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Multishocks in driven diffusive processes: Insights from fixed-point analysis of the boundary layers
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Boundary-induced phase transitions in a driven diffusive process can be studied through a phase-plane analysis
of the boundary-layer equations. In this paper, we generalize this approach further to show how various shapes
including multishocks and downward shocks in the bulk particle density profile can be understood by studying
the dependence of the fixed points of the boundary-layer equation on an appropriate parameter. This is done for
a particular driven interacting particle system as a prototypical example. The present analysis shows the special
role of a specific bifurcation of the fixed points in giving rise to different kinds of shocks.
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I. INTRODUCTION

In a one-dimensional driven diffusive process [1,2], parti-
cles typically hop to neighboring sites with a bias in a specific
direction. These are nonequilibrium processes in which there is
a finite particle current due to the biased diffusion of particles.
A simple case entails particles hopping in a specific direction
obeying the mutual exclusion rule, according to which a site
cannot be occupied by more than one particle and a hop to
an occupied target site is not allowed. After being injected
at one end of the lattice at a rate α, particles hop across the
lattice and reach the other end, where they are withdrawn at
a rate 1 − γ . Other models exist where particles can have
attractive or repulsive interactions in addition to the exclusion
interaction [3,4].

All these systems exhibit interesting boundary-induced
phase transitions for which the tuning parameters are the
boundary rates, α and γ [5,6]. In different phases, the average
particle density has distinct constant values across the bulk of
the lattice. These particle density profiles in different phases
may also differ due to the different location and nature of the
boundary layers. More features, such as the coexistence of
high- and low-density regimes, are seen in systems where the
particle number is not conserved in the bulk due to attachment
and detachment of particles to and from the lattice [7,8]. In
this coexistence phase (also known as a shock phase), the
particle density profile has a jump discontinuity (shock) in
the interior of the lattice from a low to a high density value.
The slope and the number of such shocks in a density profile
are related to the nature of the interparticle interactions that
determine the fundamental current density relation [9,10].
Although this relation predicts the kind of shocks that can be
seen [10] in the density profile, a systematic characterization
of the phase transition and the phase diagram in the α-γ
plane requires a detailed analysis of the relevant equations
describing the dynamics in the steady-state [8,11,12]. Drawing
analogies from the equilibrium phase transitions, first-order,
critical [6,7], and tricritical [12] kinds of phase transitions have
been observed so far in various driven diffusive models.

While characterizing the phase transitions, it is useful to
study the variation of the height or the width of the boundary
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layers as α and γ are changed. In a way, these boundary layers
play important roles in deciding the “order parameter”–like
quantities in these nonequilibrium phase transitions. Owing to
their importance in describing phase transitions, the boundary
layers for several interacting and noninteracting models have
been studied using the techniques of boundary-layer analysis
[13]. It is found that the system usually enters into a shock
phase from a nonshock phase due to the deconfinement of the
boundary layer from the boundary. This deconfinement can be
described by a nontrivial scaling exponent associated with the
width of the boundary layer [8]. For the pure exclusion case,
except for a critical point, the transition from a nonshock to a
shock phase is first order in nature since a shock of finite height
is formed on the phase boundary. The height of the shock on
the phase boundary decreases as one approaches the critical
point along the phase boundary. At the critical point, the shock
height is 0 on the phase boundary and it increases continuously
as one proceeds away from the phase boundary farther into
the shock phase. To visualize these features, it is beneficial
to obtain the full solution for the density profile along with
its boundary layer. Boundary-layer analysis is useful for this
purpose since it allows us to generate a uniform approximation
for solving the steady-state particle density equation across the
entire lattice. This steady-state equation can be obtained from
the large time- and length-scale limit (hydrodynamic limit)
of the statistically averaged master equation that describes
the particle dynamics in the discrete form. For the simple
exclusion case, it is possible to obtain an analytical solution of
the steady-state hydrodynamic equation for the entire density
profile. This, however, may not be possible for more complex
driven diffusive models.

A fixed-point analysis of the hydrodynamic equation turns
[14] out to be general and useful, since it does not involve an
explicit solution of the steady-state hydrodynamic equation. In
particle conserving models, a boundary layer saturates to the
constant bulk density profile asymptotically. As a consequence
of this, it is expected that the fixed points of the boundary-
layer equation match the bulk density values. In other words,
a boundary layer, which is a solution of the boundary-layer
equation, is a part of the flow trajectory of the equation flowing
to the appropriate fixed point on the phase plane. Thus, to find
out the values of the bulk densities in different phases, it is
sufficient to determine the physically acceptable fixed points
of the boundary-layer equation. As a result, the number of
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possible bulk phases is given by the number of these fixed
points. Applying this method to a specific particle conserving
two-species process [14], it is found that this system has three
distinct bulk phases corresponding to three fixed points of the
boundary-layer equations. In addition, it is possible to predict
the nature of the phase transitions, locations of the boundary
layers, etc., for this system. All these predictions match well
with the results from numerical simulations [15].

In a particle nonconserving case, the density is not constant
in the bulk, and therefore, the fixed points of the boundary
layer do not provide the full profile since the details of the
bulk dynamics is not considered in this approach. However, it
is still useful to obtain the fixed points of the boundary-layer
equations along with their stability properties to predict the
possible shapes of the density profiles under different boundary
conditions. In the present paper, we generalize the method of
reference [14] to study a particle number nonconserving model
where particles interact repulsively. Our aim is to extend the
fixed-point analysis to a system with nonconstant bulk density.
We show how this analysis helps us predict possible shapes of
the density profiles under different boundary conditions and
also understand the properties of different kinds of shocks
present in the density profile. This particular model is chosen
because its density profiles have certain nontrivial shapes
that include double shocks and downward shock. The present
analysis reveals that such shocks arise in the density profile due
to a specific saddle-node bifurcation [16] of the boundary-layer
fixed points.

The plan of the paper is as follows. In the following
section, we describe the model. This section also contains brief
discussions on the hydrodynamic approach, boundary-layer
analysis and some of the known results. In Sec. III, we present
the phase-plane analysis of the boundary-layer equation for
the present model. There are separate subsections on the
boundary-layer equation, its fixed points and the stability
analysis of the fixed points. Section IV presents the predictions
of the possible shapes of the density profile under different
boundary conditions. In Sec. V, we summarize these in terms
of a few general rules. Some special features related to the
saturation of the shocks are also discussed in this section. We
end the paper with a summary in Sec. VI. A few details on
various types of shocks associated with the fixed point diagram
are provided in the Appendix.

