
PHYSICAL REVIEW E 83, 031134 (2011)

Hopping over a heat barrier
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We analyze diffusion in a finite domain with a position-dependent diffusion coefficient in terms of a stochastic
hopping process. Via a coordinate transformation, we map the original system onto a problem with constant
diffusion but nontrivial potential. In this way we show that a regime with enhanced diffusion acts as a potential
barrier. We compute first-passage time distributions, hopping rates, and eigenvalues of the Fokker-Planck operator,
and thereby verify that diffusion with a heat barrier is equivalent to a hopping process between metastable states.
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I. INTRODUCTION

The motion of a particle in a bistable system subject to
noise is one of the best studied of all stochastic processes.
This is motivated by the enormous range of applications
in all fields of science including electronics (switching in
tunnel diode circuits [1]), chemical physics (dynamics of
the Schlögl reaction [2]), cellular biology (bistability in gene
expression [3]), laser physics (switching in a two-mode laser
[4]), climatology (tipping points in climate change [5]), and
condensed-matter physics (electrical bistability in polymers
[6]), to name just a few examples. One of the central
problems in such studies is the estimation of time scales for
the metastable states. Following Kramers [7], techniques for
tackling this calculation have evolved and are summarized in
numerous textbooks [8–10]. More recently, analyses have been
specialized to include, for example, multiplicative noise [11],
Lévy noise [12], and periodic driving [13].

However, all of the above cited work refers to systems where
the deterministic forces are the cause of multistability. There
have been some discussions on noise-induced bistability, for
example, in superfluids [14] or surface waves [15], but there
nonlinearity of the deterministic forces and the vicinity of
bifurcations are needed to bring about the multistability. Very
sporadically, the literature reports on noise-induced bistability
and/or noise-induced bimodality, where it is the noise and not
the deterministic forces that causes the loss of stability of a
single equilibrium point. This has been reported particularly
in atmospheric physics, e.g., Refs. [16] and [17], and in
astrophysics [18]. In this and many of the aforementioned
work, no distinction is made between bimodality of some
invariant distribution and bistability of the dynamics.

It is, however, physically essential whether a system is
bistable or whether its probability density is simply bimodal. If
a trajectory in a finite domain oscillates systematically between
left and right, the probability density will be related to the
inverse of the velocity, and a bimodal distribution can be
easily generated by speeding up the trajectory in the center
of the domain. This is very different from bistability. In the
latter, the trajectory would tend to stay for some time in one
domain, and then jump into another one. More specifically,
the relaxation toward local equilibrium inside one domain
should be much faster than the convergence toward the relative
balance between the different metastable states.

In this paper we are concerned with systems whose deter-
ministic part supports a single stable equilibrium point only,

and which, under the influence of multiplicative noise, exhibit
a bimodal distribution. We want to understand whether the
existence of such a bimodal distribution is indeed synonymous
with bistability of the noisy dynamics.

We restrict our discussion to Markov processes in real
time and with real-valued variables, i.e., to systems described
by Langevin-like equations and their corresponding Fokker-
Planck formulations. Individual sample paths are initial value
solutions of these stochastic differential equations, where
details of the trajectory depend on the chosen realization
of the noise. In contrast, their corresponding Fokker-Planck
equations are deterministic partial differential equations of the
form

∂

∂t
ρ(x,t) =

[
− ∂

∂x
F (x) + ∂2

∂x2
D(x)

]
ρ(x,t) (1)

in one dimension (1D), with drift F (x) and diffusion D(x),
which describe the time evolution of smooth probability
densities.

The asymptotic state, the invariant density, can be given in
closed form in the 1D case as

ρ0(x) = N0

D(x)
exp

{∫ x

−∞

F (x ′)
D(x ′)

dx ′
}

, (2)

where N0 is a normalization constant. This density reflects
an equilibrium property of the process: It quantifies the
probability to find a trajectory in a given subset of the phase
space, averaged over initial conditions and noise realizations.
Although the shape of the invariant density depends on the
deterministic and stochastic forces of the process, it is a static
quantity.

In many situations, dynamical properties are of interest.
When specifying a domain of initial conditions and another
target domain, a typically sought-after quantity is the mean of
the times individual trajectories need, under the joint action
of deterministic and stochastic forces, to pass from the initial
condition into the target domain, or its inverse: the hopping
rate. A more refined way to present this information is through
the probability distribution of first-passage times.

