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Extension of scaled particle theory to inhomogeneous hard particle fluids. IV. Cavity growth
at any distance relative to a planar hard wall
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A completely generalized version of an inhomogeneous scaled particle theory (I-SPT) for hard particle fluids
confined by hard walls is presented, whereby the reversible work of cavity insertion can be determined for a
cavity of any radius located at any distance from the hard wall. New exact and approximate conditions on the
central function G of I-SPT are developed, where G is related to the average value of the anisotropic density of
hard-sphere centers at the surface of the cavity. The predictions of the work of insertion and the form of G are
quite accurate up to moderate bulk densities as compared to molecular simulation results. The accuracy of I-SPT
begins to decline at high densities, due to limitations of certain needed approximations required for a complete
description of G. Finally, interesting insights into the origin of depletion effects between a hard-sphere solute
and the hard wall are generated via this version of I-SPT. The oscillatory nature of depletion forces, exhibiting
both attractive and repulsive domains, is found to arise from the interplay between bulk SPT and I-SPT relations.
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I. INTRODUCTION

In light of the success of scaled particle theory (SPT),
originally introduced in 1959 [1], in describing the behavior
of both hard particle and soft-core fluids [2–19], an initial
extension of SPT to inhomogeneous hard particle fluids was
recently developed [20,21]. Labeled as I-SPT, the nonuniform
fluid density that develops near a hard, structureless wall was
explicitly taken into account during the derivation of standard
SPT relations. As a result, new physical and geometric insights
were generated into the structural changes brought about by the
insertion of cavities near a wall. While accurately predicting
the reversible works of cavity insertion, this version of I-SPT
was limited to those cases for which the cavity exposed to the
nonuniform fluid adjacent to the wall has a volume equal to
or less than that of a hemisphere. In addition, only cavities
that were grown radially about a fixed center coordinate were
considered.

A subsequent paper [22] showed how cavities beyond
the hemisphere, though still intersecting the wall, could be
included into I-SPT. Rather than growing a cavity radially
at a fixed location, this version of I-SPT considered instead
the (effective) forces needed to “push” a cavity into the fluid
when starting from a position behind the wall. Such a route
was chosen since it allowed for additional conditions to be
incorporated into I-SPT, as well as avoiding some (at the time)
unresolved issues that arise if one were to consider the radial
growth of cavities beyond the wall. This version of I-SPT also
provided useful information about the physical and geometric
origins of depletion interactions in hard particle systems
[23–28]. Given that the cavities were required to intersect
the wall, depletion interactions could only be generated over a
small range of the full depletion potential.

Despite their successes, neither of the two above-mentioned
forms of I-SPT reach the desired-for goal that provided the
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initial intent for extending SPT to inhomogeneous systems:
describing the radial growth of cavities that are centered at any
coordinate relative to the hard wall. Since their introduction,
however, the understanding of the boundary thermodynamics
of cavities intersecting a wall has improved [29]. As such,
previously missing information has now become available for
the development of a sufficiently accurate and fully generalized
form of I-SPT. And so, we present in this paper a version of
I-SPT that yields expressions (some exact, others approximate)
for the reversible work of inserting a cavity of any radius
located at any distance from a hard wall. We identify a
number of new I-SPT conditions, based again on physical
and geometric arguments, each of which provides additional
insights into the behavior of hard particle fluids near planar
surfaces, as well as improving the accuracy of some earlier
versions of I-SPT.

While the further development of I-SPT is important in it-
self, our aim is not simply to extend the range of applicability of
I-SPT. For one, as discussed in Ref. [29], a form of I-SPT
that can describe cavities that are grown radially at any
location is necessary for an accurate determination of the line
tension of cavities that intersect a planar surface. A generalized
version of I-SPT will provide the required inputs, such as the
work of cavity formation, needed to estimate this important
thermodynamic property.