II. MODEL

A. Discrete description

The driven process that we consider here consists of a one-
dimensional lattice of N sites with lattice spacing a. Particles
are injected at i = 1 at a rate α and withdrawn at i = N at
a rate 1 − γ . Particles, obeying mutual exclusion, hop to the
right at rates that depend on the occupancy of the neighboring
site as

1100 → 1010 at rate 1 + ε, (1)

0101 → 0011 at rate 1 − ε, (2)

0100 → 0010 at rate 1, (3)

1101 → 1011 at rate 1. (4)

Here, 0 < ε < 1, and 1 (0) represents an occu-
pied(unoccupied) site. For ε �= 0, there is an effective repulsion
between the particles [3,4,10]. In addition, the number of
particles is not conserved due to particle detachment, 1 → 0,
at a rate ωd and attachment, 0 → 1, at a rate ωa at any
site on the lattice. Particle attachment and detachment are
equilibrium-like processes that do not give rise to any particle
current.

B. Hydrodynamic approach and a brief description
of the boundary-layer analysis

The hydrodynamic approach is based on the lattice continu-
ity equation, which equates the time evolution of the particle
occupancy at a given site with the difference of currents across
its two neighboring bonds. In the continuum description, the
continuous time and space variables are t and x, with the latter
replacing, for example, the ith site as i → x = ia. Upon doing
a Taylor expansion of the statistically averaged continuum
version of the lattice continuity equation in small a, one has
the hydrodynamic equation

∂ρ

∂t
+ ∂J

∂x
+ S0 = 0 (5)

for the averaged particle density ρ(x,t). This equation has
already been supplemented with the particle nonconserving
parts

S0 = −�(ρL − ρ), (6)

where ρL = ωa

ωa+ωd
and � = (ωa + ωd )N . � is kept constant as

N → ∞ so that the total flux is comparable to the current. The
current, J (ρ), consists of a bulk current j (ρ) and a diffusive
current proportional to ∂ρ

∂x
as

J = −ε0
∂ρ

∂x
+ j (ρ). (7)

Here, ε0 is a small parameter proportional to a. The diffusive
current part arises naturally as one retains terms up to O(a2) in
the Taylor expansion. To determine the particle density, ρ(x),
in the steady state ( ∂ρ

∂t
= 0), one has to solve the differential

equation with appropriate boundary conditions. We consider
the lattice ends to be attached to the particle reservoirs which
maintain constant densities ρ(x = 0) = α and ρ(x = 1) = γ .
The diffusive current part is crucial here since, due to its
presence, the hydrodynamic equation becomes a second-order
differential equation, and as a result we can obtain a smooth
solution satisfying both the boundary conditions.

The simplest driven process is the one with only the exclu-
sion interaction, that is, ε = 0. In this case, the current density
relation j (ρ) = ρ(1 − ρ) is an exact one. The symmetric
shape of the current about its maximum at ρ = 1/2 is a
consequence of its invariance under particle-hole exchange
ρ → 1 − ρ. It is well understood that the phase diagram has
low-density (ρ < 1/2 at the bulk), high-density (ρ > 1/2 at
the bulk), and maximum current (ρ = 1/2 at the bulk) phases
[6]. The particle-hole symmetry is retained in ε �= 0 models,
although the current changes nontrivially. At ε = 1, that is,
for the extreme repulsion case, hops such as 0101 → 0011
are forbidden. The current, therefore, vanishes exactly at
half-filling (ρ = 1/2), with the maximum current appearing
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symmetrically for densities on the two sides of ρ = 1/2. The
exact form of the current as a function of ρ for arbitrary ε can
be found using a transfer matrix approach [4] and it evolves
from a single to a symmetric double-peak structure as ε grows
beyond εJ ≈ 0.8. A simple, analytically tractable form of the
current with double peaks can be obtained by doing a double
expansion of the exact current about ε = εJ and ρ = 1/2 [12].
This leads to the following form for the current

j (ρ) = (2r + u)/16 − r

2
(ρ − 1/2)2 − u(ρ − 1/2)4, (8)

where the constant term is chosen in such a way that j (ρ) = 0
for ρ = 0 or 1. We recover the noninteracting limit, j (ρ) =
ρ(1 − ρ), for r = 2 and u = 0. The double-peak shape appears
for r < 0. In the entire analysis below, we consider r to be a
small negative parameter and u > 0.

For the boundary-layer analysis, it is important to consider
the bulk part and the narrow boundary layers or the shock
regions of the density profile separately. These boundary layers
or shocks are formed over a narrow region of width O(ε0) and
they merge to the bulk density in the appropriate asymptotic
limit. To study the boundary layer and its asymptotic approach
to the bulk, one can rescale the position variable in (5) as
x̃ = (x − x0)/ε0, where x0 is the location of the center of
the boundary layer. Hence, for a boundary layer satisfying the
boundary condition at x = 1, we have x0 ≈ 1. For small ε0, the
boundary layer approaches the bulk density in the x̃ → −∞
limit and satisfies the boundary condition at x̃ = 0. In terms
of x̃, the steady-state hydrodynamic equation is

∂2ρ

∂x̃2
− ∂j

∂x̃
− ε0S0 = 0. (9)

Since ε0 is a small parameter, the effect of the particle
nonconserving term, S0, on the boundary layer is negligible.
As a result, the total current J = j (ρ) − ∂ρ

∂x̃
is constant across

the boundary-layer. A shock, therefore, can be represented by
a horizontal line connecting two densities in the j -ρ plane as
shown in Fig. 1. For an upward shock ( ∂ρ

∂x̃
> 0), this line lies

below the j (ρ) curve and the reverse is true for a downward
shock ( ∂ρ

∂x̃
< 0). As a result, while for r > 0, only upward

shocks are possible, for r < 0, downward shocks and double
shocks can also be found. Double shocks can be represented

a

b

j

ρ
0.2 0.4 0.6 0.8

0.01
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0.07
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FIG. 1. Current j is plotted as a function of ρ. Lines a and b
represent an upward and a downward shock, respectively.

by two horizontal lines on the j -ρ plane below the two peaks
in j (ρ).

