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Heat conduction in one-dimensional aperiodic quantum Ising chains
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The heat conductivity of nonperiodic quantum Ising chains whose ends are connected with heat baths at
different temperatures are studied numerically by solving the Lindblad master equation. The chains are subjected
to a uniform transverse field h, while the exchange coupling Jm between the nearest-neighbor spins takes the two
values JA and JB arranged in Fibonacci, generalized Fibonacci, Thue-Morse, and period-doubling sequences.
We calculate the energy-density profile and energy current of the resulting nonequilibrium steady states to study
the heat-conducting behavior of finite but large systems. Although these nonperiodic quantum Ising chains are
integrable, it is clearly found that energy gradients exist in all chains and the energy currents appear to scale as
the system size 〈Q〉 ∼ Nα . By increasing the ratio of couplings, the exponent α can be modulated from α > −1
to α < −1 corresponding to the nontrivial transition from the abnormal heat transport to the heat insulator. The
influences of the temperature gradient and the magnetic field to heat conduction have also been discussed.
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I. INTRODUCTION

Fourier’s law, 〈Q〉 = −κ∇T stating that the heat flux
per volume is proportional to the temperature gradient, was
introduced as an empirical law in 1807. Many efforts have
been focused on the issue of heat transport in the context of
classical dynamic systems [1–8] (see, [1,2] for a review) and
quantum dynamic systems [9–21], the origin of Fourier’s law
is still an open problem. In classical systems, an important
issue is to determine the dependence of the heat current 〈Q〉
on the system size N . It is well known that heat transport scales
as 〈Q〉 ∼ N0 in integrable systems such as uniform or periodic
chains, while one is expected as 〈Q〉 ∼ N−1 according to
Fourier’s law [3]. Recently, a large number of studies have
addressed that heat conductivity is abnormal with 〈Q〉 ∼ Nα

in many one-dimensional systems, and the exponent α differs
from model to model [4–8]. For example, it has been shown
that the exponent α = − 1

2 in the case of a random harmonic
chain [7]. It is also found that − 1

2 < α < 0 shows up in some
nonlinear aperiodic models [8].

Although many works have been devoted to investigating
heat conduction in classical systems, much less is known about
the properties of the thermal conductivity in quantum systems.
For the quantum case, the extensively investigated systems are
the spin chains [10–20] and the harmonic chains [21]. One
main approach for the study of quantum thermal transport is
the Green-Kubo formula, which is derived on the basis of linear
response theory. Within this method, the thermal Drude weight
has been calculated numerically in Refs. [10–13]. However,
linear response theory only deals with a system near the
equilibrium state. Furthermore, the validity of the Green-Kubo
formula for thermal conduction is still questionable [22].
Another method to investigate the transport behavior of a
quantum system is based on the quantum master equation
(QME) [13–19]. One can use the direct numerical solution
[13–17] or Monte Carlo wave-function approach [18,19] to
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find the stationary states of QME. For quantum integrable sys-
tems, it has been found that the transport behavior is ballistic
and that the heat conductivity diverges in the thermodynamic
limit N → ∞ [11,15]. However, normal heat transport was
observed for a small integrable spin chain [14]. By solving
the QME for ten spin systems, Yan et al. found evidence of
nonballistic heat conduction in an integrable random-exchange
Ising chain [16]. Also diffusive heat transport has been found
in an integrable spin chain with N = 16 by using the Monte
Carlo wave-function technique [18].

However, all the investigations were generally focused on
small system sizes due to the limitations of computer memory.
Recently, Prosen proposed a new method to solve the Lindblad
master equation of a general quadratic system with larger sizes
N , ranging from 30 to 60. He found that heat transport scales
as 〈Q〉 ∼ N0 in a homogeneous transverse Ising chain and
the currents decrease exponentially as 〈Q〉 ∼ exp (αN ) with
α < 0, which corresponds to the heat insulator, in a disordered
Ising chain [17].