Furthermore, due to the equivalence of cavities and hard-
sphere solutes, I-SPT relations can be used to predict the
depletion, or entropic, force between a hard-sphere solute
and a hard wall. The development of accurate expressions for
entropic forces are of interest, given that entropic interactions
are important in governing the behavior of hard-sphere-like
fluids and can be utilized to control the self-assembly of
model colloidal dispersions [30–36]. SPT was previously
employed to estimate the depletion force between a hard
colloid and a hard wall [37], though the use of bulk relations
led to inaccurate predictions at high fluid densities. I-SPT,
with its explicit incorporation of the nonuniformity of the
hard-sphere fluid near the hard wall, is well suited to studying
depletion interactions. One of the earlier versions of I-SPT [22]
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yielded predictions of the depletion force exerted on a large
diameter hard-sphere colloid near a wall that were in excellent
agreement with molecular simulation results. As noted earlier,
the range of the depletion force that was described by this
version of I-SPT was limited, which the current extension
presented here overcomes. Hence I-SPT can now generate
predictions of the depletion force for all separations and for all
hard-sphere solute diameters. Here, we use I-SPT to provide
insight into the origin and oscillatory nature of depletion
forces. In particular, both attractive and repulsive depletion
forces are easily explained using bulk SPT and I-SPT relations,
which manifest the different behaviors exhibited by cavities
within SPT and I-SPT.

The paper is organized as follows. In Sec. II, a review of
bulk SPT and all the current versions of I-SPT is provided. In
Sec. III, the further extension of I-SPT is presented. Here, the
additional conditions required to describe the radial growth of
cavities at all distances from the hard, structureless wall are
introduced. In addition, the interpolations needed to describe
the average contact density around the cavity, beyond the
ranges at which this quantity is known exactly, are presented.
The comparison between the predictions of I-SPT and the
results of molecular simulation are included in Sec. IV. A
discussion of depletion effects and how they can be determined
from I-SPT is provided in Sec. V. Conclusions are presented
in Sec. VI.

II. REVIEW OF SPT AND EXTANT I-SPT

Before introducing the updated version of I-SPT, we first
present a review of both SPT for the homogeneous hard-sphere
(HS) fluid and the various existing versions of I-SPT (more
detailed discussions of SPT and I-SPT can be found in
Refs. [1,38–41] and Refs. [20–22], respectively). The starting
point of any version of SPT is the introduction of a cavity
of radius λ into a solvent of HS of diameter σ , where the
cavity is defined as a spherical region devoid of HS centers. A
cavity in a HS fluid can also be considered as a HS solute of
radius σs , where λ = (σs + σ )/2 [1] (albeit with the possibility
of negative diameters, in which λ � 0 implies σs � −σ/2).
Accordingly, the cavity becomes equivalent to a solvent HS
when λ = σ .

For uniform, unconfined fluids, all thermophysical proper-
ties are related to the central SPT function G(λ), where ρG(λ)
is defined as the local density of HS centers at the surface of a
cavity of radius λ and ρ is the number density of HS centers
far from the cavity. Since ρG(λ)kT is the local stress normal
to the cavity surface (in which k is Boltzmann’s constant and
T is the absolute temperature), the reversible work W (λ) of
growing or adding a cavity of radius of at least λ within the
fluid is related to G via the following integral [1]:

W (λ) = 4πρkT

∫ λ

0
G(r)r2 dr. (1)

G is known exactly for λ � σ/2, after which it is represented
by one or more interpolation functions that are constrained
by several exact conditions [1,39–42]. Typically, the interpo-
lation(s) takes the form of a Laurent series [1,43],

G(λ) = α0(ρ) + α1(ρ)

λ
+ α2(ρ)

λ2
+ α4(ρ)

λ4
+ · · · , (2)

in which several of the fitting parameters αi(ρ) are related
to particular thermophysical properties of the HS fluid. For
example, in the final (or only, if a single interpolation function
is invoked) Laurent series, one notes that α0(ρ) = G(∞) =
p/ρkT , where p is the pressure of the HS fluid, while α1(ρ) =
γ∞σ 2/2kT , where γ∞ is the surface (or, more properly,
boundary) tension of a planar surface in contact with a HS
fluid. Once G(λ) is known, numerous other properties of the
HS fluid may be obtained from the chosen set of interpolations
for G(λ).

Inhomogeneous SPT is the application of SPT ideas to
a HS fluid confined by planar walls. I-SPT, however, must
acknowledge the following two major departures from SPT:
(1) a cavity may intersect a wall, and (2) the properties of
the fluid near the wall are not uniform. Due to the loss of
radial symmetry about a cavity in a nonuniform fluid, one is
required to introduce a modified version of G(λ) that includes
information about the cavity’s location relative to a wall. Thus
the central I-SPT function is G(λ,θ,h), where ρG(λ,θ,h) is
the local density of HS centers at a position identified by λ, θ ,
and h [20] (and is yet again related to the local stress normal to
the cavity surface at that same position). As shown in Fig. 1(a),
h locates the position of the cavity relative to the effective wall
(or the z = 0 plane, indicating the closest approach of HS
centers to the wall) and θ is the azimuthal angle that identifies
a particular position on the cavity surface. The introduction
of an average of G(λ,θ,h) over θ , denoted by G(λ,h), proved
useful for further manipulations. For example, for cavities in
which h � 0, the work of adding a cavity to the system is given
by [20]

