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Coupled quantum Otto cycle
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We study the one-dimensional isotropic Heisenberg model of two spin-1/2 systems as a quantum heat engine.
The engine undergoes a four-step Otto cycle where the two adiabatic branches involve changing the external
magnetic field at a fixed value of the coupling constant. We find conditions for the engine efficiency to be higher
than in the uncoupled model; in particular, we find an upper bound which is tighter than the Carnot bound. A
domain of parameter values is pointed out which was not feasible in the interaction-free model. Locally, each
spin seems to cause a flow of heat in a direction opposite to the global temperature gradient. This feature is
explained by an analysis of the local effective temperature of the spins.
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I. INTRODUCTION

Quantum generalizations of classical heat cycles have now
been studied for some years. When the working medium is
a few-level quantum system, new lines of enquiry open up
due to additional features like discreteness of states, quantum
correlations, quantum coherence, and so on [1–7]. Many
models have served to investigate the validity of the second
law of thermodynamics in the quantum regime [8,9]. The
possibility of small scale devices and information processing
machines [10] has generated further interest in the fundamental
limits imposed on the heat generation, cooling power, and
thermal efficiencies achievable with these models [11–13].
Quantum analogs of Carnot cycles, Otto cycles, and other
Brownian machines have been analyzed [14,15]. Further, both
infinite [2–4] and finite-time [16–22] thermodynamic cycles
have attracted attention.

The quantum Otto cycle which occupies our interest here
consists of a working substance with Hamiltonian H and
initial density matrix ρ being manipulated between two heat
reservoirs (the reservoir temperatures satisfy T1 > T2) under
two adiabatic and two isochoric branches. On the adiabatic
branches, the system is assumed to follow the quantum
adiabatic theorem and thermodynamic work is defined in terms
of the change in energy levels at given occupation probabilities.
If the Hamiltonian is changed from H1 to H2 by controlling
an external parameter then the work performed is defined
as Tr[ρ(H2 − H1)]. On the other hand, while traversing the
isochoric branches, heat is exchanged with the reservoirs.
Thus if the density matrix of the system changes from ρ1

to ρ2 for a given Hamiltonian H , then the heat exchanged is
Tr[(ρ2 − ρ1)H ]. As an example, for an effectively two-level
system whose energy splitting can be varied from E1 to E2,
the Otto efficiency has been found to be 1 − E2/E1, which is
bounded from above by the Carnot value due to the condition
E2/E1 > T2/T1 [2].

Recently, the role of quantum interactions using spin-
1/2 particles has been adrressed for a quantum Otto cycle
[3–5]. In particular, the role of quantum entanglement has been
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conjectured using measures like concurrence and the second
law has been shown to hold in such models. In this paper,
we investigate a coupled Otto engine using a one-dimensional
(1D) Heisenberg model with isotropic exchange interactions
between two spin-1/2 particles [see Eq. (1) below]. In earlier
studies [3], during the adiabatic steps the exchange constant
J was altered between two chosen values (J1 → J2 → J1),
while keeping the external magnetic field B at a fixed value.
From an experimental point of view, it is also interesting to
investigate the Otto cycle where the exchange constant is fixed
and only the magnetic field is varied during the adiabatic steps.
Note that the Carnot cycle gives a higher efficiency than an
Otto cycle, but operating an adiabatic process within a Carnot
cycle would imply changing both J and B simultaneously,
which is more demanding than changing only B. Further, the
uncoupled model cycles considered earlier in the literature can
be taken as a benchmark with which to compare the engine
performance of the coupled model.

The paper is organized as follows. In Sec. II, we present
the quantum model of our working medium, enumerating the
energy eigenstates and eigenvalues. In Sec. II A, the various
stages of the heat cycle are described and expressions for heat
exchanged with reservoirs and work delivered are calculated.
It is instructive to develop the engine operation based on a
local description. It is shown that all the work is done locally
by each spin. In Secs. III A and III B we develop two cases:
(i) B1 > B2 and (ii) B2 > B1. The latter case is possible only
in the presence of interactions. It is observed for case (ii) that
the heat exchange at the local scale seems to be counter to the
global temperature gradient. General conditions are derived
when the efficiency is higher than in the noninteracting model.
We also present an upper bound for efficiency which is lower
than the Carnot bound. The proof is sketched in the Appendix.
In Sec. III C, we interpret some nontrivial features of the engine
operation in terms of local spin temperatures. The final section
summarizes our findings.