On the other hand, since the experimental discovery of
quasicrystals [23] and the experimental work on Fibonacci
superlattices [24], much attention has been focused on studies
of one-dimensional nonperiodic systems [8,25–30]. Despite
the absence of translational invariance in these structures, they
show a long-range order. Such systems can be regarded as
intermediate between uniform and random systems. It has been
found that the electronic energy spectra of nonperiodic systems
are singular continuous and the wave functions are critical, i.e.,
neither localized nor extended [25]. The phonon spectra of
nonperiodic lattices are also shown to be Cantor-like, and they
possess characteristics of both periodic and random systems
[26]. Moreover, heat-transport properties of one-dimensional
classical nonperiodic systems have been investigated [8,27].

Therefore, how the nonperiodicity affects the quantum
thermal transport is an interesting problem. In this paper, we
shall study the heat conduction in the nonperiodic quantum
Ising chains. The rest of the paper is organized as follows. In
Sec. II, we introduce the model. The method of solving the
Lindblad master equation and the definitions for the energy
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density operator and the local energy current operator are
given in Sec. III. Section IV contains our numerical results
and the discussions of the transport properties of nonperiodic
Ising chains. Finally, Sec. V is devoted to the summary and
discussion.

II. MODEL

To investigate the problem of nonperiodic quantum heat
transport we choose to deal with one-dimensional finite open
Ising chains whose two end spins are connected to heat baths
with different temperatures. The total Hamiltonian is given by

H = HS + HB + HI , (1)

HS =
N−1∑
m=1

Jmσx
mσ x

m+1 +
N∑

m=1

hσ z
m, (2)

where HS , HB , HI denote the Hamiltonian of the system, the
baths’ Hamiltonian, and the interaction between the system
and the baths, respectively. We require the coupling between
the system and the bath to be weak. In addition, N is the
number of spins, σx

m, σ z
m are the Pauli matrices for mth spin,

h is the uniform strength of the magnetic field, and Jm is the
nearest-neighbor coupling.

The special case of Jm = J defines the uniform spin
chain. For the random spin chain, Jm is chosen as random
uncorrelated variables. In our study, Jm takes the two values JA

and JB = JA/λ according to the nonperiodic sequences. The
most frequently studied nonperiodic sequence is the Fibonacci
sequence, which is generated from a seed (e.g., JA) by the
following rule: {

JA → JAJB

JB → JA

. (3)

The infinite Fibonacci sequence is given by

JAJBJAJAJBJAJBJAJAJBJAJAJB . . . .

Other well-studied nonperiodic systems are the generalized
Fibonacci (GF), Thue-Morse (TM), and period-doubling (PD)
lattices. They are built recursively from a seed (e.g., JA) by
the following rules:

GF :

{
JA → Jm

A J n
B

JB → JA

,

TM :

{
JA → JAJB

JB → JBJA

,

PD :

{
JA → JAJB

JB → JAJA

,

respectively, where m,n are positive integers and Jm
A represents

a string of m JA’s.
For the quantum integrable system the nearest-neighbor

level spacing distribution P (s) is a Poissonian distribu-
tion PP (s) = exp(−s). In contrast, in the quantum chaotic
system, P (s) is typically the Wigner distribution PW (s) =
(πs/2) exp(−πs2/4). After unfolding the energy spectra [31],
we numerically calculate the P (s) of the Hamiltonian (2)

(a) (b)

FIG. 1. Nearest-neighbor level spacing P (s) for two typical cases.
(a) Fibonacci Ising chain and (b) GF Ising chain with m = 1, n = 4,
respectively. The Poisson distribution curve (dashed line) and the
Wigner distribution curve (full line) are also shown. Here, N = 10,
h = 1.0, JA = 1.5, λ = 1.5.

and find that the nonperiodic Ising chains are integrable.
Moreover, we find that the distribution P (s) is independent
of the parameters of JA and λ. Figure 1 shows the numerical
results of P (s) for the two typical examples: Fibonacci Ising
chain and GF Ising chain with m = 1, n = 4. It is clear to
see that the distributions P (s) are close to the Poissonian
distribution.