Hopping rates are a natural concept if the stochastic process
has two or more metastable states and rare transitions between
them. In 1D problems with constant noise amplitude

√
D,

the Kramers rate is a useful approximation in the low-noise
regime: Let the deterministic force be the negative gradient
of the potential U (x) (which always exists for 1D problems),
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and let the second derivative of U (x) exist, then the Kramers
escape rate out of a potential well with a minimum at x = 0
over a barrier with a maximum at x = a reads

rK = 1

2π

√
−U ′′(0)U ′′(a)e−[U (a)−U (0)]/D. (3)

In this paper, however, we consider 1D processes with a
state-dependent noise amplitude, sometimes called multiplica-
tive noise, without any bistability of the deterministic force.
For the particularly simple case of vanishing drift terms F (x)
and state-dependent diffusion D(x), one can easily see from
Eq. (2) that state-dependent diffusion can shape the probability
density in a similar way to deterministic drift. One example
is the case F (x) = 0 and D(x) = exp(x2), having Gaussian
invariant density. Other solvable examples exist in the literature
for certain diffusion profiles, e.g., Refs. [19] and [20], while
the calculation of an effective diffusion constant is discussed
in Ref. [21].

In Ref. [22] it was emphasized that a bimodal invariant
density does not necessarily require a deterministic double-
well potential, but that it might as well arise in a single-well
potential with state-dependent diffusion. The issue that we
investigate here is whether such a bimodal distribution owing
to multiplicative noise implies that it is justified to consider the
underlying process as a hopping process between metastable
states, even if the usual concepts such as the Kramers rate are
not readily applicable. To this end, we study how regions with
large diffusion coefficients influence relaxation properties in
the absence of any deterministic forces.

After introducing the model in Sec. II, we compute the
first-passage time distribution and its mean in Sec. III, where
we transform the original model onto a model with constant
diffusion coefficient but nontrivial potential. In Sec. IV we
compute eigenvalues and eigenstates of the Fokker-Planck
equation and verify the existence of a gap in the spectrum,
showing that our model process is indeed bistable.

II. THE MODEL

We consider diffusion on an interval with reflecting walls,
without any deterministic force, but with a position-dependent
diffusion coefficient. More specifically, the diffusion will be
piecewise constant with a high value in some central domain,
called the “hot” domain, and a smaller value outside this
domain, called the “cold” parts for brevity.

For the purpose of analytical calculations, we introduce a
linear interpolation of width ε/2 between the two different
diffusion levels to make the diffusion coefficient continuous.
Taking the limit ε → 0 recovers the results of the discontinu-
ous system. The resulting diffusion coefficient is given by

D(x) =

⎧⎪⎨
⎪⎩

D1 if L2+ε
2 < |x| < L1+L2+ε

2 ,
(D2−D1)(L2−2|x|)+εD2

ε
if L2

2 < |x| < L2+ε
2 ,

D2 if |x| < L2
2 ,

(4)

as illustrated in Fig. 1. The invariant density of this process, as
given by Eq. (2), is proportional to the inverse of the diffusion
coefficient, ρ0(x) ∝ 1/D(x), which is a bimodal distribution.

Figure 2 shows two sample paths of the discontinu-
ous system (ε = 0), one resulting from free diffusion, i.e.,
D1 = D2 (upper panel), and one from diffusion constants
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FIG. 1. Illustration of the model system, showing the state
dependence of the diffusion coefficient with linear interpolation.

D2 = 20D1 (lower panel). It is clearly visible that the strong
diffusion in the middle of the system introduces hopping
dynamics, in which the sample path resides in the outer parts
of the system most of the time, with rapid crossing through the
middle regime.