To zeroth order in ε0, the final boundary-layer equation is

∂2ρ

∂x̃2
− ∂j

∂x̃
= 0. (10)

In the boundary-layer language, the solution of this equation
is known as the inner solution. To obtain the bulk part of the
density profile, one can ignore the diffusive current part in J

for small ε0. The steady-state equation that gives the bulk part
of the density profile is

dj

dx
+ S0 = 0. (11)

The solution of this equation for the bulk part of the profile is
known as the outer solution. These inner and outer solutions
contain several integration constants which are fixed by the
boundary conditions and other matching conditions of the
boundary layer and the bulk under various limits. Since
the slope of the outer solution is obtained from

dρ

dx
= −S0

/
dj

dρ
(12)

for a given ρ, the slope depends crucially on the signs of
(ρL − ρ) and dj

dρ
. For the analysis below, we consider ρL to be

large and α and γ to be much smaller than ρL.

C. Known results

The double-peak structure of the current-density relation
leads to two maximum-current and one minimum-current
phase in the phase diagram of the particle conserving repulsion
model [4]. In the maximum- and minimum-current phases,
the bulk density values are those at which the current attains
its maximum and minimum values, respectively. With these
new phases, the phase diagram for this model becomes more
complex than its noninteracting counterpart.

Combining the techniques of boundary-layer analysis and
the results from numerical solutions, the phase diagram has
been obtained for the particle nonconserving repulsion model
[12]. The phase diagram has a lot of interesting features
including a tricritical point at r = 0. In the α-γ -r phase
diagram, this is a special point where two critical lines meet. It
has been found that three different phase diagrams are possible
for r > 0, r = 0, and r < 0. For r > 0, the current-density plot
is symmetric around ρ = 1/2, with a maximum at ρ = 1/2.
The nature of the phase diagram is qualitatively similar to
the mutually exclusive case with one single critical point. For
r < 0, with a double-peak structure of the current-density plot,
the phase diagram is more complex, with more than one critical
point and three different shock phases, with the density profile
having a single upward shock, double upward shocks, and one
upward and one downward shock [10,12]. Qualitatively, the
phase diagrams for r = 0 and r < 0 appear as shown in Fig. 2
(see Ref. [12] for more details on the phase boundaries and
associated exponents). Density profiles with double shocks
or a downward shock are shown and discussed in detail in
Sec. IV C.

The low-density peak can give rise to a low-density upward
shock [ρ(x) � 1/2 in the shock part] in the density profile. A
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FIG. 2. Qualitative phase diagrams for different values of r =
ε − εJ . LD represents the low-density phase with the boundary
layer at x = 1. Thick and thin solid lines represent first-order and
continuous phase transitions, respectively. Dashed line represents a
surface transition line across which the boundary layer near x = 1
changes from a particle-rich (R) one to a particle-depleted (D) one.
c1 and c2 represent critical points. (a) Tricritical point, J. (b) Shaded
area represents a region where the density profile has a downward
shock. The double-shock phase (2s) appears above the single-shock
(1s) phase. The surface transition line is not shown explicitly here.
(c) Merging of critical lines (critical points c1 and c2 in γ -α plane)
in the γ -r plane. The separation between the two critical lines 	γ

vanishes with a specific scaling exponent as r → 0 from below. There
is another critical line through J for r > 0.

single shock of this kind can be represented by a horizontal line
in the j -ρ plane below the low-density peak. The critical point
corresponds to a situation where the horizontal line reaches
the peak position implying a shock of zero height. The second
distinct critical point, which involves both the peaks of the
current-density plot, is not symmetrically related to this. The
density profile, here, has two upward shocks, in which one is
a low-density shock and one is a high-density shock with ρ >

1/2. The low-density shock, in this case, has the maximum
height, with its high-density end saturating to ρ = 1/2. The
high-density shock, which is due to the high-density peak of
the current-density plot, can be of varying height. The critical
point corresponds to the special point where this high-density
shock has zero height. In addition to these regions, there are
regions in the phase diagram, where density profiles with a
downward shock or a single, symmetric upward shock are
found.

In view of the symmetry of the j -ρ diagram, it is natural
to expect the two critical points to be related through this
symmetry. Previous work, however, shows that the shapes
of the density profiles are not related through this symmetry
near these two special points. Unlike the low-density shock,
the high-density shock in the density profile is always
accompanied by a low-density shock of maximum height.
The following analysis clearly reveals the reasons behind such
asymmetries.

III. PHASE-PLANE ANALYSIS OF THE
BOUNDARY-LAYER EQUATIONS

In this section, we determine the fixed points of the
boundary-layer equation and their stability properties. These
fixed points are the special points to which the boundary-layer
solution saturates in the appropriate limit. The knowledge
about the fixed points and their stabilities can, therefore, be
used to our advantage to find out, for example, the bulk
densities to which a shock or a boundary layer saturates at
its two edges.

A. Boundary-layer equation

Substituting the expression for j (ρ) as given in Eq. (8) and
integrating the boundary-layer equation, (10), once, we have

dρ1

dx̃
+ r

4
ρ2

1 + u

8
ρ4

1 = C0. (13)

Here ρ1 = 2ρ − 1 and C0 is the integration constant. The
saturation of the boundary layer to the bulk density, ρ1b, is
ensured by choosing the integration constant as

C0 = r

4
ρ2

1b + u

8
ρ4

1b. (14)

As per Eq. (8), C0 is related to the excess current (positive,
negative, or 0) measured from ρ = 1/2 (half-filled case). The
entire following analysis is done in terms of ρ1, for which
the boundary conditions are ρ1(x = 0) = α1 = 2α − 1 and
ρ1(x = 1) = γ1 = 2γ − 1.