II. THE COUPLED QUANTUM HEAT ENGINE

The working medium for our quantum heat engine (QHE)
consists of two spin-1/2 particles within the 1D isotropic
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FIG. 1. Energy eigenvalues and eigenstates of two-spin entangled
model system.

Heisenberg model [3,23]. The Hamiltonian is given by

H = J (�σ (1) · �σ (2) + �σ (2) · �σ (1)) + B
(
σ (1)

z + σ (2)
z

)
, (1)

where �σ (i) = {σ (i)
x ,σ (i)

y ,σ (i)
z |i = 1,2} are the Pauli matrices;

J = Jx = Jy = Jz is the exchange constant and B is the
magnetic field along the z axis. The cases J > 0 and J < 0 cor-
respond to antiferromagnetic and ferromagnetic interactions,
respectively. In this paper, we consider the antiferromagnetic
case only. The energy eigenvalues of H are −6J , (2J − 2B),
2J , and (2J + 2B) as shown in Fig. 1. If |0〉 and |1〉 represent
the states of the spin along and opposite to the direction
of the magnetic field, respectively, then in the natural basis
{|11〉,|10〉,|01〉,|00〉}, we can write the density matrix as

ρ = P1|ψ−〉〈ψ−| + P2|00〉〈00|
+P3|ψ+〉〈ψ+| + P4|11〉〈11|, (2)

where |ψ±〉 = (|10〉 ± |01〉)/√2 are the maximally entangled
Bell states. The occupation probabilities of the system in the
thermal state at temperature T are given by

P1 = e8J/T

Z
, (3)

P2 = e2B/T

Z
, (4)

P3 = 1

Z
, (5)

P4 = e−2B/T

Z
, (6)

where Z = (1 + e8J/T + e2B/T + e−2B/T ) is the normaliza-
tion constant.

A. The heat cycle

The four stages involved in our quantum Otto cycle are
described below.

Stage 1. The system with the external magnetic field at B1

attains thermal equilibrium with a bath of temperature T1.
Let the occupation probabilities be p1, p2, p3, and p4 as
tabulated above with T = T1 and B = B1. Stage 2. The
system is isolated from the hot bath and the magnetic field
is changed from B1 to B2 by an adiabatic process. According
to the quantum adiabatic theorem, the process should be slow
enough to maintain the individual occupation probability of

each energy level. Stage 3. The system is brought into thermal
contact with a cold bath at temperature T2. Upon attaining
equilibrium with the bath, the occupation probabilities become
p′

1, p′
2, p′

3, and p′
4, corresponding to the thermal state with

T = T2 and B = B2. On the average, the system gives off
heat to the bath. Stage 4. The system is removed from the
cold bath and undergoes another quantum adiabatic process
which changes the magnetic field from B2 to B1 but keeps the
probabilities p′

1, p′
2, p′

3, and p′
4 unaffected. Finally, the system

is brought back to touch the hot bath. On the average, heat is
absorbed from the bath and the system returns to its initial state.

The heat transferred in stages 1 and 3 of the cycle
respectively is

Q1 =
∑

i

Ei(pi − p′
i) (7)

= 8J (p′
1 − p1) + 2B1(p′

2 − p2 + p4 − p′
4) (8)

and

Q2 =
∑

i

E′
i(p

′
i − pi) (9)

= −8J (p′
1 − p1) − 2B2(p′

2 − p2 + p4 − p′
4). (10)

In the above, Ei and E′
i (i = 1,2,3,4) are the energy eigen-

values of the system in stages 1 and 3, respectively. Q1 > 0
and Q2 < 0 correspond to absorption of heat from the hot bath
and release of heat to the cold bath, respectively. Comparing
the equations for heat transfer between the system and the
reservoirs, Eqs. (8) and (10), the quantity of heat 8J (p′

1 − p1)
appears in both the equations. Obviously, this term is absent in
the uncoupled case for which J = 0. As will be shown below,
the sign (±) of this term determines whether the efficiency
in the coupled case will be higher or lower than the uncoupled
case.