III. LINDBLAD MASTER EQUATION AND ITS SOLUTION

Under the Born-Markovian approximation, the quantum
Liouville equation of system (1) can be written in the Lindblad
form [9,17] (we set h̄ = 1)

dρs

dt
= L̂ρs ≡ −i[HS,ρs] +

4∑
μ=1

(2LμρsL
†
μ − {L†

μLμ,ρs}),

(4)

where [. . .] and {. . .} denote the commutator and the anticom-
mutator, while

L1 = 1
2

√
�L

1 σ−
1 , L3 = 1

2

√
�R

1 σ−
N ,

(5)
L2 = 1

2

√
�L

2 σ+
1 , L4 = 1

2

√
�R

2 σ+
N .

Here Lμ are operators representing couplings to different
baths, and σ±

m = σx
m ± iσ

y
m. �L

1,2 and �R
1,2 denote the positive

coupling constants related to bath temperatures. The tem-
peratures of the two heat baths, TL and TR , are embodied
in the forms of �L

2 /�L
1 = exp(−2h1/TL) and �R

2 /�R
1 =

exp(−2hN/TR). In our numerical calculation, we take bath
couplings �L

1 = �R
1 = 1.0.

By using the Jordan-Wigner transformation, σx
m =

(−i)m−1 ∏2m−1
j=1 ωj and σ z

m = −iω2m−1ω2m, where ωj , j =
1,2, . . . ,2N , are Majorana operators with {ωj ,ωk} = 2δj,k , the
Hamiltonian (2) can be written in terms of Majorana fermions
as

HS = −i

N−1∑
m=1

Jmω2mω2m+1 − i

N∑
m=1

hω2m−1ω2m. (6)
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To solve Eq. (4), Prosen [17] proposed the Fock space κ ,
which is a 4N -dimensional space of operators with a
canonical basis |Pα〉 = Pα1,α2,...,α2N

|0〉 ≡ ω
α1
1 ω

α2
2 . . . ω

α2N

2N |0〉,
αj ∈ {0,1}, and defined the annihilation operator ĉj and
the creation operator ĉ

†
j in terms of ĉj |Pα〉 = δαj ,1|ωjPα〉

and ĉ
†
j |Pα〉 = δαj ,0|ωjPα〉, respectively. Here ĉj and ĉ

†
j sat-

isfy the canonical anticommutation relations {ĉj ,ĉk} = 0,
{ĉj ,ĉ

†
k} = δjk , j,k = 1,2, . . . ,2N . Introducing the Hermitian

Majorana operators â2j−1 = 1√
2
(ĉj + ĉ

†
j ), â2j = i√

2
(ĉj − ĉ

†
j )

with âr = â
†
r , {âr ,âs} = δr,s , r = 1,2, . . . ,4N , the Lindblad

equation (4) can be written as

L̂ = â · Aâ + const11. (7)

Here â ≡ (â1,â2, . . . ,â4N )T . A is a 4N × 4N dimensional
and antisymmetric complex matrix whose eigenvalues are
complex and come in pairs β1, − β1, . . . ,β2N, − β2N . The
corresponding eigenvectors are the solutions of equations
Aν2j−1 = βjν2j−1 and Aν2j = −βjν2j (j = 1,2, . . . ,2N ).

By introducing the linear maps b̂j = ν2j−1 · â and b̂
′
j =

ν2j · â, {b̂j ,b̂k} = {b̂′
j ,b̂

′
k} = 0, {b̂j ,b̂

′
k} = δj,k , the Liouvillean

(7) can be written into a very convenient normal form
L̂ = −2

∑2N
j=1 βj b̂

′
j b̂j . The complete set of 4N eigenvalues

of L̂ are obtained by all the possible binary linear combina-
tions −2

∑
j njβj , where nj ∈ {0,1} are eigenvalues of 2N

mutually commuting non-Hermitian number operators b̂
′
j b̂j .

Let the nonequilibrium steady state |NESS〉 be the element
of Fock space κ corresponding to the zero eigenvalue of the
Liouvillean (7), i.e., nj = 0.