B. Fixed points

C0 can be plotted for various ρ1b, from −1 to 1. For r < 0,
C0 has a symmetric double-well structure around ρ1b = 0 (see
Fig. 3). The fixed points, ρ∗

1 , in Eq. (13), are the solutions of
the algebraic equation

u

8
ρ4

1 + r

4
ρ2

1 − C0 = 0. (15)

In general, there are four possible solutions for the fixed point
as

ρ∗
1 = ±

[ | r | ±
√

r2 + 8C0u

u

]1/2

. (16)

0.6−0.2−0.6 0.2

0.04

0.03

0.02

0.01

−0.01

C0

1b
ρ

0

FIG. 3. C0 plotted as a function of ρ1b, with r = −0.2 and u = 2.2.
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The value of C0 depends on ρ1b, the bulk density to which
the boundary-layer solution saturates. As a consequence, for
a given C0, the corresponding ρ1b is always a fixed point. For
the same C0, there are, however, other fixed points, which are
determined from Eq. (16). Hence, from the information about
one saturation density, ρ1b, the other saturation density of the
shock can always be determined. The approach to various
fixed points must, of course, be consistent with their stability
properties. These stability properties of various fixed points
are discussed in Sec. III C, below.

If C0 is positive, there can be only two real fixed points of
opposite signs. The positive and negative fixed points, denoted
ρ∗

1±, respectively, are

ρ∗
1± = ±

[ | r | +
√

r2 + 8C0u

u

]1/2

. (17)

If C0 < 0, there are four fixed points for ρ1b. In all these cases,
the fixed points are symmetrically located on either side of the
origin. The positive ρ1 fixed points are

ρ∗
1,2+ =

[ | r | ±
√

r2 − 8 | C0 | u

u

]1/2

, (18)

and the negative ρ1 fixed points are

ρ∗
1,2− = −

[ | r | ±
√

r2 − 8 | C0 | u

u

]1/2

. (19)

Here, the subscripts 1 and 2 correspond to the plus and minus
signs inside the bracket, respectively. It is important to note that
there is no real fixed point for C0 < − r2

8u
. As C0 approaches

this value from above, the pair of fixed points on the positive
and negative sides approach each other and they merge at
C0 = −|r|2

8u
. At this special value, the fixed points are ρ∗±

1m =
±( |r|

u
)1/2. For C0 = 0, there are three fixed points, ρ∗

1 = 0 and
ρ∗±

10 = ±( 2|r|
u

)1/2.
Numerical values of the fixed points for some special values

of C0 with r = −0.2 and u = 2.2 are mentioned below. For
C0 = 0, the nonzero fixed points are ρ∗±

10 = 0 and ±0.426.
For these values of r and u, no real fixed points are present if
C0 < − r2

8u
= −0.00227. At this special value of C0, the two

fixed points are ρ∗±
1m = ±0.30151.

0 ρ ρρρ

<0C0

* * * *

0

0C >0
ρ
1−

ρ
1+
∗∗

1− 2− 2+ 1+

FIG. 4. Flow behavior of fixed points.
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−0.004 −0.003 −0.002 −0.001  0  0.001  0.002  0.003  0.004  0.005

FIG. 5. (Color online) Fixed points are plotted for different values
of C0 with r = −0.2 and u = 2.2. ρ∗

1± and ρ∗
2± are different fixed

points mentioned in the text. Four different parts of the two-lobed
curve correspond to four different fixed points ρ∗

1± and ρ∗
2± as given

in Eqs. (18) and (19).

C. Stability analysis of the fixed points

For C0 > 0, a linearization of Eq. (13) around the fixed
points with ρ1 = ρ∗

1 + δρ1 leads to the following stability
equation:

dδρ1

dx̃
= −

√
| r |2 + 8uC0

2
ρ∗

1δρ1. (20)

This implies that the fixed points ρ∗
1+ and ρ∗

1− are, respectively,
stable and unstable.

Similarly, for C0 < 0, the general stability equation is
dδρ1

dx̃
= ρ∗

1

2
δρ1

(| r | − uρ∗
1

2)
. (21)

The flow around the fixed points can be obtained by substitut-
ing the explicit expressions of the fixed points. Figure 4 shows
the stability properties of various fixed points for C0 > 0 and
C0 < 0.

The stability property of the ρ∗
1 = 0 fixed point for C0 = 0

and the pair of fixed points for C0 = − r2

8u
cannot be determined

from the linear analysis. However, the flow around the fixed
points can be predicted from the continuity of the flow behavior
as C0 approaches these special values. Fixed points, their
stability properties, and how the fixed points change with C0

are all shown in Fig. 5. As the diagram shows, the special
value C0 = − r2

8u
corresponds to a saddle-node bifurcation [16]

at which two pairs of stable and unstable fixed points appear.

IV. PREDICTIONS ABOUT THE SHAPES OF THE
DENSITY PROFILES

Based on Fig. 5, we attempt to predict possible shapes of the
density profiles for given boundary conditions α1 and γ1. We
consider only a few pairs of boundary conditions, and based on
this, we make certain general predictions in the next section.
The basic strategy for drawing the density profile is as follows.
We first need to mark α1 and γ1 on the ρ∗

1 axis of the C0-ρ∗
1

plane. Starting with either of the boundary conditions, we
change ρ1, along the curve in Fig. 5 in such a way that we reach
the other boundary condition at the end of our move. While
doing so, we may allow a discontinuous variation of ρ1 along
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FIG. 6. (Color online) (a) Possible variations of density as one
moves along the density profile from the x = 0 end are shown on
the C0-ρ∗

1 plane. Dashed lines or curves with open arrows show
the variation of the density. Open arrows point in the direction of
increasing x. Dotted lines mark the boundary conditions α1 and γ1.
Solid lines with arrows are the flow trajectories of the fixed points.
(b) Numerical solutions for density ρ1 for various α1 with γ1 = 0.34.
Inset: A view of the entire density profile. From a zoom-in view of
the density profile near x = 1, it can be seen that the profile has no
boundary-layer near x = 1.

a vertical constant-C0 line, provided that it does not violate
the flow property. Such a discontinuous change in ρ1 appears
in the form of a shock or a boundary layer in the density
profile. The dashed, vertical lines in Fig. 6(a), for example,
are the constant-C0 lines along which the density may change.
Such a dashed line, therefore, represents a boundary layer
or a shock in the density profile. Two densities at which a
shock or a boundary layer saturates are those at which a
particular constant-C0 line, representing a shock or a boundary
layer, intersects the curves. These densities, at which a
shock saturates on its left and right, are denoted ρ1l and
ρ1r , respectively, in the following. This method, however,
sometimes leaves us with different options for the density
profile. All these possibilities are shown on the C0-ρ∗

1 plane
for each pair of boundary conditions individually.

