31].

In this section we want to consider a uniformly distributed-
order fractional Langevin equation to see whether it can de-
scribe ultraslow diffusion. For uniformly distributed order the
weight function is ϕ(α) = 1, 0 � α � 1. Now (11) becomes∫ 1

0
Dαx(t)dα = ξ (t) (44)

which gives the Laplace transform of its Green function as

G̃(s) = 1

A(s)
=

[∫ 1

0
sαdα

]−1

= lns

s − 1
. (45)

By taking the inverse Laplace transform one gets

G(t) = etE1(t), (46)

with

E1(t) = −γ − lnt + Ein(t), (47)

where E1(t) is the exponential integral function given by [54]

E1(z) =
∫ ∞

z

ey

y
dy (48)

and

Ein(t) =
∫ t

0

1 − e−u

u
=

∞∑
k=1

(−1)k+1t k

kk!
. (49)

In the case where the random noise ξ (t) is white noise, the
MSD is given by

σ 2(t) =
∫ t

0
[euE1(u)]2du, (50)

which cannot be evaluated analytically. In order to study
the asymptotic behavior of the MSD, we consider the upper
and lower bounds of the exponential integral function (see
Ref. [54], No. 5.1.20):

1

2
ln

(
1 + 2

t

)
< etE1(t) < ln

(
1 + 1

t

)
. (51)

From (50) the upper bound of the variance is

U (t) =
∫ t

0

[
ln

(
1 + 1

u

) ]2

du

= π2

3
+ t

[
ln

(
t

1 + t

)]2

− 2
∞∑

n=1

1

n2(1 + t)
. (52)

The lower bound is

L(t) = 1

4

∫ t

0

[
ln

(
1 + 2

u

)]2

du

= 1

2

∫ t/2

0

[
ln

(
1 + 1

u

) ]2

du = 1

2
U

(
t

2

)
. (53)

When t → 0, the summation term in (52) tends to ζ function
2ζ (2) = π2/3, which cancels with the first term in the
equation. Therefore, one gets

U (t) ∼
t→0

t [ln(t)]2 (54)

and

L(t) ∼
t→0

t

4
[ln(t)]2. (55)

Thus, the short time limit of the MSD is given by

σ 2(t) ∼
t→0

c1t[ln(t)]2 = c1t[ln(1/t)]2, (56)

where 1/4 � c1 � 1. From numerical simulations, we get c1 =
1 as shown in Fig. 2(b). For the long time limit of the MSD,
one notes that the summation term in (52) tends to zero as
t → ∞, and the second term of (52) becomes

t

[
ln

(
t

1 + t

) ]2

= t

[
− 1

t
+ 1

2t2
− · · ·

]2

∼
t→∞

1

t
+ O

(
1

t2

)
. (57)

Thus,

U (t) ∼
t→∞

π2

3
(58)

and

L(t) ∼
t→∞

π2

6
. (59)

Therefore the MSD approaches a constant for a sufficiently
long time,

σ 2(t) ∼
t→∞ c2

π2

6
, (60)
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FIG. 2. (Color online) MSD of the uniformly distributed process corresponds to the uniformly distributed order in the range α ∈ [0,1]:
(a) MSD of the process associated with a uniformly distributed-order fractional Langevin equation with white noise (WN) and uniformly
distributed fractional Gaussian noise (FGN2); (b) log-log plot of MSD associated with a uniformly distributed-order fractional Langevin
equation with WN; (c) log-log plot of MSD associated with the distributed-order fractional Langevin equation with FGN2.

where c2 = 1.5 can be obtained graphically. One may retain
the time-dependent term in the MSD for a long (but not too
long) time:

σ 2(t) ∼
t→∞

π2

4
+ 1

t
(61)

Here we have a motion that begins as a nonstationary
process and becomes a stationary one after a sufficiently long
time. In fact, at short times the diffusion is anomalous of a
slightly superdiffusive type. In other words, the process goes
to zero slower than the normal diffusion due to the ln(1/t)
term as t → 0. However, at long times it tends to a stationary
process with a constant variance. One can interpret the long
time behavior in the following way. The uniformly distributed
derivative is the derivative Dα integrated over the range
α = 0 to α = 1. As t → ∞, one would expect the dominant
term will be from α = 0, which will result in x(t) = η(t), a
white noise process with constant variance. In comparison,

for the uniformly distributed-order time-fractional diffusion
equation (42), the associated process at short times behaves in a
somewhat superdiffusive manner, with variance ∼t ln(1/t) and
for a long time limits the diffusion process becomes ultraslow
with variance ∼ln(t).