Prosen [17] has proven that expectation values of the
quadratic operators in ρNESS which is the stationary solution
of the Lindblad equation (4) can be explicitly computed as

〈ωjωk〉NESS = tr(ωjωkρNESS)

= δj,k + 〈11|ĉj ĉk|NESS〉

= δj,k+1

2

2N∑
m=1

(ν2m,2j−1ν2m−1,2k−1−ν2m,2j ν2m−1,2k

− iν2m,2j ν2m−1,2k−1 − iν2m,2j−1ν2m−1,2k). (8)

Here νr,s is the component s (s = 1,2, . . . ,4N ) of the rth right
eigenvector νr (r = 1,2, . . . ,4N ) of the matrix A (7).

In our system, A is written as

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

BL − hR R1 0 . . . 0

−RT
1 −hR R2

. . . 0

0 −RT
2 −hR

...
...

. . .
. . . RN−1

0 0 . . . −RT
N−1 BR − hR

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

Here,

R =

⎛
⎜⎜⎜⎝

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

⎞
⎟⎟⎟⎠ , (10)

Rm =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 0

−Jm 0 0 0

0 −Jm 0 0

⎞
⎟⎟⎟⎠ , (11)

BL =

⎛
⎜⎜⎜⎜⎝

0 i
2�L

+ − i
2�L

−
1
2�L

−
− i

2�L
+ 0 1

2�L
−

i
2�L

−
i
2�L

− − 1
2�L

− 0 i
2�L

+
− 1

2�L
− − i

2�L
− − i

2�L
+ 0

⎞
⎟⎟⎟⎟⎠ , (12)

and

BR =

⎛
⎜⎜⎜⎜⎝

0 i
2�R

+ − i
2�R

−
1
2�R

−
− i

2�R
+ 0 1

2�R
−

i
2�R

−
i
2�R

− − 1
2�R

− 0 i
2�R

+
− 1

2�R
− − i

2�R
− − i

2�R
+ 0

⎞
⎟⎟⎟⎟⎠ , (13)

respectively, where �L
± = �L

2 ± �L
1 and �R

± = �R
2 ± �R

1 .
Based on the Majorana operators [17], the local energy-

density operator can be explicitly defined as

Hm = −iJmω2mω2m+1 − ihm

2
ω2m−1ω2m

− ihm+1

2
ω2m+1ω2m+2, (14)

and the local energy current operator can be derived from the
equation of continuity

Qm ≡ [Hm,Hm+1]

= 2i(−Jmhm+1ω2mω2m+2 − hm+1Jm+1ω2m+1ω2m+3).

(15)

Note that the above two observable operators Hm and Qm

are written in the quadratic form. Thus it is easy to calculate
their expectation values in ρNESS.

IV. NUMERICAL RESULTS

In the following, we first investigate the heat conduction
of the Fibonacci Ising chain. Due to the nonuniformity of the
nonperiodic chain, the numerical results need to be averaged
as done in the random case. In our numerical calculation, we
generate a very long but finite Fibonacci sequence of size L

(L � N ) according to the rule (3). For N -spin chain, we select
N − 1 consecutive couplings, while the starting position is
on a random position of the Fibonacci sequence. Then we
obtain the expectation values of operators Hm and Qm in
ρNESS for the spin chain with the above-chosen couplings.
Finally, we perform the average over 2000 realizations. In
short, we use 〈Hm〉 and 〈Qm〉 to denote the average energy
density and the average energy current. Throughout the paper,
the temperatures of baths are set as TR = T0(1 + δT ), TL =
T0(1 − δT ).

Figure 2(a) shows the energy profiles of Fibonacci Ising
chains with λ = 1.5 but with different sizes N , ranging
from N = 20 to N = 60. For the quantum system, Fourier’s
law intuitively translates into 〈Q〉 ∼ ∇〈Hm〉, where the local
energy plays the role of the temperature. We observe that in the
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(a) (b)