A. Density profiles with only boundary layers

Suppose we consider a situation where α1, γ1 > 0 with
α1 < ρ∗+

1m and γ1 > ρ∗+
1m . It is possible that the density profile

has a particle-depleted boundary layer ( dρ1

dx
|x=0> 0) at x =

0 satisfying the boundary conditions ρ1(x = 0) = α1. This
boundary layer can be represented by a vertical line similar
to line (a) in Fig. 6(a). This is consistent with the flow property
that suggests the approach of the boundary layer to the fixed
point ρ∗

1+ as x̃ → ∞. On the other hand, in the x̃ → −∞ limit,
which corresponds to the unphysical negative x region, the
boundary layer saturates to the unstable fixed point ρ∗

1−. After
the boundary layer, the density may decrease continuously
along line (c) on the ρ∗

1+ branch and satisfies the boundary
condition, ρ1(x = 1) = γ1. There can be another possibility
where the particle-depleted boundary layer at x = 0 is repre-
sented by a vertical line similar to line (b) joining the fixed
points ρ∗

2+ and ρ∗
1+. The boundary condition at x = 1 is again

satisfied by a decreasing density part parallel to line (c). For this
to be possible the condition γ1 < ρ∗+

10 is required. These two
possibilities are distinct due to distinctly different values of C0.
This shows the crucial role played by C0 in deciding the density
profile. Numerical solutions of the full steady-state hydrody-
namic equation presented in Fig. 6(b) show the boundary layers
saturating to a bulk density ρ1b ≈ 0.48. This implies that the
boundary layers are indeed represented by a-type vertical lines.

Next we consider α1,γ1 > 0, with α1 > ρ∗+
1m and γ1 < ρ∗+

1m .
In this case too, the density profile can satisfy the boundary
condition at x = 0 through a boundary layer that can be
represented by a line similar to line (a) in Fig. 7(a). This would
be a particle-depleted boundary layer at x = 0. To satisfy the
other boundary condition, the density should decrease till ρ∗+

1m

along path (b) on the ρ∗
1+ branch and then satisfy the right

boundary condition through a particle-depleted boundary layer
along line (c) in Fig. 7(a). The boundary condition at x = 0 can
also be satisfied by vertical lines coming from above the ρ∗

1+
branch leading to particle-rich boundary layers ( dρ1

dx
|x=0< 0)

at x = 0. These lines could be a′-type lines in Fig. 7(a)
satisfying the boundary condition α′

1. Both particle-depleted
and particle-rich boundary layers are present in the density
profiles in Fig. 7(b) obtained by solving the full steady-state
hydrodynamic equation numerically.

B. Density profiles with upward shocks

With γ1 > ρ∗+
1m and α1 large negative, possible shapes of

the density profile can be of the following kinds. We start
with ρ1(x = 0) = α1. ρ1 decreases continuously along the ρ∗

1−
branch along the dashed line (a) in Fig. 8(a). After this part,
an upward shock, represented by a vertical line similar to
either (b) or (d) appears. In the latter case, the dashed line
(a) should be extended until it reaches the low-density end
of line (d). If the shock is represented by line (b), it is a
large shock, symmetric about ρ1 = 0. In the second case, the
shock is a low-density shock, with the saturation densities
being ρ1r = 0 and ρ1l = ρ∗−

10 . If the density approaches the
ρ∗

1+ branch after the large shock, the boundary condition at
x = 1 can be satisfied subsequently by a decrease in density
along line (c) on this branch. If the shock is of the line (d) kind,
the density has to change further to satisfy the right boundary
condition. Upon reaching the ρ1 = 0 value, the density may
change along the ρ∗

2− or the ρ∗
2+ branch. The flow around

ρ∗
1 = 0, however, suggests that the density variation only along

the ρ∗
2+ branch (path e in Fig. 8) is possible. The continuously

increasing part along path e is then followed by another upward
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FIG. 7. (Color online) (a) Same as Fig. 6(a) except that here
we explicitly show possible density variations for two different left
boundary conditions, specified by α1 and α′

1. (b) Numerical solutions
for ρ1(x) for various α1 with γ1 = 0.23. Zoom-in view of boundary
layers near x = 0. Inset: Entire density profile over the entire lattice.
(c) Zoom-in view of the same density profiles near x = 1, showing
the particle-depleted boundary layers near x = 1.

shock, given by line (f), taking the density to the ρ∗
1+ branch.

The boundary condition is then satisfied by a continuously
decreasing part along a c-type line. Numerical solutions in
Fig. 8(b) are consistent with these predictions.

C. Density profiles with downward shocks

We next consider the case ρ∗−
1m < γ1 < 0, with α1 in-

creasing from large negative values. Here we specifically

(a)

1γ

C0

(b)

(f)

(c)

(a)

(d)

(e)
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ρ∗
1 0
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x

FIG. 8. (Color online) (a) Same as Fig. 6(a). (b) Plot of density
profiles ρ1(x) for various large negative values of α1 with γ1 = 0.32.
No boundary layer is formed at x = 0 or x = 1. A few density profiles
toward the right have double shocks.

mention how the density profile changes as α1 is changed,
keeping γ1 fixed. In the process, we observe how a density
profile with a downward shock appears. Let us assume
that our starting α1 lies somewhere on the ρ∗

1− branch. ρ1

increases from ρ1(x = 0) = α1 along the ρ∗
1− branch until it

reaches the boundary x = 1. This continuously increasing part
is represented by line (1a) in Fig. 9(a). The density, then,
satisfies the right boundary condition through a boundary layer
which can be, for example, represented by a vertical line like
(1b) in Fig. 9(a). This line takes the solution from the unstable
fixed point ρ∗

1− to the stable fixed point ρ∗
1+. Since the vertical

line (1b) passes through γ1 before reaching the ρ∗
1+ branch,

the boundary layer satisfies the boundary condition before
saturating to the positive fixed point, ρ∗

1+. The boundary layer
at x = 1 is, therefore, a part of this vertical constant-C0 line.