W (λ,h) = 2πρkT

∫ λ

0
G(r,h)(r2 + rh) dr. (3)

2
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FIG. 1. Coordinate system used to describe cavities near a hard
wall. The cavity (represented by the dot-dash line) of radius λ is
centered at z = h. (a) identifies a cavity centered at h < 0, while
(b) identifies h > 0. In both, the z axis originates a distance σ/2
from the hard wall, where σ is the diameter of a HS solvent particle
(represented by the solid circles; the centers of the HS solvent particles
cannot access the region for which z < 0). θ measures the angle
originating from a line perpendicular to hard wall and colinear with
the cavity center. φ describes the rotation around this line. Since the
fluid is isotropic in the x and y directions, the system is symmetric
about φ.
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Furthermore, G for h � 0 and λ �
√

h2 + (σ/2)2 is known
exactly and is equal to [20]

ρG(λ,h) =
∫ λ+h

0 ρ(z)dz

(λ + h)
(
1 − π

∫ λ+h

0 ρ(z)[λ2 − (z − h)2]dz
) ,

λ �
√

h2 +
(σ

2

)2
, (4)

where ρ(z) is the local density of HS centers at a position z

relative to the wall (see Fig. 1). [Note that I-SPT requires some
form of ρ(z) as input, and cannot in its present development
be used to generate ρ(z) independently.] Beyond this range
of cavity radii, a Laurent series interpolation of the following
form was proposed as an approximation of G [20]:

G(λ,h) = β0(ρ,h) + β1(ρ,h)

λ + h
+ β2(ρ,h)

λ(λ + h)
+ β4(ρ,h)

λ3(λ + h)
,

λ >

√
h2 +

(σ

2

)2
, (5)

where the fitting coefficients βi(ρ,h) were obtained via addi-
tional exact conditions on G. These exact conditions include
the continuity of G and its first derivative with respect to λ at
λ =

√
h2 + (σ/2)2, the asymptotic limit of G(∞) = p/ρkT ,

and a condition related to the excess chemical potential μex of
the HS fluid. Unlike bulk SPT, which can be used to generate a
prediction of p and μex , I-SPT requires that these quantities be
provided from an outside source, such as the Carnahan-Starling
equation of state [44]. A modified interpolation and a new
condition relating β1 to γ∞ (the value of which is again
provided by an equation of state) not included in the original
formulations of I-SPT were introduced in Ref. [22].

To extend the ideas of I-SPT to cavities located at h > 0,
a different version of I-SPT was derived, in which the cavity
is “pushed” into the fluid from behind the wall while holding
λ fixed [22] rather than “growing” the cavity from a static
center point. A different type of average I-SPT function was
necessary and was denoted by F (λ,h), though it is still related
to an integral of G(λ,θ,h). F is proportional to the force
perpendicular to the wall exerted by the fluid on the cavity
and, like G, is known exactly for certain configurations and
must be interpolated thereafter. Here, the work of adding a
cavity to the fluid is given by [22]

W (λ,h) = 2πρkT

∫ h

−λ

F (λ,z) dz. (6)

For the cases previously considered, such that the cavity always
intersected the wall or h � λ, F is exactly known for h �
−

√
λ2 − (σ/2)2 [22],

F (λ,h) =
∫ h+λ

0 ρ(z)(z − h)dz

ρλ2
(
1 − π

∫ h+λ

0 ρ(z)[λ2 − (z − h)2]dz
) ,

h � −
√

λ2 −
(σ

2

)2
. (7)

Beyond this exact limit, F was interpolated not using a
Laurent series but with a set of polynomials that satisfactorily
mimicked the true behavior of F . The fitting coefficients were
again obtained by invoking various exact conditions on F , such

as the continuity of F and its first derivative with respect to h at
h = −

√
λ2 − (σ/2)2 as well as formal limits of macroscopic

thermodynamics [22]. Other approximate, though reasonably
accurate, conditions were generated in order to better match
the behavior of F at intermediate values of h. The interpolation
procedure for F is much more complex than that for G, though
nonetheless proved to be highly accurate up to moderate fluid
densities and, perhaps more importantly, revealed interesting
phenomena in the physics of depletion forces in HS colloidal
dispersions [22].