The work is done in stages 2 and 4 when the energy levels
are changed at fixed occupation probabilities. The net work
done by the QHE is

W = Q1 + Q2 = 2(B1 − B2)(p′
2 − p2 + p4 − p′

4). (11)

Note that W > 0 corresponds to work performed by the
system.

III. THE LOCAL DESCRIPTION

In this section, we discuss how the individual spins in the
system undergo the cycle. Again, let �12 and �′

12 represent
the thermal states in the natural basis when the two-spin
system is in thermal equilibrium in stages 1 and 3, respectively.
Explicitly, the density matrices are

�12 =

⎛
⎜⎜⎜⎝

p4 0 0 0

0 p1+p3

2
p3−p1

2 0

0 p3−p1

2
p1+p3

2 0

0 0 0 p2

⎞
⎟⎟⎟⎠ , (12)

�′
12 =

⎛
⎜⎜⎜⎜⎝

p′
4 0 0 0

0 p′
1+p′

3
2

p′
3−p′

1
2 0

0 p′
3−p′

1
2

p′
1+p′

3
2 0

0 0 0 p′
2

⎞
⎟⎟⎟⎟⎠ . (13)
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Let �1 and �2 be the reduced density matrices in stage 1
for the first and the second spin, respectively. Then from the
normalization constraints,

∑
i pi = ∑

i p
′
i = 1, we get

�1 = �2 =
(

1
2 − (p2−p4)

2 0

0 1
2 + (p2−p4)

2

)
. (14)

Similarly, in stage 3, the reduced density matrices for the first
and second spins are

�′
1 = �′

2 =
(

1
2 − (p′

2−p′
4)

2 0

0 1
2 + (p′

2−p′
4)

2

)
. (15)

Since the applied magnetic field is the same for each spin,
their local Hamiltonian is also same. Let Hl and H ′

l be
the local Hamiltonians for individual spins with eigenvalues
(B1, − B1) and (B2, − B2) in stages 1 and 3 respectively. The
heat transferred locally between one spin and a reservoir is
defined as q1 = Tr[(�1 − �′

1)Hl] and q2 = Tr[(ρ ′
1 − ρ1)H ′

l ].
The explicit expressions are given as

q1 = B1(p′
2 − p2 + p4 − p′

4), (16)

q2 = −B2(p′
2 − p2 + p4 − p′

4) (17)

for the hot and the cold reservoir, respectively. So we get the
net work done by an individual spin as

w = q1 + q2 = (B1 − B2)(p′
2 − p2 + p4 − p′

4). (18)

From Eqs. (18) and (11)

W = 2w. (19)

Thus the total work performed is the sum of work obtained
from the two spins locally. Now if B1 > B2, the (local)
efficiency of the spin based on the heat absorbed and the work
done by it is given by ηl = w/q1 = 1 − B2/B1. Note that the
expression for ηl is identical to the efficiency η0 for uncoupled
spins. Later on, we also discuss the case B2 > B1, which does
not yield the engine operation in the absence of interactions
under the given setup (T1 > T2). It will be seen then that the
local efficiency for B2 > B1 is ηl = 1 − B1/B2.

So the total heat absorbed by the system can be written as

Q1 = 8J (p′
1 − p1) + 2q1, (20)

and similarly the heat released to the cold bath is

Q2 = −8J (p′
1 − p1) + 2q2. (21)

Clearly, we can define a global heat exchange (Qi) as well
as a local heat exchange (qi) where i = 1,2. Because work is
being done only due to change in the local Hamiltonians, so
in our opinion, it is reasonable to assume that only part of the
heat which is absorbed locally by a spin is involved in energy
conversion. Clearly, some part of the heat exchanged by the
total system, which is present due to interaction between the
spins, cannot potentially be converted into work. However,
even if the operating conditions for the engine imply Q1 > 0,
and Q2 < 0, it is possible that q1 < 0 and q2 > 0. This means
that locally a spin can give off heat at the hot bath contact as
well as absorb heat at the cold bath contact. In this paper, we
highlight such an unexpected operation of the coupled-spin
engine.