As α1 is increased slightly, the route of the density along
the ρ∗

1− branch remains the same, but this time the density
reaches a higher value than the previous α1 case before
increasing sharply as a boundary -layer satisfying the boundary
condition at x = 1. As α1 is increased further, for a given
α1, the continuously increasing part of the profile reaches the
low-density end of line (2b). After this, there is a shock in
the density profile of the line (2b) kind. This is a low-density
shock that takes the density to ρ∗

1 = 0. If this jump is near the

031129-7



SUTAPA MUKHERJI PHYSICAL REVIEW E 83, 031129 (2011)

(a)

1
(2e)

(5d)

(2d)

(3c)
(2c)

C0

(1b)

(2b)

(1c)

(2a)

(5e)

(4d)

(3d)

(4c)

0.0050.0030.001−0.001−0.003

0.6

0.4

0.2

ρ∗

ρ∗ρ∗ 1+22+

1−

ρ∗
2−

ρ∗
1m

+

1m
ρ∗−

γ1

(1a)

−0.2

−0.6

−0.4

ρ∗
0

(b)

0.85 0.950.75
x

0.2

0.6

−0.6

−0.2

ρ
1

xx
0.98 0.99 1

0.3

0.1

0.3

0.1

−0.1

0.95 10.975

ρρ
11

−0.5

−0.3

−0.5

−0.1

−0.3

(c)

FIG. 9. (Color online) (a) Trajectory of the density on the C0-ρ1

plane. Five possible trajectories are shown, distinguished by different
numbers. The alphabetical sequence represents the variation of
the density along increasing x. (b) Plot of density profiles ρ1(x)
for various α1 values with γ1 = −0.28. (c) Zoom-in views of the
boundary layers of the density profiles in (a) near x = 1.

boundary, the shock actually becomes a boundary layer that
can help the density satisfy the boundary condition at x = 1.
However, if this discontinuity is in the bulk, it is an upward
low-density shock. In the case of a shock in the bulk, the density
increases further along the ρ∗

2+ branch (path 2c in Fig. 9). The
boundary condition, however, demands a decrease in ρ1. This
is possible through a downward vertical line (similar to path
2d) and then a continuously decreasing part (2e) along the ρ∗

2−
branch. Path 2d is a downward shock that is shown in Figs. 9(b)
and 9(c). In the case where the density varies along lines (3c)
and (3d), we have a downward boundary layer near x = 1.
These possibilities are expected if α1 is increased further from
its value that leads to 2c- and 2d-type variations. As before, the
principle is that if the 3d-type vertical line intersects the γ1 line
before reaching the ρ∗

2− branch, the 3d-type line represents a
boundary layer satisfying the boundary condition at x = 1. If
the reverse happens, this downward vertical line represents a
downward shock at the bulk which needs to be followed by
a continuously decreasing density part along the ρ∗

2− branch.
This is a general principle which can be applied to other cases
also to see the deconfinement of a boundary layer giving rise
to a shock in the bulk (see Ref. [8]).

With a further increase in α1, the density variation from
the x = 0 end is still the same as before up to part 3c along
the ρ∗

2+ curve, except that now the density approaches ρ∗+
1m

more closely along the 4c-like path. Finally, for a given α1,
the density reaches the value ρ∗+

1m . After this, the boundary
condition is satisfied through a depleted boundary layer
represented by vertical path 4d. With a further increase in
α1, the density cannot now go around ρ∗+

1m to move to the ρ∗
1+

branch due to the constraint from the stability property. In
that case, the only option for the density is to proceed along
line (4c) but to move to the ρ∗

1+ branch along a vertical line
similar to (5d) before reaching the point ρ∗+

1m . There is now
a second high-density upward shock in the density profile at
larger x [line (5d)], with the first shock being a low-density one
represented by line (2b). With an increase in α1, the 5d-type
vertical line moves to higher values of C0. The boundary
condition at x = 1 is now satisfied by the rest of the density
profile, where the density decreases continuously along path
(5e) to the minimum ρ∗+

1m and then decreases through a depleted
boundary layer represented by line (4d). Thus, for example,
for this value of α1, we see the following parts in the density
profile as we move along the density profile from its x = 0
end. (i) First is a continuously varying density profile that
satisfies the boundary condition ρ(x = 0) = α1. (ii) This is
followed by a low-density upward shock of maximum height
connecting ρ1l = ρ∗−

10 and ρ1r = 0. (iii) Beyond this shock,
there is again a continuously increasing part. (iv) This is
followed by an upward, high-density shock. (v) Beyond this
high-density shock, the density decreases continuously to ρ∗+

1m .
(vi) The last part is a particle-depleted boundary layer, which
saturates to ρ∗+

1m for x < 1 and satisfies the boundary condition
at ρ1(x = 1) = γ1. All these features can be verified from the
density profiles in Fig. 9.

If α1 is increased further, the upward high-density shock
[vertical lines like (5d)] will move toward higher C0 values.
For certain α1, the low- and the high-density shocks merge
and there is a big symmetric shock with C0 = 0. Beyond this
α1, the big upward shock persists, and this is followed by a
continuously varying part [similar to line (1c)] along which
the density decreases and approaches ρ∗+

1m . The boundary
condition is again satisfied by the particle-depleted boundary
layer represented by line (4d).

V. SHOCKS AND BOUNDARY LAYERS:
Boundary conditions and saturation properties

Since boundary layers and shocks are the special features
through which various density distributions are distinguished,
our general predictions are more on different kinds of boundary
layers and shocks rather than the bulk profiles. In the following,
we discuss the boundary conditions for the occurrence of
different kinds of shocks and the nature of the saturation of
shocks or boundary layers to special bulk densities which
correspond to different bifurcation points in the fixed-point
diagram.

A. Boundary conditions

Inferences related to the boundary conditions are drawn
from the detailed analysis of the previous section based on the
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fixed-point diagram in Fig. 5. This diagram helps us identify
shocks or boundary layers that are consistent with the boundary
conditions as well as the stability properties of the fixed points.

(1) Downward shock in the bulk or a particle-depleted
boundary layer at x = 1. Either of these features appears
whenever the density profile decreases through a jump dis-
continuity from the ρ∗

2+ branch to the ρ∗
2− branch or from ρ∗+

1m

to ρ∗−
1m . The condition for this is γ1 < ρ∗+

1m . The value of α1

is somewhat flexible since it is possible to see these features
both for α1 positive and for α1 negative.