A sample path that represents the same bimodal invariant
density, but having very different temporal correlations, is
shown in Fig. 3, consisting of so-called surrogate data [23],
i.e., a scrambled version of the time-discrete path of Fig. 2(b).
Random scrambling of the original sequence x(t) yields a
sequence of identically and independently distributed random
variables. Its continuous time limit would be white noise with
a non-Gaussian probability density. (Combining successive
data points by lines as in Fig. 3 represents a process with
nonvanishing autocorrelations on time lags smaller than the
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FIG. 2. Sample paths for the fully discontinuous model system
(ε = 0) with diffusion constants D1 = D2 = 1 (upper panel) and
D1 = 1 and D2 = 20 (lower panel). The higher diffusion regime
in this simulation extends from x = 1 to x = 2.
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FIG. 3. A path generated by linear interpolation of the randomly
scrambled data of Fig. 2(b).

sampling interval and is therefore not the illustration of white
noise, because the sample paths of white noise are nowhere
continuous.) It is evident that, despite the bimodality of
the probability density function, such a process would not be
called a “hopping process”: there is no time-scale separation
between the motion inside the highly populated areas and
the motion across the sparsely populated central domain.
Therefore, visual inspection of the contrast between Figs. 2
and 3 clearly suggests that the considered diffusion process
does indeed have properties of metastability and hopping.

In the next section we will derive analytical results for a
hopping rate to further clarify whether this situation defines a
process that may indeed be called “hopping over a heat barrier.”

III. TRANSFORMATION TO A PROBLEM WITH
CONSTANT DIFFUSION COEFFICIENT

Because analytical results for the mean first-passage time
are much easier to derive for systems with additive noise,
we make use of the transformation of variables [8] given by
Eq. (5), which changes the system from multiplicative noise
with a diffusion coefficient D(x) to a constant diffusion D̃ = 1:

y =
∫ x

c

dx ′
√

D(x ′)
, (5)

where c is an arbitrary constant.
The drift F̃ in the transformed system will then be given by

F̃ (x) = 1√
D(x)

[
F (x) − 1

2

d

dx
D(x)

]
. (6)

As the coordinate transformation is a rescaling of only
the space coordinates, not of time, the transition rate of the
transformed process is identical to the transition rate of the
original process.

Applying the transformation to our model system and
choosing the constant c such that the system is symmetric
around y = 0 leads to the following potential in the new
coordinate system [with the same subdivision of the system as
in Eq. (4)]:

U (y) =

⎧⎪⎪⎨
⎪⎪⎩

0,

log
∣∣∣|y| − L2

2
√

D2
− ε

√
D2

D2−D1

∣∣∣ − log
∣∣∣ ε

√
D1

D2−D1

∣∣∣,
log

√
D2
D1

.

(7)

Hence, the transformed problem is a stochastic motion
with a constant diffusion coefficient in a finite domain with
reflecting boundaries and a potential barrier in the center, if
D2 > D1. In the limit ε → 0, i.e., in the problem without linear
ramps in D(x), the potential is piecewise constant. The height
of the barrier is given by log

√
D2/D1 and hence is higher

the stronger the diffusion in the center. What is concealed
is the fact that in the transformed y coordinates, the width
of the barrier is given by L2/

√
D2 and is therefore smaller, the

larger D2. Altogether, in the y coordinates, this problem is a
conventional hopping process between two metastable states
across a potential barrier.

Because the coordinate transformation leads to a problem
with a well-defined potential and constant diffusion D, the
mean first-passage time T from a starting point x0 in the left-
hand well to an endpoint at xe, given a reflecting wall at a =
−(L1 + L2)/2, i.e., at the left-hand boundary of the system,
can be calculated in closed form [10]:

T (x0 → xe) = 1

D

∫ xe

x0

dy exp

[
U (y)

D

]

×
∫ y

a

dz exp

[
−U (z)

D

]
. (8)

This formula provides the usual starting point for a Kramers
approximation that decouples the double integral through
a parabolic ansatz for the potential near its extrema. In
the case of our model system, however, the extrema are
degenerate because the potential is piecewise constant. The
Kramers approximation is therefore not applicable even in the
transformed coordinates.

However, because in this special case the double integral
can be calculated exactly, an approximation proves unneces-
sary, and the mean first-passage time (after transforming the
space coordinates back to the original coordinate system) is
given by

T (x0 → xe) = L2
1

8D1
− (2x0 + L1 + L2)2

8D1
+ L1(2xe + L2)

4D1

+ 1

2D2

(
xe + L2

2

)2

(9)

if xe ∈ [−L2/2,L2/2], and by

T (x0 → xe) = L2
1

8D1
− (2x0 + L1 + L2)2

8D1
+ L1L2

2D1
+ L2

2

2D2

+
√

D1

D2

(L1D2 + 2L2D1)(2xe − L2)