In the following, we consider two cases whereby magnetic
field may be decreased or, alternately, increased in stage 2.
It will be seen that the second case is feasible only in the
presence of interactions, J �= 0. In the first case when J = 0,
the above equations go back to those for Kieu’s model with two
uncoupled spins where an engine operation is obtained given
T1 > T2 and B1 > B2 with the additional condition B2/T2 >

B1/T1.

A. The case B1 > B2

From Eq. (11), the condition that the work performed be
positive (W > 0) is given by

(p′
2 − p′

4) > (p2 − p4). (22)

Second, for the heat to be absorbed from the hot bath (Q1 > 0),
from Eq. (8) we have one of the following two possibilities:
(i) p′

1 > p1 or (ii) p′
1 < p1. Along with the possibility (ii),

we must also have (p′
2 − p2 + p4 − p′

4) > (4J/B1)(p1 − p′
1).

Now we rewrite Eq. (8) as

Q1 = 8J (p′
1 − p1) + WB1

(B1 − B2)
, (23)

or 8J (p′
1 − p1) = Q1(1 − η/η0), where η = W/Q1 is the

efficiency of the coupled engine and η0 = (B1 − B2)/B1 is
the efficiency of the uncoupled, i.e., J = 0, case which is the
same as the local efficiency. Thus for J > 0, if p′

1 > p1, then
η < η0, or in the presence of coupling between the spins the
efficiency is lower than η0. This is shown in Fig. 2 as the region
below the horizontal line. The global efficiency is equal to the
local efficiency in two situations, when J = 0 or p1 = p′

1.
On the other hand, if p′

1 < p1, then it is possible that the
efficiency of the coupled engine can be higher than in the
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FIG. 2. (Color online) Efficiency versus the coupling constant
J , for the B1 > B2 case, for values B1 = 4, B2 = 3, T1 = 1 and
T2 = 0.5. The uncoupled model efficiency corresponds to η0 = 1 −
B2/B1 = 0.25, which is shown as the reference horizontal line. Case
(i) p′

1 > p1, corresponds to efficiency below this line, while case
(ii) p1 > p′

1 gives a higher efficiency. The dashed curve denotes the
bound for efficiency from Eq. (26). The inset shows the behavior of
p1 (solid line) and p′

1 (dashed line) vs J .
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uncoupled case. Using the latter condition with Eq. (22), we
have

(p′
2 − p′

4)

p′
1

>
(p2 − p4)

p1
. (24)

From the explicit expressions for the probabilities, the above
inequality can be simplified to give

B2

T2
>

B1

T1
, (25)

for a given J value. Thus we see that the above condition
which is necessary to extract work in the J = 0 model is also
the condition for the coupled case to obtain an efficiency higher
than η0.

It is interesting to know how much maximum gain in
efficiency is possible for a given set of parameters. We have
proved an upper bound for the global efficiency, given by

η � 1 − B2/B1

1 − 4J/B1
< ηc, (26)

where ηc = 1 − T2/T1 is the Carnot bound. Also for η > η0,
we have the condition B1 > 4J . This implies that the ordering
of energy levels which gives an enhancement of efficiency
(over the uncoupled model) is

(2J − 2B1) < −6J < 2J < (2J + 2B1), (27)

and this after the first quantum adiabatic process becomes

(2J − 2B2) < −6J < 2J < (2J + 2B2). (28)

The proof of Eq. (26) is given in the Appendix.