FIG. 2. (Color online) Scaled energy profiles of Fibonacci Ising
chains for different N and λ, respectively. (a) λ = 1.5, N = 20
(red dot), N = 30 (green upward-pointing triangle), N = 40 (blue
square), N = 50 (magenta downward-pointing triangle), N = 60
(black star); (b) N = 20, λ = 1.5 (red dot), λ = 2 (green upward-
pointing triangle), λ = 3 (blue square), λ = 4 (magenta downward-
pointing triangle), λ = 5 (black star). Here h = 1.5, JA = 1.5, T0 =
5, δT = 0.5.

bulk of chains energy gradients are formed for any system size.
In Fig. 2(b), we show the energy profile with fixed system size
N = 20, while the ratio of couplings range from λ = 1.5 to
λ = 5. It is also clear to see that energy gradients are built in all
chains for different ratios of couplings. Contrary to the ballistic
transport in the uniform quantum Ising chain [16,17], the
dissipative transport behavior can be observed in the Fibonacci
Ising chains with different system sizes or with different ratios
of the couplings.

We now turn to investigate the energy current of the
Fibonacci Ising chain. The local energy current 〈Qm〉 in ρNESS

does not depend on the special chain site, i.e., 〈Qm〉 = 〈Q〉.
In Fig. 3 , we present the energy currents 〈Q〉 versus N for
different values of the ratio λ. It is clear to find that energy
currents all behave as 〈Q〉 ∼ Nα in the asymptotic regime
N � 1, where α depends on the ratio of couplings λ. The
inset of Fig. 3 shows the dependence of α on the ratio of
λ. When λ → 1, it is found that the exponent α → 0 and
the energy gradient vanish, which could be interpreted as the
ballistic transport. When λ → λc ≈ 3.0, α is found to be −1,
which corresponds to the normal heat transport. For the case
of 1 < λ < λc, the exponent α is −1 < α < 0 implying an
anomalous heat conduction. And for the case of λ > λc, α <

−1 results in the thermal insulator. Therefore, with increasing
ratios λ, a nontrivial transition, which is from abnormal
heat conduction to the thermal insulator heat transport, has
been found in Fibonacci Ising chains. Moreover, one can
conclude that transport behaviors of Fibonacci Ising chains
are different from those of disordered Ising chains whose av-
erage currents decrease exponentially as 〈Q〉 ∼ exp (αN ) with
α < 0 [17].

In order to investigate the effect of the temperature gradient
on transport properties, we also study the energy current
of Fibonacci Ising chains in different temperatures of the
heat baths. Figure 4(a) shows the numerical results of the
energy current at the same temperature T0, but with different

FIG. 3. (Color online) Energy current 〈Q〉 of Fibonacci Ising
chains versus the chain length N for different λ. Here λ = 1.5 (red
dot), λ = 2 (green upward-pointing triangle), λ = 3 (blue square),
λ = 4 (magenta downward-pointing triangle), λ = 5 (black star). The
inset shows the dependence of α on the ratio of λ. The solid line
represents ballistic transport, and the dotted line stands for the normal
transport. Here, h = 1.5, JA = 1.5, T0 = 5, δT = 0.5.

δT = 0.9,0.5,0.1, respectively. Figure 4(b) shows the numer-
ical data of the energy current at a fixed temperature gradient
δT = 0.5, and T0 = 10,5,1, respectively. Our numerical data
indicate that transport properties, i.e., 〈Q〉 ∼ Nα , are indepen-
dent of external temperature and the temperature gradient. The
results are in accordance with those of Prosen for a disordered
Ising chain [17].

In addition, we study the heat conduction of other nonpe-
riodic Ising chains. In Fig. 5, we show the energy currents of
the GF, TM, and PD Ising chains, respectively. Generally, the
nonperiodic chains can be classified into two classes depending
on the “wandering exponent” β, where β = ln |λ2|/ ln λ1 (λ1,
λ2 are the leading and next-to-leading eigenvalues of the

(a) (b)

FIG. 4. (Color online) Energy current 〈Q〉 of Fibonacci Ising
chains versus the chain length N for different δT and T0, respectively.
(a) T0 = 5, δT = 0.9 (red dot), δT = 0.5 (blue triangle), δT = 0.1
(black star); (b) δT = 0.5, T0 = 10 (red dot), T0 = 5 (blue triangle),
T0 = 1 (black star). Here h = 1.5, JA = 1.5, λ = 1.5.
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(a) (b)