While successful, these previous versions of I-SPT were,
however, limited in application to those cavities that intersect
the effective wall. As such, they provided no description
of G(λ,h) for h > 0. Additionally, the previous versions of
I-SPT provided no firm theoretical justification for the chosen
interpolation series. The interpolation series were based partly
on expectations of macroscopic thermodynamic results and
partly on intuition. Taken together, these two issues provide
the motivation for revisiting I-SPT and extending this previous
framework to the description of cavities for which h > 0 and
λ < h.

III. I-SPT: RADIAL GROWTH OF CAVITIES
CENTERED AT h > 0

The earlier versions of I-SPT were successful in their stated
aim of computing the work of inserting cavities that intersect a
planar surface. We are now, however, interested in describing
any cavity that is located near a planar surface, specifically
those locations that satisfy h � 0 without also requiring λ > h

(i.e., no overlap of the z = 0 plane). For various reasons, we
choose to extend the G description of cavities to h > 0. Hence
the derivation of the new extension of I-SPT will proceed via
the I-SPT derivation presented in Ref. [20].

In our examination of cavities centered at h > 0, we
again utilize the coordinate system identified in Fig. 1(a).
Furthermore, as illustrated in Fig. 1(b), the accessible values of
θ for λ < h now span from 0 to π , rather than 0 to cos−1(−h/λ)
as is the case for λ > h. Finally, we again define an I-SPT
function G(λ,θ,h) such that ρG(λ,θ,h) is the local density on
the cavity surface at an angle θ , with ρG(λ,θ,h)kT providing
the local stress normal to the cavity surface at θ .

A. I-SPT functions and definitions

Using arguments identical to those invoked to obtain
G(λ,h) for h � 0 in Ref. [20], the reversible work required
to differentially increase the radius of a cavity centered at h

may be written as

dW =
( ∫

A(λ,h)
ρG(λ,θ,h)kT dA

)
dλ, (8)

where A(λ,h) is the surface area of the cavity accessible to the
fluid of hard spheres (i.e., that portion of the cavity residing
at z � 0 in Fig. 1). The above equation, in essence, states
that the differential work of growing the cavity is the total
normal force on the cavity surface multiplied by the differential
change in radius. Equation (8) is valid for any value of h and,
through subtle manipulation, could be transformed to describe
the work of growing a cavity near any confining surface.
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(Chap. 4 of Ref. [45] includes a discussion of an entirely
general I-SPT based on this idea.) As was done previously,
though not explicitly noted, A(λ,h) is easily transformed to an
integral over θ and some terms related to λ. Unlike the previous
derivation for h � 0, A(λ,h) cannot, however, be represented
by a single function. Due to the abrupt change in the bounds
of θ at λ = h (where the cavity just touches the z = 0 plane)
we are required to write one expression valid for λ � h and
another for λ > h. ∂W/∂λ must therefore be expressed as

∂W

∂λ
=

{
2πλ2

∫ π

0 G(λ,θ,h) sin θdθ, λ � h

2πλ2
∫ cos−1(−h/λ)

0 G(λ,θ,h) sin θdθ, λ > h.
(9)

Following Ref. [20], we now replace the integrals of
G(λ,θ,h) by some other function, since G(λ,θ,h) cannot be
recovered directly from W . Just as G(λ,h) for h � 0 was
defined as an average of G(λ,θ,h) over the surface of the
cavity, we likewise define a similar function for h > 0. Again
due to the abrupt change in A(λ,h) at λ = h, the relevant
definitions of G(λ,h) for h > 0 are given by

G(λ,h) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2πλ2
∫ π

0 G(λ,θ,h) sin θdθ

2πλ2
∫ π

0 sin θdθ
, λ � h

2πλ2
∫ cos−1(−h/λ)

0 G(λ,θ,h) sin θdθ

2πλ2
∫ cos−1(−h/λ)

0 sin θdθ
, λ > h

=

⎧⎪⎨
⎪⎩

1

2

∫ π

0 G(λ,θ,h) sin θdθ, λ � h

λ

λ + h

∫ cos−1(−h/λ)
0 G(λ,θ,h) sin θdθ, λ > h

(10)

in which we note that

A(λ,h) =
{

4πλ2, λ � h

2π (λ2 + λh), λ > h.
(11)

Substitution of Eq. (10) into Eq. (9) followed by integration
from λ = 0 to a final radius of λ allows the reversible work of
growing a cavity of radius λ centered at h to be written as

W (λ,h)

=
{

4πρkT
∫ λ

0 G(r,h)r2 dr, λ � h

W (h,h) + 2πρkT
∫ λ

h
G(r,h)(r2 + rh) dr, λ > h,

(12)

where, for convenience, W (h,h) represents an integral from
the first line of the above equation. While W (h,h), the work
of inserting a cavity of radius h that is located a distance h

from the effective wall, is identically zero for h � 0 (where
here λ = |h|), W (h,h) �= 0 for h > 0. The definition of G for
λ > h is identical to that for h � 0 and all values of λ [20].
We repeatedly find that expressions related to W or G for
λ > h > 0 are common to all values of h, a property that
derives from A(λ,h) being described by a similar function
provided that λ > h (which is automatically satisfied when
h � 0).