B. The case B2 > B1

In this case, during the first quantum adiabatic process, the
magnetic field is increased from its value B1 to B2. If there is
no interaction between the spins, the system cannot work as
an engine in this case because the condition W > 0 will not
be satisfied [2]. The conditions T1 > T2 and B2 > B1 directly
lead to

p4 > p′
4, (29)

p3 > p′
3. (30)

Further, the positive work condition implies (p′
2 − p′

4) <

(p2 − p4), which along with (29) gives

p2 > p′
2. (31)

The normalization of probabilities and the above three condi-
tions Eqs. (29), (30), and (31) together give

p′
1 > p1. (32)

These are the necessary conditions for the system to work
as an engine given that T1 > T2 and B2 > B1. According to
Eq. (18), the local work should be positive. This yields q1 < 0
and q2 > 0. This means that, locally, the heat is absorbed by
a spin at the cold bath contact and heat is given off at the hot
bath contact. The local efficiency defined as the ratio of work
performed to the input heat is now given by

w

q2
= 1 − B1

B2
. (33)

Thus locally, the spins operate counter to the global temper-
ature gradient present because T1 > T2. But globally we do
have Q1 > 0 and Q2 < 0. Thus the function of the two-spin
engine is consistent with the second law of thermodynamics,
although locally we observe a flow of heat in a direction
opposite to the “hot-to-cold” suggested by the baths. This
apparent contradiction is resolved below using the concept of
local effective temperatures.

C. Local temperatures

Now each spin in the two-spin system can be assigned a
local effective temperature, corresponding to its local thermal
state or the reduced density matrix [24–26]. This is true
regardless of the state of the total system. Particularly, in stages
1 and 3 of the cycle, from Eqs. (14) and (15) along with the
local Hamiltonian, we get the local temperatures as

T ′
1 = 2B1

(
ln

[
2

(1 + p4 − p2)
− 1

])−1

, (34)

T ′
2 = 2B2

(
ln

[
2

(1 + p′
4 − p′

2)
− 1

])−1

. (35)

The important fact is that in the presence of interactions, the
local temperatures are different from the corresponding bath
temperatures. Thus T ′

1 �= T1 and T ′
2 �= T2 if J �= 0. Further,

since the work in our heat cycle is done only locally, the total
work by the system can be regarded as equal to the work by
two independent spins operating between the highest and the
lowest values of their effective temperatures (see Fig. 3).

(a) Engine working in B1 > B2. The positive work condi-
tion for a single spin is given by

B2

T ′
2

>
B1

T ′
1

. (36)

Since B1 > B2, we get

T ′
1 > T ′

2. (37)

After the first adiabatic process, the local temperature de-
creases from T ′

1 to T ′′
1 = T ′

1(B2/B1). Upon contact with the
cold bath, the local temperature changes from T ′′

1 to T ′
2. It

can be shown that T ′′
1 > T ′

2. Thus local temperature decreases

T1

T2
B1
B2

q1 > 0 (a)
q1 < 0 (b)

Hot
bath

1st adiabatic process
B1 → B2 T1

B2
B1

T2
B1 ← B2

2nd adiabatic process

q2 < 0 (a)
q2 > 0 (b)

Cold
bath

FIG. 3. Local effective temperatures of a spin (shown as a circle
with two levels) during various stages of the heat cycle. Case (a)
implies B1 > B2, while case (b) implies B1 < B2. Note that, in either
case, the opposite signs of heat are exchanged locally upon contact
with hot or cold baths.
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upon attaching the whole coupled system with the cold bath.
This means that locally heat is removed from a spin q2 < 0.
Thus both locally as well as globally, heat is given off
at the cold bath contact. Similarly, one can explain q1 > 0
in terms of change in the local temperatures at the hot bath
contact.

(b) Engine working in B2 > B1. The situation is different
in this case. Here, the positive work condition is satisfied only
when

B1

T ′
1

>
B2

T ′
2

. (38)

Thus in this case T ′
2 > T ′

1. Based on local temperatures, the
counterintuitive mechanism which leads in case (ii) to q1 < 0
and q2 > 0 can be justified as follows. For B2 > B1, due to the
first adiabatic process, the local temperature increases from
T ′

1 to T ′′
1 = T ′

1(B2/B1). After contact with the cold bath, the
new local temperature T ′

2 is more than the earlier value of
T ′

1(B2/B1). Thus heat is expected to flow locally into the spin
at the cold bath contact, or q2 > 0.