(c) (d)

FIG. 5. (Color online) Energy current 〈Q〉 versus the chain length
N for four kinds of nonperiodic Ising chains. (a) GF (m = 4, n = 1),
(b) TM, (c) GF (m = 1, n = 4), and (d) PD. Here, JA = 1.5, λ =
1.5, T0 = 5, δT = 0.5, and h = 1.5 > hc (red dot), h = critical point
(blue triangle), h = 1.0 < hc (black star).

substitute matrix) describes the fluctuations in the coupling.
The Fibonacci chain, GF chains with m � 1, n = 1, and TM
chain belong to the first class with β < 0. This class has the
Pisot-Vijayaraghavan property that only one of the eigenvalues
of the substitute matrix in absolute is larger than unity. In
contrast, the GF chains with m = 1, n > 1, and PD chain
belong to the second class with β � 0. This class is known
to be non-Pisot [28,29]. From the studies of electronic energy
spectra [25] and trace map [30] of these nonperiodic systems,
one can conclude that either the electronic energy spectra or
the trace map of the first class nonperiodic chains are different
from that of the second class. However, our numerical results
clearly indicate that the energy gradients exist in the two
classes of nonperiodic chains, and the energy currents all scale
as 〈Q〉 ∼ Nα with α depending on the values of λ. It is also
interesting to remark that the exponents α are not universal
values in the same class of nonperiodic chains.

For the quantum Ising chain, it is well known that the
system has one zero-temperature quantum phase transition
point (QPT) at hN

c = ∏N
m=1 Jm in the thermodynamic limit

N → ∞, where N is the length of the chain [29]. The transition
is from a ferromagnetic phase with long-range correlation in
the x direction to a paramagnetic phase. The QPTs of the
nonperiodic chains belong to the universality class of a uniform
quantum Ising chain and of a random quantum Ising chain

for β < 0 and β > 0, respectively [29]. In Fig. 5, we also
plot the energy current 〈Q〉 with h < hc, h = hc, and h > hc,
respectively. The numerical results show that energy currents
with different values of h hold the same characters 〈Q〉 ∼ Nα

for all the nonperiodic Ising chains. Here α for h > hc is
a little larger than that for h < hc, and α for critical point
is intermediate between the values of the two cases above.
Moreover, the exponents α at the critical points depend on the
structures of nonperiodic Ising chains. Even the QPTs of the
two nonperiodic Ising chains belong to the same universality
class, their exponents α at critical points are different from
each other [see Fig. 5(a) and 5(b)]. It is due to the energy
current 〈Q〉, which is an averaged value in ρNESS containing
excited states and thermal fluctuations.

V. SUMMARY AND DISCUSSION

In summary, we perform a detailed analysis of heat
conductivity in nonperiodic quantum Ising chains by solving
the Lindblad master equation. The chains are connected to
two heat baths with different temperatures and subjected to
the uniform magnetic field h, while the exchange couplings
{Jm} between the nearest-neighbor spins are generated by the
nonperiodic rules. Although these nonperiodic Ising chains
are integrable, the energy gradients exist in all chains for
any system size or any ratio of couplings, and the energy
currents behave as 〈Q〉 ∼ Nα , which is different from the
transport behavior 〈Q〉 ∼ exp (αN ) in a random Ising chain
and the ballistical heat transport 〈Q〉 ∼ N0 in a homogeneous
transverse Ising chain. We find that the heat transport in
the nonperiodic Ising chain could be modulated from the
abnormal heat transport (α > −1) to the thermal insulating
behavior (α < −1) by increasing the ratio of couplings. Also
the heat transport properties of 〈Q〉 ∼ Nα are independent
of temperature gradient. Moreover, numerical evidence is
provided such that the energy currents with different values of
h all behave as 〈Q〉 ∼ Nα , but the exponent α is a function of
the magnetic field h and the ratio of couplings λ. In particular,
the exponents α of nonperiodic Ising chains at critical points
depend on the structures of spin chains.
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