For λ = h, we note that the two expressions for G both
yield

G(h,h) = 1

2

∫ π

0
G(h,θ,h) sin θdθ. (13)

Given that G is proportional to the normal stress at the surface
of the cavity, which in turn is related to the density distribution
of HS centers around the cavity, there is no reason to expect
that G(h,θ,h) changes discontinuously as λ → h from above
and below. Thus Eq. (13) indicates that G(h,h) is continuous at
λ = h. (As we discuss later, the continuity of G at λ = h may
be confirmed exactly for h � σ/2 while simulation results for
larger h support this conclusion.)

Continuity does not extend, however, to the first derivative
of G with respect to λ evaluated at λ = h. For λ < h, we find
that

∂G

∂λ
= 1

2

∫ π

0

∂G (λ,θ,h)

∂λ
sin θdθ, λ � h, (14)

while for λ > h, we have that

∂G

∂λ
= λ

λ + h

∫ cos−1(−h/λ)

0

∂G(λ,θ,h)

∂λ
sin θdθ

+ h

(λ + h)2

∫ cos−1(−h/λ)

0
G(λ,θ,h) sin θdθ

− h

λ2 + λh
G(λ, cos−1(−h/λ),h), λ > h. (15)

Evaluating both derivatives at λ = h and taking the difference,
we obtain

�

[
∂G

∂λ

]
λ=h

≡ ∂G

∂λ

∣∣∣∣
λ=h+

−∂G

∂λ

∣∣∣∣
λ=h−

= 1

2

∫ π

0

(
∂G(λ,θ,h)

∂λ

∣∣∣∣
λ=h+

− ∂G(λ,θ,h)

∂λ

∣∣∣∣
λ=h−

)
sin θdθ

+ 1

2h
[G(h,h) − G(h,π,h)], (16)

where the superscripts ‘−” and “+” indicate that the given
term is evaluated infinitesimally below or above λ = h,
respectively. The above result suggests that ∂G/∂λ is in
general discontinuous at λ = h, since previous work indicates
that G(h,h) � G(h,π,h). For the cavity just touching the z = 0
plane, a large density enhancement of HS centers occurs within
the cusp region (θ → π ), in which G(h,π,h) � p/ρkT [21],
while G(λ,h) � p/ρkT [20], implying that the third line of
Eq. (16) is always negative. Nevertheless, the sign of the
discontinuity of ∂G/∂λ is not entirely clear, since the integral
portions of Eq. (16) may not cancel identically. Although
G(λ,θ,h) is continuous at λ = h, the manner in which the
local density along the cavity surface varies with λ may be
different (particularly for θ → π ) when the cavity is already
intersecting the wall and its radius decreases to the limit where
it just touches the wall as compared to when the cavity begins
by not intersecting the wall and its radius increases to the
limit where it again just touches the wall. In the former case,
HS centers can only reach θ = π when λ → h; in the latter
case, HS centers always have access to θ = π except when
λ → h [25–27,46,47].
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Exact expressions for G provided below do reveal that the
integral term in Eq. (16) does vanish for λ � σ/2 (though the
remaining term is not zero). Yet, the approximations invoked to
describe G at larger λ, as well as a boundary thermodynamic
analysis for macroscopic cavities, suggest that the integral
term is not zero in general. (Due to sampling problems
inherent in the determination of G(λ,θ,h), and particularly
its derivative with respect to λ, molecular simulations results
were unfortunately inconclusive about the sign of this integral
term.)

B. Exact I-SPT expressions

Similar to previous versions of SPT and I-SPT, we now
relate G(λ,h) to the probability of observing a cavity of radius
of at least λ centered at z = h, P0(λ,h), and then make use
of exact knowledge of P0 to identify G exactly under certain
conditions. Given that P0 = exp(−W/kT ), Eqs. (9) and (10)
indicate

ρG (λ,h) =

⎧⎪⎪⎨
⎪⎪⎩

−1

4πλ2

∂ ln P0(λ,h)

∂λ
, λ � h

−1

2π (λ2 + λh)

∂ ln P0(λ,h)

∂λ
, λ > h.