(2) Upward symmetric shock in the bulk or depleted
boundary layer at x = 0. This is seen whenever the density
profile jumps from ρ∗

1− to ρ∗
1+. This happens for various

combinations of α1 and γ1 such as α1 < 0 or α1 > 0 with
γ1 > ρ∗+

1m or γ1 < ρ∗+
1m . At x = 0, the density profile may start

with a continuously varying part followed by a symmetric large
shock, or it can satisfy the boundary condition at x = 0 with
the help of a boundary layer. In both cases, the discontinuity
in the density corresponds to a discontinuous jump from ρ∗

1−
to ρ∗

1+.
The presence or absence of a boundary layer at x = 0 is

specified completely by the value of C0 at x = 0. Let us
assume that ρ1 = α1 line intersects the curve in Fig. 5 at a value
C0 = C0(α1). A condition such as C0(α1) = C0(x = 0) would
mean a continuously varying density near x = 0. If these two
values are unequal, it would imply the presence of a boundary
layer. For example, for α1 > ρ∗+

1m , a particle-rich or a particle-
depleted boundary layer appears if C0(α1) > C0(x = 0) and
C0(α1) < C0(x = 0), respectively. However, it is important to
pay attention to certain situations which are forbidden due to
the stability properties. For example, if α1 < ρ∗−

1m , a boundary
layer with C0(x = 0) < C0(α1) is not possible.

(3) Double shock. In this case, the density profile has both
high- and low-density upward shocks, with the low-density
shock having maximum possible height ρ∗−

10 . To have a
high-density shock, the lower end of the high-density shock
must be on the ρ∗

2+ branch. The density can reach this branch
only via ρ1 = 0 point. The only way the density can reach the
ρ1 = 0 point is through a low-density shock represented by
the C0 = 0 line across the negative lobe. A low-density shock
representing a jump across the negative lobe along C0 = 0 line
has the maximum possible height.

A density-profile with a double shock may appear for
α1 < ρ∗−

1m and γ1 < ρ∗+
1m or γ1 > ρ∗+

1m . In the case of γ1 > ρ∗+
1m ,

the density after the high-density shock varies continuously
along the ρ∗

1+ branch to satisfy the boundary condition at
x = 1. For γ1 < ρ∗+

1m , the second shock is possible for some
α1. In this case, after reaching the ρ∗

1+ branch, the density
decreases till ρ∗+

1m and then decreases further as a depleted
boundary layer at x = 1 to satisfy the boundary condition.

It is interesting to note that although it is possible to
have a profile with only a low-density shock, the same
with a single high-density shock is never possible. The flow
behavior suggests that a high-density shock has to be always
accompanied by a low-density shock of maximum height.

(4) Boundary layer at x = 1. As in the case of a boundary
layer at x = 0, it is also possible to specify the conditions for
a boundary layer at x = 1 by comparing the value of C0(x =
1) with C0(γ1). In general, a boundary layer will appear at
x = 1 if these two values of C0 are different. As an example,

a downward boundary layer for ρ∗−
1m < γ1 < ρ∗+

1m appears if
C0(x = 1) < C0(γ1).

B. Saturation of the shock

From Eq. (13), we find that near the saturation to a bulk
density ρ1b, the slope of the boundary layer is given by

dδρ1

dx̃
=

( | r |
2

− u

2
ρ2

1b

)
ρ1bδρ1, (22)

where it is assumed that the boundary-layer density is δρ1 away
from the saturation value, ρ1b. This shows that the saturation
of the boundary layer to the bulk is, in general, exponential
except for three special points. The saturation is of power-law
kind, if ρ1b = 0 or ρ1b = ρ∗±

1m = ±( |r|
u

)1/2. The length scale
associated with the exponential approach of the shock to the
bulk density diverges as the bulk density approaches these
special values. As discussed in Sec. II C, the critical points
correspond to special boundary conditions (αc,γc) at which the
shock height across the positive or negative lobe decreases to 0.
Therefore, the approach to the critical point is associated with
the continuous vanishing of the shock height along with the
divergence of the length scale over which the shock saturates
to the bulk.

VI. SUMMARY

Here, we have considered a driven diffusive process of
interacting particles on a finite, one-dimensional lattice. These
particles have mutual repulsion in addition to the mutual
exclusion interaction. Apart from the hopping dynamics of the
particles, the model also has particle attachment-detachment
processes, which lead to particle nonconservation in the bulk.
Such driven particle systems are known to exhibit boundary-
induced phase transitions for which the tuning parameters
are the boundary densities α and γ . In different phases, the
average particle density distributions across the lattice have
distinct shapes, with various types of discontinuous jumps
from one density value to another. Here, we carry out a phase-
plane analysis for the boundary-layer differential equation to
understand how the fixed points of the boundary-layer equation
and their flow properties determine the shape of the entire
density profile under given boundary conditions. Such a fixed-
point analysis has been very useful in understanding the phases
and phase transitions of particle conserving models for which
the constant bulk density values in different phases are given
by the physically acceptable fixed points of the boundary-layer
equation. In addition, the number of steady-state phases,
the nature of the phase transitions, and the locations of
the boundary layers can be obtained analytically from the
phase-plane analysis of the boundary-layer equation. Results
obtained upon applying this method to a particle conserving
two-species process [14] show agreements with numerical
simulations [15]. The present work provides a generalization
of the method to a particle nonconserving process.

To apply this method, we have considered the hydro-
dynamic limit of the statistically averaged master equation
describing the particle dynamics. The hydrodynamic equation,
describing the time evolution of the average particle density
ρ, looks like a continuity equation supplemented with the
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particle nonconserving terms. The current contains the exactly
known hopping current and a regularizing diffusive current
part. The boundary-layer equation, which is the main focus
of this work, can be obtained from the particle conserving
part of the hydrodynamic equation. For convenience, we use
ρ1 = 2ρ − 1 for the boundary-layer equation. ρ1 is related to
the deviation from ρ = 1/2 (half-filled case).