Now, instead of using white noise in equation (44), we let
the random noise ξ (t) be the uniformly distributed fractional
Gaussian noise,

ξϕ(t) =
∫ 1

0
ξα(t)dα, (62)

where the weight function is given by ϕ(α) = 1. From (62)
one gets the covariance of ξϕ(t) as

Cϕ(t − s) = 〈ξϕ(t)ξϕ(s)〉 =
∫ 1

0

(t − s)−α

�(1 − α)
dα. (63)
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The MSD is then given by

σ 2(t) = 2
∫ t

0
G(u)du = 2

∫ t

0
euE1(u)du

= 2[etE1(t) + γ + ln(t)], (64)

where γ is the Euler’s constant. Substituting (47) into (64)
gives

σ 2(t) = 2etEin(t) + 2(1 − et )[γ + ln(t)]. (65)

Hence, the short time limit of the MSD is given by

σ 2(t) ∼
t→0

2t ln

(
1

t

)
. (66)

Using (51) in (64), one gets the upper bound and lower
bounds of MSD as

H (t) = 2

[
ln

(
1 + t

t

)
+ γ + ln(t)

]
= 2[ln(1 + t) + γ ] (67a)

L(t) = 2

[
1

2
ln

(
2 + t

t

)
+ γ + ln(t)

]
= 2

{
1

2
ln[t(2 + t)] + γ

}
. (67b)

Both upper and lower bound approach to the same asymptotic
function, thus we have

σ 2(t) ∼
t→∞ 2ln(t) + 2γ. (68)

Therefore, the long time limit of the MSD is

σ 2(t) ∼
t→∞ 2ln(t). (69)

Note the constant term γ ≈ 0.57722 cannot be neglected
in practice since even for t = e10, σ 2(t) ≈ 2(10 + 0.57722)
which shows a 6% contribution from the Euler’s constant.
The above asymptotic behavior of the MSD shows that the
diffusion is ultraslow at very long times, and it becomes
slightly superdiffusive at short times.

Figure 2(a) shows comparison of the MSD of the stochastic
process associated with uniformly distributed-order Langevin
equations with Gaussian white noise and uniformly distributed
fractional Gaussian noise. In Figs. 2(b) and 2(c), the short and
long time limits of MSD for these two cases are demonstrated.

V. POWER-LAW DISTRIBUTED-ORDER FRACTIONAL
LANGEVIN EQUATION

In order to describe how ultraslow diffusion processes with
a long time limit of the MSD varies as (lnt)ν , ν > 0, it is
necessary to consider power-law distributed-order fractional
Langevin equation with weighing function ναν−1, ν > 0.
Equation (11) now becomes

ν

∫ 1

0
αν−1Dαx(t)dα = ξ (t). (70)

The Laplace transform of the Green function G̃(s) of (70) is
the inverse of

A(s) = ν

∫ 1

0
αν−1sαdα. (71)

For 0 < s < 1 or −∞ < lns < 0, one obtains

G̃(s) = (−lns)ν

νγ (ν, − lns)
. (72)

Since γ (ν,z) ∼ �(ν) as z → ∞, for small s or large −lns

G̃(s) ∼ [ln(1/s)]ν

ν�(ν)
as s → 0. (73)

If we assume the Gaussian random noise in (70) is power-law
distributed-order Gaussian fractional noise,

ξϕ(t) = ν

∫ 1

0
αν−1ξα(t)dα, (74)

then the Laplace transform of the MSD is given by σ̃ 2(s) =
2G̃(s)/s, which can be verified as a slowly varying function
[30,55]. Now applying Tauberian theorem [56,57], which
allows the long and short time asymptotic limits of a function
f (t) to be obtained from the Laplace transform f̃ (s) for s

near origin and infinity respectively [see, for example, p. 445,
Ref. [56]). Thus from (73), one gets