(17)

The relation for G in terms of P0 for λ > h is again identical
to that for h � 0 [20].

Now, P0 may be interpreted in the following manner
[1,22]. Suppose that spheres of radius λ are drawn concentric

with all solvent hard spheres in a particular configuration.
Then, for that configuration, the probability of locating a cavity
of radius of at least λ centered at z = h is the area fraction
of the z = h plane not eclipsed by the spheres of radius λ.
P0 is then obtained by ensemble averaging over all possible
configurations. With this interpretation, P0 is given by [22]

P0(λ,h) = 1 +
∞∑

m=1

(−1)mFm(λ,h), (18)

where Fm(λ,h) is the average area fraction of the z = h plane
eclipsed by the mutual intersection of m spheres of radius λ.
Depending on the value of λ, not all Fm terms are required [22].
For example, when λ � σ/2 and h > 0, two spheres of radius
λ concentric with solvent HS (of diameter σ ) cannot intersect
on the z = h plane. Hence only F1 is needed. Similarly,
two spheres of radius λ may intersect for σ/2 < λ � σ/

√
3,

but three may not, requiring that Fm(λ,h) = 0 for m � 3
in this subdomain, and so on. Computation of Fm is then
accomplished by identifying the various radial subdomains
and representing the necessary Fm terms by nontrivial integrals
that count successive overlapping circles that eclipse the z = h

plane. Following Refs. [20–22], F1 may be expressed as

F1(λ,h) =
{

π
∫ h+λ

h−λ
ρ(z)[λ2 − (z − h)2]dz, λ � h

π
∫ h+λ

0 ρ(z)[λ2 − (z − h)2]dz, λ > h.
(19)

Referring to Appendix A of Ref. [22], F2 may be written as

F2(λ,h) =
{

π
∫ h+λ

h−λ
dz1

∫ h+λ

h−λ
dz2

∫ rmax

0 ρ[2](z1,z2,r)2(z1,z2,r,λ,h)rdr, λ � h

π
∫ h+λ

0 dz1
∫ h+λ

0 dz2
∫ rmax

0 ρ[2](z1,z2,r)2(z1,z2,r,λ,h)rdr, λ > h.
(20)

where ρ(2)(z1,z2,r) is the pair distribution function for two
hard spheres located at z1 and z2 with an in-plane distance
(parallel to the wall) r between them and 2(z1,z2,r,λ,h) is
the area on the z = h plane eclipsed by the mutual overlap
of the circles projected by spheres of radius λ concentric with
the same two hard spheres. The value of r for which 2

vanishes for a given z1 and z2 is rmax =
√

λ2 − (z1 − h)2 +

√
λ2 − (z2 − h)2. As shown in Ref. [22], 2 yields a di-

vergent third derivative of F2 with respect to λ as λ →
σ/2+, which implies that ∂2G/∂λ2 → −∞ as λ → σ/2+ for
h > 0.

As stated previously, only F1 is required for λ � σ/2.
Entering P0 = 1 − F1 into Eq. (17) yields the following exact
expression for G:

ρG(λ,h) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ h+λ

h−λ
ρ(z)dz

2λ(1 − π
∫ h+λ

h−λ
ρ(z)[λ2 − (z − h)2]dz)

,

∫ h+λ

0 ρ(z)dz

(λ + h)(1 − π
∫ h+λ

0 ρ(z)[λ2 − (z − h)2]dz)
,

λ � σ
2

λ � h

λ � σ
2

λ > h.

(21)

With the above equation, G may be determined up to
λ = σ/2 when a suitable representation of ρ(z) is provided.
Additionally, Eq. (21) confirms that G is continuous at λ = h,

provided that λ � σ/2.
Equation (21) also provides exact information about the

limit of G as the cavity initially grows. For example, taking

the limit of G as λ → 0 (which necessarily implies λ � h),
we find that

lim
λ→0

G(λ,h) = ρ(h)

ρ
, (22)
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which differs from the h � 0 case where G(−h,h) = p/ρkT

[20]. [For h = 0, these results are identical as ρ(0) = p/kT .]
As h → ∞, i.e., we are growing the cavity within a bulk fluid,
we recover the SPT result of G(0,∞) = 1 since ρ(h) → ρ at a
sufficient distance from the hard wall. Equation (22) does align
with our intuition regarding cavity growth, since one expects
the limiting stress normal to a cavity of zero radius to equal
the local density of the HS fluid multiplied by kT .