4D1D2

+ (2xe − L2)2

8D1
(10)

if xe > L2/2.
The passage times for x0 < −L2/2 and xe = L2/2 hereby

characterize what we would like to call “hopping” from left to
right: paths from the left cold domain through the hot central
part into the right cold domain. In this case, Eqs. (9) and (10)
are identical. Whereas the first two terms describe the average
time needed to arrive at the transition point −L2/2, the third
and fourth together give the time needed to pass through the
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FIG. 4. Mean first-passage times as a function of the diffusion
coefficient D2 for different values of the width of the hot region L2

(from top to bottom: L2/L1 = 2, 1, 0.4). Symbols: Numerical average
from one long trajectory (108 time steps); continuous lines: Eq. (9)
with x0 = −L2/2 and xe = L2/2.

“hot” region, including the possibility that the path returns into
the “cold” region before arriving on the right-hand side.

Figure 4 illustrates the dependence of this mean first-
passage time on the parameters D2 and L1/L2. It also
includes the numerically determined values taken from one
long trajectory to compare for accuracy. The value of the
diffusion constant in the “cold” domains was chosen as
D1 = 1 throughout this paper, because varying the second
diffusion constant in addition to D2 only leads to an overall
rescaling of time. Numerical integration was done with a
simple Euler-Mayurama scheme. The reflecting boundary
conditions at −(L1 + L2)/2 were implemented by mirroring
back a trajectory inside [−(L1 + L2)/2,(L1 + L2)/2] when
it leaves this interval, but no corrections were employed at
−L2/2 or L2/2 (where the diffusion coefficient changes its
value) in order to conserve detailed balance.

As can clearly be seen in Fig. 4, the passage time increases
when the central region gets broader and it decreases when the
diffusion coefficient in this region is increased. This result does
not come as a surprise, as the traversing of a larger distance
should take more time, and an increased diffusion coefficient
accelerates the dynamics. It does, however, seem to contradict
the idea that a regime of enhanced diffusion might act as a
barrier. On the other hand, when considering the transformed
system, we can see that although the potential barrier increases
with D2, its width decreases, so that the passage time can
indeed decrease with increasing D2.

In fact, as described in the Appendix, it is possible to obtain
not only the mean first-passage time exactly, but also the full
first-passage distribution (for the case ε = 0) by numerically
inverting its analytical Laplace-space solution (see Fig. 5). The
evolution of the distributions with increasing D2 is in keeping
with the decreasing mean first-passage times shown in Fig. 4.
The cutoffs at short and long times, visible in the log-log inset,
are essentially set by the time scales for diffusing from the
initial starting point to the absorbing boundary, and from the
reflecting boundary to the absorbing boundary, respectively.
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FIG. 5. (Color online) First-passage time distributions p(t) from
x0 = −L2/2 to xe = L2/2 for L1/L2 = 1 and D2 = 4,2,1 (top to
bottom at small values). Inset: p(t) on a log-log scale.

IV. EIGENVALUES OF THE FOKKER-PLANCK
OPERATOR AND RELAXATION

Despite the fact that the transformed problem resembles
a typical hopping problem, the decrease of the mean first-
passage time under an increase of D2 does not really conform
with the initial assumption of enhanced diffusion acting as a
barrier. We therefore analyze the eigenvalues of the Fokker-
Planck operator of this problem.

If we interpret an initial probability density ρi as a linear
combination of the right eigenfunctions ρk of the Fokker-
Planck operator F , with Fρk = −λkρk = ρ̇k , then we see that
the smallest nonzero eigenvalue λ1 controls the relaxation of
a generic initial density toward the invariant density ρ0. The
existence of a metastable state is usually assumed if this first
nontrivial eigenvalue is much closer to 0 than is the difference
between the first and the second eigenvalue. This is formalized
in the theory of Markov processes: A system is called bistable
only if there is one nontrivial eigenvalue close to unity that is
separated from the other (smaller) eigenvalues by a gap [24].

For the special case in which the hot and cold domains
are exactly equal in length (in the transformed coordinates),
analytical results are given in Ref. [8] for the eigenval-
ues and eigenfunctions. However, for general L1 and L2,
a transcendental equation has to be solved. Because this
makes numerical calculations necessary anyhow, we take the
eigenvalues directly from the simulated paths of this system.