σ 2(t) ∼ 2
(lnt)ν

�(ν + 1)
as t → ∞. (75)

Similarly, the short time limit for the MSD can be obtained
from the large s limit of σ̃ 2(s) given by

σ̃ 2(s) ∼ lns

νs
as s → ∞. (76)

From this we get the short time limit for the MSD as

σ 2(t) ∼ 2
t ln(1/t)

ν
as t → 0. (77)

Thus, the distributed-order fractional Langevin equation with
the power-law weight function provides a way to describe the
kinetics of ultraslow diffusion, such as Sinai diffusion, with
ν = 4 to describe particles moving in a quenched random field
and the transport of hooked polyampholytes (heteropolymers
which carry both positive and negative charges) described by
ν = 4/3.

VI. CONCLUDING REMARKS

We have shown that distributed-order fractional Langevin
equations provide a mathematical model for anomalous
diffusion which does not have a unique scaling exponent.
Such complex diffusion processes can have distinct diffusion
regimes, depending on the nature of the weight function. We
note that the ability of distributed-order fractional Langevin
equations to describe multiscale processes with a finite number
of diffusion regimes is attributed to the fact that the time
derivative acts on multiple time scales. In our examples of
nontrivial distribution of time derivatives, the smallest order
governs the asymptotic behavior at long times, and the largest
order determines the short-time asymptotic property. The
weight function can also be viewed as an order density function
of the derivative, and the distributed-order derivative can be
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regarded as a summation of infinite fractional order derivatives.
The appropriate choice of ϕ(α) is necessary for application to
a specific complex heterogeneous system in order to obtain the
associated stochastic process with the correct diffusion modes
at short and long time limits.

It is interesting to note that the expression for MSD
acquires a more simple form if white noise in the
distributed-order fractional Langevin equation is replaced
by distributed-order fractional Gaussian noise. The solutions
of distributed-order fractional Langevin equations have MSDs
which describe retarding subdiffusion such as in single-file
diffusion, and ultraslow diffusion with logarithmic growth.
To a large extent, the results obtained are similar to those
from distributed-order time-fractional diffusion equations,
except for one main difference. The MSD for the Langevin
case has the same properties for both Riemann-Liouville
and Caputo distributed derivatives, whereas in the fractional
diffusion equation, Riemann-Liouville and Caputo distributed
derivatives lead to MSDs with different behaviors. In addition,
distributed-order time-fractional diffusion equations result in
a non-Gaussian process, whereas in the process obtained from
the corresponding Langevin equation is Gaussian.

Possible direct generalizations of our study are extensions
of the free Langevin equation to fractional Langevin equations
and fractional generalized Langevin equations of distributed
order. However, one notes that frictional terms appear in the
free Langevin equation once the usual fractional derivative
is replaced by the distributed-order fractional derivative. For
example, free fractional Langevin equations of distributed

order with the weight function ϕ(α) = a1δ(α − α1) + a2δ(α −
α2) + λδ(α), λ > 0 will become a2D

α2x(t) + a1D
α1x(t) +

λx(t) = ξ (t). Hence frictional terms can appear in free
Langevin equations when the time derivative is replaced by
a distributed-order time derivative with a certain weight func-
tion. The solution is complex in such a case, as the Green func-
tion involves the sum of Wright functions [35], and computing
the associated MSD is even more complicated. In the case of a
generalized fractional Langevin equation of distributed order
D(ϕ)x(t) + ∫ t

0 γ (t − u)x(u)du = ξ (t), where γ (t) is the fric-
tional kernel, one would expect it to be mathematically more
involved, though the assumption of fluctuation-dissipation
theorem may help to simplify the situation somewhat. The
main difficulty is in the evaluation of the inverse Laplace trans-
form for the Green function G̃(s) = G̃ϕ(s)[1 + G̃ϕ(s)γ̃ (s)]−1,
where G̃ϕ(s) denotes Laplace transform of Green function
for D(ϕ)x(t) = 0. All these generalizations are not only
computationally complex and mathematically intractable, they
may not lead to very interesting results. Our study shows that
the simpler fractional Langevin equation of distributed order
seem to be adequate for describing the kinetics of the types of
diffusion under consideration, hence it provides a viable alter-
native to the time-fractional diffusion equation of distributed
order.
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