A second limiting property of G obtained from Eq. (21) for
h > 0 is

lim
λ→0

∂G

∂λ
= 0, (23)

which is quite different from the initially negative slope of G

for h � 0 [20], though identical to the λ → 0 limit of ∂G/∂λ

for bulk SPT. This difference follows from the fully spherical
shape of the cavity for λ < h, manifested by the nonzero lower
bounds of the integrals in Eq. (21). Since the limiting slope
of G is zero, it is unclear whether G increases or decreases
for λ infinitesimally larger than zero. Proceeding to the second
derivative of G, however, one finds that

lim
λ→0

∂2G

∂λ2
= 1

3ρ

∂2ρ(z)

∂z2

∣∣∣∣
z=h

, (24)

which may be positive, negative, or even zero, since the
curvature of ρ(z) varies between positive and negative con-
cavity. Hence the curvature of ρ(z) at z = h controls the
initial behavior of G for h > 0, positive curvature leading
to an initial increase in G and vice versa. As noted before, G

behaves quite differently from the bulk G(λ), which is always
a monotonically increasing function of λ.

We may also examine the discontinuity in ∂G/∂λ at λ = h

for λ � σ/2. After differentiation of Eq. (21), we find that

�

[
∂G

∂λ

]
λ=h

=
∫ 2h

0 ρ(z)dz

4ρh2(1 − π
∫ 2h

0 ρ(z)z[2h − z]dz)

− ρ(0)

2ρh(1 − π
∫ 2h

0 ρ(z)z[2h − z]dz)

= 1

2h
[G(h,h) − G(h,π,h)], λ � σ/2, (25)

where the second line follows from various relations provided
in Refs. [21,22]. Comparison of Eqs. (16) and (25) reveals
that ∂G(λ,θ,h)/∂λ is continuous at λ = h, so that the integral
term in Eq. (16) vanishes, provided that λ � σ/2. Last, since
G � p/ρkT [20] and G(h,π,h) � p/ρkT [21,22] [where
we note that ρ(0)/ρ = p/kT and the denominator in the
expression for G(h,π,h) is less than unity], this discontinuity
in ∂G/∂λ is negative. For λ > σ/2, we cannot definitively say
that ∂G(λ,h,θ )/∂λ is continuous at λ = h and, consequently,
the discontinuity in ∂G/∂λ could be positive. For further
discussion, see Appendix B of Ref. [45].

Additional exact conditions on G can be obtained by
considering the behavior of G at λ = σ/2. Using Eq. (18),
examination of the exact form of G for λ = σ/2 − ε and
λ = σ/2 + ε, with ε → 0, indicates that G is continuous
up to the first derivative with respect to λ at λ = σ/2, as
was the case previously [20]. This is not the case, though,
when h = σ/2. Here, λ = σ/2 coincides with λ = h, so that

Eq. (25) must apply and only G itself is continuous. A
condition on the second derivative of G can also be obtained,
though, which proves more difficult to apply. In Eq. (20)
we expect 2 to supply a divergent third derivative of F2

with respect to λ as λ → σ/2+ as noted previously [22],
implying that ∂2G/∂λ2 → −∞ as λ → σ/2+ for h > 0. For
h = σ/2, additional finite terms would appear upon further
differentiation of Eq. (16), but the behavior of F2 still suggests
that the divergence of ∂2G/∂λ2 to −∞ should persist. These
conditions complete the set of conditions on G that may be
derived using solely statistical geometric arguments. Like all
previous versions of SPT, we now appeal to macroscopic
thermodynamics to provide additional information about G.

C. Conditions on G(λ,h) for λ > σ/2

In Ref. [20], three exact conditions on G for λ > σ/2 were
identified for h � 0. An additional exact condition was avail-
able for h = 0 only, necessitating a semiempirical condition
relating the G interpolation for h < 0 to the hemispherical
(h = 0) case. An aforementioned exact condition related to
γ∞ was derived later [22], becoming the fifth exact condition
of I-SPT for h � 0. The net result is that different sets of
conditions on G become available for different values of h,
which is again the case for h > 0.