To this end, we introduce a rather fine partition of the
range [−(L1 + L2)/2,(L1 + L2)/2] and determine a transition
matrix Mij by numerical simulations: We simply count the
number of occurrences of a situation where the trajectory is
in bin i at time t and in bin j at time t + �t for suitably
small �t . This is a numerical estimate of exp(�tF). The
logarithms of its eigenvalues, divided by �t , are therefore
a good approximation of the eigenvalues of the Fokker-Planck
operator. Because Mij by construction is a Markov matrix, its
leading eigenvalue is unity, which translates into the eigenvalue
0 of the Fokker-Planck operator corresponding to the invariant
density.
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FIG. 6. Dependence of the first four nontrivial eigenvalues (bot-
tom to top) of the Fokker-Planck operator obtained from the transition
matrix Mij on the diffusion constant D2 of the hot domain for a ratio
of domain lengths L2/L1 = 0.4.

The numerically obtained invariant density is of course
not precisely a piecewise constant but has smooth transitions
at the borders between hot and cold regions, whose width
is controlled by the temporal step width. Despite these
inaccuracies, the error in terms of eigenvalues is negligible,
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FIG. 7. First (upper panel) and second (lower panel) eigenfunc-
tion of the Fokker-Planck operator for the discontinuous system
(ε = 0) with a ratio of domain lengths L2/L1 = 0.4 and D2 = 4.
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FIG. 8. Inverse mean first-passage time to xe = 0 from initial
conditions averaged over −(L1 + L2)/2 < x0 < 0 as a function of
D2 for L2/L1 = 0.4,1,3 (continuous lines from top to bottom), and
first nontrivial eigenvalues of the Fokker-Planck operator for the same
values of L2/L1 (circles).

and the general agreement between numerics and analytical
results is good (as seen already in Fig. 4).

In Fig. 6 we plot the first four nontrivial eigenvalues of
the Fokker-Planck operator versus D2 for L2/L1 = 0.4. We
see that there is indeed a gap between the first and second
eigenvalue, which increases with D2, indicating metastability
that grows with barrier height.

In Fig. 7 we plot the corresponding two eigenfunctions for
L2/L1 = 0.4 and D2 = 4 (the qualitative behavior is indepen-
dent of these values while D1 < D2). The first eigenfunction
is antisymmetric with respect to the middle of the system,
showing that it is related to the imbalance between the weight
of the right and left cold domains. The second eigenfunction,
in contrast, has antisymmetric parts within the cold wells and
is thus more related to the equilibration within the wells.

To confirm these interpretations, Fig. 8 compares the first
nontrivial eigenvalue as an estimate of the hopping rate
between the wells to the inverse of the mean first-passage
times computed analytically as outlined in Sec. III, finding
good agreement. Note, however, that the eigenfunction is
antisymmetric with respect to the middle of the hot domain,
i.e., to x = 0, and the rate described by its eigenvalue
therefore has to be compared to the mean first-passage time to
xe = 0 starting from averaged initial conditions in the region
−(L1 + L2)/2 < x0 < 0.

As mentioned in the Appendix, the time-dependent re-
laxation toward the invariant density is available exactly by
numerically inverting the analytical Laplace-space solution.
This allows us to visually confirm the notions of metastability
discussed above. Figure 9 shows the relaxation of a δ-peak
initial condition ρ(x,0) = δ(x + [L1/2 + L2]/2) centered in
the middle of the left well. It is apparent that relaxation
within a well (i.e., convergence to a uniform density profile)
is on a faster time scale as compared to the transfer of
probability mass between the left and right wells. Indeed,
in the sequence of densities shown, only by the third time
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FIG. 9. Relaxation of a δ-peak initial condition centered in the
middle of the left well (where time increases from top to bottom)
toward the invariant density, with L1/L2 = 1, D2 = 2.

update does any significant probability mass appear in the right
well.

V. CONCLUSIONS

The literature on state-dependent noise amplitudes, which
is generally called multiplicative noise, is very rich. While
theoretical investigations have discussed scenarios such as
noise-induced phase transitions, in more applied research
the formation of bimodal distributions or bistability has
been reported only sporadically. A clear distinction between
bimodal distributions and bistability of a system has not been
established despite the marked physical differences between
the two.