IV. SUMMARY

A model of coupled spins with isotropic interactions is
used as the working medium to realize a quantum Otto
engine. The conditions for the efficiency to be higher than
in the noninteracting case are found. A tighter upper bound
for the efficiency is found which is lower than the Carnot
value. The system can also work as a heat engine even if it
undergoes an adiabatic compression (B2 > B1) in the second
stage of the cycle. Here, using the reduced density matrix,
we have observed an interesting mode of operation whereby
each spin absorbs heat at the cold bath contact and rejects
some heat at the hot bath contact, while performing a net
work. However, globally the coupled system absorbs heat at
the hot bath and rejects some heat at the cold bath. From
the analysis of local effective temperatures of the spins, it
becomes clear that the spin is actually operating as an engine
between its highest local temperature T ′

2 and the lowest local
temperature T ′

1 in one cycle. It will be interesting to extend
the present cycle to models with anisotropic Heisenberg
interactions and also to investigate if with such working
media one can approach Carnot efficiency within an Otto
cycle.
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APPENDIX: UPPER BOUND FOR GLOBAL EFFICIENCY

We consider the case of the engine working in the range
B1 > B2. The condition to get a higher efficiency as compared
to the uncoupled model is the case (ii) discussed in Sec. III A
and is given by

p1 > p′
1. (A1)

−6J 2J − 2B2 2J − 2B2

2J − 2B2

2J − 2B1

2J − 2B1

−6J

−6J

2J − 2B1

(a) (b) (c)

FIG. 4. Three possible configurations of energy levels with
eigenvalues −6J and (2J − 2B1) and the level (2J − 2B2) resulting
from the first quantum adiabatic process whereby B1 is changed
to a lower value B2. Only case (a) is possible, as discussed in the
Appendix.

From the condition B2/T2 > B1/T1 [Eq. (25)], we get

p3 > p′
3, (A2)

p4 > p′
4. (A3)

Then normalization of the probabilities gives

p′
2 > p2. (A4)

From Eqs. (A1) and (A4), we have

p′
2

p′
1

>
p2

p1
, (A5)

which simplifies to

e(B2−4J )/T2 > e(B1−4J )/T1 . (A6)

Figure 4 shows three possible ways of arranging the energy
levels (2J − 2B1) and −6J relative to the level (2J − 2B2) re-
sulting from the first quantum adiabatic process. Equivalently,
Eq. (A6) is of the form ex > ey , which may be satisfied in one
of the following three ways:

Case (a) represents y > 0, x > 0 and so x > y. This implies
B1 > 4J and B2 > 4J .

Case (b) represents x < 0, y < 0 and |x| < |y|. This
implies B1 < 4J , B2 < 4J , but due to the fact that T2/T1 < 1,
we obtain B1 < B2 which leads to a contradiction.

Case (c) represents y < 0 and x > 0. This possibility is also
similarly ruled out.

So the only possibility is case (a), representing the fact that
the energy levels (2J − 2B1) and (2J − 2B2) lie below the
level −6J when the coupled engine gives a higher efficiency
than in the uncoupled case.

When the inequality (A6) holds, we can write

B2 − 4J

T2
>

B1 − 4J

T1
. (A7)

Since B1 > 4J , B2 > 4J , and T1 > T2, we get

η0

1 − 4J/B1
< ηc = 1 − T2

T1
, (A8)

where η0 = 1 − B2/B1. Now the global efficiency defined as
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η = W/Q1, can be written as

η = η0

1 − 4J (p1−p′
1)

B1(p4−p′
4+p′

2−p2)

. (A9)

From the inequalities between the probabilities [Eqs. (A1),
(A3), and (A4)], it follows that (p1 − p′

1) < (p4 − p′
4 + p′

2 −
p2). Therefore, we finally obtain that when the efficiency is

higher than in the uncoupled case (or the lower bound is η0),
then an upper bound for efficiency is given by

η <
η0

1 − 4J/B1
< ηc. (A10)

When J = 0, we have η = η0. A similar kind of proof can
be constructed for the case B2 > B1. Interestingly, the same
bound as Eq. (A10) is obtained.
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