It is found that the fixed points, ρ∗
1 , of the boundary-layer

equation are determined in terms of a parameter C0 related to
the excess current measured from ρ = 1/2 (half-filled case).
Since the fixed points are dependent on C0, one can plot the
physically acceptable fixed points as a function of C0 on the
C0-ρ∗

1 plane. In the steady state, the constancy of the current
across a shock or a boundary layer implies that such objects
can be represented by a fixed value of C0. The boundary
layers or shocks of the density profiles are represented by the
constant-C0 lines on this C0-ρ∗

1 plot. The densities at which
the constant-C0 line intersects the fixed-point branches are the
densities to which the shock or the boundary layer saturates.
The discontinuous change in the density has to be consistent
with the stability properties of the fixed points. For given
values of α and γ , we can start from the x = 0 end of the
density profile and find out how the density can change along
the profile as it proceeds to satisfy the boundary condition at
x = 1. This density variation along the density profile can be
conveniently marked on the C0-ρ∗

1 plot to see its consistency
with the flow properties of the fixed points. Our approach
does not give any information about the location of a shock
since it does not involve the details of the bulk part of the
profile. Instead, it is found that the conserved quantity C0

plays an important role in deciding the shape of the density
profile.

The emphasis of our approach is on the boundary-layer
equation, which appears to control the shape of the entire
density profile. In a sense, this approach is like holography,
where the zero-dimensional boundary can help in building the
bulk one-dimensional density profile. Particle nonconserving
processes are not important for the boundary layers. This
simplicity allows us not only to classify different kinds of
density distributions, but also to gain more physical insight
as to why some features of the density profile are evident
under certain boundary conditions. Some of these features are
mentioned below.

(1) When a density profile has two shocks, the low-density
shock is of maximum possible height. For given values of the
interaction parameters, the height of the low-density shock can
be obtained explicitly.

(2) It is possible to have a low-density shock alone in the
profile but a high-density shock has to always be accompanied
by a low-density shock of maximum height.

(3) A downward shock is produced by the deconfinement
of a downward boundary layer at x = 1. The condition on γ

for seeing a downward shock or a downward boundary layer
at x = 1 can be precisely specified.

(4) The symmetric two-peak structure of the current as a
function of the particle density is responsible for a symmetric
two-lobe structure of the fixed points drawn on the C0-ρ∗

1
plane. The flow behavior of the fixed points around the two
lobes is asymmetric. This is the reason why the two critical
points in the phase diagram are not symmetrically related to

each other. This asymmetry is reflected in the shapes of the
density profiles near these critical points.

(5) For a given boundary condition, a density profile with
only one boundary layer and no shock can be fully specified
by the value of C0 at this end.

In addition to these issues, this analysis also provides
quantitative predictions regarding the heights of different kinds
of shocks. There can be other length scales related to the
crossover of the shock (or the boundary layer) to the bulk and
to the deconfinement of the boundary layer from the boundary
to form a shock [8]. The critical properties of the boundary-
induced phase transitions can be characterized through these
length scales. As we have shown here, shocks saturating to
special bifurcation densities have diverging crossover length
scales.

The generality of the fixed-point-based boundary-layer
analysis suggests its wider applicability to other problems
where boundary layers play an important role in the entire
distribution. The method relies on the hydrodynamic equation,
and the solution is exact to the extent to which the hydrody-
namic equation is exact. Needless to say, this method can be
readily used for various other driven exclusion processes for
which the current-density relationships either are known or
can be determined accurately.
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APPENDIX: SHOCKS FOR VARIOUS C0

Figure 5 shows the dependence of the fixed points on the
parameter C0 and, in particular, the saddle-node bifurcation in
which the fixed points are usually created or destroyed with the
variation of the parameter. Since C0 can be expressed purely
in terms of J , with its constant parts subtracted, it remains
constant across a shock or a boundary layer. In this Appendix,
we discuss how different values of C0 determine different kinds
of shocks in this system.

In principle, using Eq. (14), one can obtain the value of
C0 along the continuously varying parts of the density profile.
Hence, as we move along a density profile having bulk shocks,
C0 changes per Eq. (14) along the outer solution parts of the
profile with intermediate constant values across the shock or
inner solution regions. The value of C0 in the shock region
is fixed by one of the bulk density values to which the shock
saturates.

Let us assume that the shocks or the boundary-layer ap-
proach the bulk densities ρ1r or ρ1l as x̃ → ±∞, respectively.
Since ρ1l and ρ1r are various fixed points of the inner equation,
the approach to these fixed points has to be consistent with the
flow properties. A shock is called an upward shock if ρ1l < ρ1r .
The reverse, that is, ρ1l > ρ1r , is true for a downward shock.

(1) C0 > 0. In this case, there are two fixed points ρ∗
1+ and

ρ∗
1− symmetrically located about ρ1 = 0, with ρ∗

1− being an
unstable fixed point. Thus if a shock is formed with C0 > 0, it
should be an upward shock which approaches the fixed points
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ρ1r = ρ∗
1+ and ρ1l = ρ∗

1− as x̃ → ∞ and −∞, respectively.
The shock height, in this case, is ρ∗

1+ − ρ∗
1−.

(2) C0 < 0. In this case, four fixed points lead to different
kinds of shocks.

(a) It is possible to see a downward shock with ρ1l =
ρ∗

2+ and ρ1r = ρ∗
2−. The downward shock is thus

symmetric about ρ1 = 0. The flow in Fig. 4 shows
that a downward shock cannot involve other fixed
points since that would not be consistent with the
stability criteria of the fixed points.

(b) There can be small upward shocks which lie entirely
in the range ρ1 > 0. We have already referred
to these shocks as high-density shocks. In terms

of the fixed points, the left and right saturation
densities of the shock are ρ1l = ρ∗

2+ and ρ1r = ρ∗
1+,

respectively.
(c) The third possibility is that of an upward shock

entirely in the ρ1 � 0 range. Such a shock has been
referred to as a low-density shock. For this shock,
ρ1l = ρ∗

1− and ρ1r = ρ∗
2−.

(3) C0 = 0: There can be an upward shock with ρ1r = 0
and ρ1l = ρ∗

1−. There can also be an upward shock connecting
the densities ρ1l = 0 and ρ1r = ρ∗

1+. These two shocks
together appear as a large shock, symmetric around ρ1 = 0.

Alternatively, different kinds of shocks can tell us the range
of values for C0.
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