Our investigation of a very simple model system shows
that a domain of enhanced diffusion in a 1D stochastic process
acts as a potential barrier, thereby forming metastable states
and giving rise to hopping processes. By transforming the
original problem onto one with a state-independent diffusion
coefficient, we demonstrate the equivalence with a potential
barrier. Although the dependence of the first-passage time on
the strength of diffusion D2 seems to contradict this point
of view, an analysis of the eigenvalues (the correctness of
its interpretation being verified by studying the relaxation
of δ densities) shows the separation of time scales, and
the corresponding eigenfunctions confirm that indeed the
exchange between the two cold domains is suppressed by the
hot domain in between.

Our model system has a very simple and intuitive physical
analog: Consider a box filled with air, which is held at a given
temperature through contact with the walls of the container.
The container is subdivided by a narrow domain of local
heating, e.g., by radiation. Thereby, the local temperature of
the air is higher, and thus the diffusion of gas molecules is
enhanced. Our results now predict that the transport across
this hot air regime (ignoring convection) is much slower than
the relaxation inside each cold regime. Therefore, a release of
pollutants at some spot in one cold domain will very quickly
pollute the domain in which it was released homogeneously,

and diffuse only slowly over the high-diffusion barrier into the
other domain.

Summarizing, we have confirmed that state-dependent
diffusion, or multiplicative noise, cannot only give rise to
multimodal distributions, but that the dynamics is really
a hopping process between metastable states, even if the
deterministic potential has a single well only.

APPENDIX

Although we are not able to solve the time-dependent
diffusion problem given by Eqs. (1) and (4) directly, a solution
nevertheless exists in Laplace space:

ρ(x,s) =
∫ ∞

0
dte−stρ(x,t). (A1)

Following the presentation in Ref. [25], the Laplace transform
of the diffusion equation reads

sρ(x,s) − δ(x − x0) = ∂2

∂x2
D(x)ρ(x,s), (A2)

with an initial condition ρ(x,t = 0) = δ(x − x0). For the
problem with a top-hat diffusion profile, Eq. (A2) can be
written with a uniform diffusion constant in the three re-
gions [−(L1 + L2)/2, − L2/2], [−L2/2,L2/2], [L2/2,(L1 +
L2)/2] separately, with x0 ∈ [−(L1 + L2)/2, − L2/2]. In the
latter two regions, Eq. (A2) is homogeneous, while in the first
region it is homogeneous on either side of x = x0. Thus, the
continuity conditions read

ρ(x,s)|x↑x0 = ρ(x,s)|x↓x0 , (A3)

ρ ′(x,s)|x↓x0 − ρ ′(x,s)|x↑x0 = −1/D1, (A4)

D1ρ(x,s)|x↑−L2/2 = D2ρ(x,s)|x↓−L2/2, (A5)

D1ρ
′(x,s)|x↑−L2/2 = D2ρ

′(x,s)|x↓−L2/2, (A6)

D2ρ(x,s)|x↑L2/2 = D1ρ(x,s)|x↓L2/2 (A7)

D2ρ
′(x,s)|x↑L2/2 = D1ρ

′(x,s)|x↓L2/2, (A8)

where Eq. (A4) is the result of integrating Eq. (A2) around
a small region including x = x0. In addition, two condi-
tions are provided by the appropriate boundary conditions
at x = ±(L1 + L2)/2. This completes the specification of
the problem. The solutions within the different regions are
expressible as linear combinations of exp(±√

s/D1,2).
For the case of studying relaxation of an initial δ peak

toward the invariant density, reflecting conditions are im-
posed at x = ±(L1 + L2)/2. For the Laplace-transformed
first-passage time distribution p(s), meanwhile, absorbing
boundary conditions are imposed at x = xe (or at whichever
point first passage is sought), by which

p(s) = −D1,2
∂

∂x
ρ(x,s)

∣∣∣∣
x=xe

, (A9)

which is nothing other than the exit current at x = xe. Because
p(s) is the moment-generating function for the first-passage
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time distribution p(t), the mean first-passage time is given by

T (x0 → xe) = − ∂

∂s
p(s)

∣∣∣∣
s=0

. (A10)

The resulting expressions for ρ(x,s) and p(s) are too
cumbersome to reproduce here, and an analytical inversion is
not available. However, using Mathematica and the numerical
inversion algorithm provided by Valkó and Abate [26], ρ(x,t)
and p(t) can be obtained to very high precision.
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