1. Exact conditions

The connection between SPT and macroscopic thermody-
namics provides several exact conditions on G. For finite h

and large enough values of λ, the cavity eventually intersects
the z = 0 plane. As shown in Ref. [29], the reversible work of
growing a cavity that intersects a planar wall is given by

W = pV (λ,h) − γ∞Awall(λ,h) + γλA(λ,h) + τλL(λ,h),

(26)

where V (λ,h) = π (2λ3 + 3λ2h − h3)/3 is the volume of the
cavity that develops beyond the wall (z = 0 plane), Awall =
π (λ2 − h2) is that portion of the wall covered by the cavity, γλ

is the surface tension of the cavity of radius λ when it is placed
far away from the wall (and the dividing surface is coincident
with the surface of the cavity), τλ is the line tension of the
cavity, and L(λ,h) = 2π (λ2 − h2)1/2 is the linear interface
generated by the intersection of the cavity and the wall. Using
either Eq. (9) or Eq. (17), differentiation of Eq. (26) once with
respect to λ shows that [20]

lim
λ→∞

G(λ,h) = p

ρkT
, (27)

which requires that the average normal stress on the cavity
surface equal the system pressure as λ → ∞. Differentiating
W a second time reveals that [22]

lim
λ→∞

[
λ2 ∂G(λ,h)

∂λ

]
= − γ∞

ρkT
. (28)

When a Laurent series is introduced to interpolate G for
macroscopic radii, Eqs. (27) and (28) are used to determine
the first two interpolation coefficients, respectively. Another
condition that follows from Eq. (26) is the requirement that W

not contain terms proportional to ln λ as λ → ∞ [48], which
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can be satisfied through an appropriate choice of the I-SPT
interpolation function. Last, Widom’s inverse potential distri-
bution theorem (or, equivalently, the invariance of the chemical
potential in an equilibrium nonuniform fluid) requires [49,50]

ρ(r1)

ρ(r2)
= exp

[
W (r2) − W (r1)

kT

]
, (29)

where ρ(ri) is the local density of HS at position ri and W (ri)
is the reversible work of inserting a HS at that same location.
Application of the above to the nonuniform density that
develops near the wall (noting again that λ = σ is equivalent
to another HS solvent particle), we conclude that

exp

[
μex − W (σ,h)

kT

]
= ρ(h)

ρ
, (30)

where μex is the excess chemical potential of the HS fluid, i.e.,
the work of inserting a HS within the bulk fluid far away from
the wall. The above equation constrains the integral of G up
to λ = σ [through Eq. (12)] as opposed to restricting G itself.

2. Pseudoexact conditions

While several exact conditions on G can be invoked,
our initial attempts to describe G revealed that additional
conditions were needed to generate interpolations that were
reliable over large ranges of both λ and h. Another condition,
for example, follows from noting that the reversible work of
inserting a cavity is path independent. Consequently, one may
write the work of growing a cavity in terms of either F (λ,h) or
G(λ,h). So, for a cavity of radius λ = h located at h, W (h,h)
is formally equal to

W (h,h) = 4πkT

∫ h

0
G(r,h)r2dr = 2πkT h2

∫ h

−h

F (λ,h)dz.

(31)

Of course, F (λ,h) is approximated over most of its domain,
so the application of Eq. (31) is an approximate condition
that becomes dependent on the accuracy of the interpolations
describing F (λ,h). Nevertheless, the predictions of W (λ,h)
obtained from F (λ,h) were shown to be quite accurate (in
comparison with W obtained via molecular simulation), so
this condition may be considered as pseudoexact. This relation
is only useful for h > σ/2, though, since W (h,h) is known
exactly for smaller h and is equal to zero for h < 0. [As a
note of interest, we point out that this condition makes an
interpolation of G for h > 0 dependent on the interpolation for
G at h = 0 since W (λ,h = 0) is itself a condition on F [22].]

Another condition may be again obtained from Eq. (26).
Given that γλ can be expanded in inverse powers of λ about
γ∞ as follows [29],

γλ = γ∞

(
1 − 2δ∞

λ
+ · · ·

)
, (32)

in which δ∞ is the Tolman length [51], one finds that

lim
λ→∞

[
λ2

2

∂

∂λ

(
λ2 ∂G(λ,h)

∂λ

)]
= τ∞ − 2γ∞δ∞, (33)

where τ∞ is the limiting value of the line tension as λ → ∞.
If a Laurent series is used to interpolate G, the above can be
used to determine one of the interpolation coefficients. Both

γ∞ and δ∞ can be determined from an accurate version of
bulk SPT, as was developed, for example, in Ref. [42], and
can be considered as (almost) exactly known. τ∞, however,
has not been previously obtained for the HS fluid, the form
of which and its relation to other surface thermodynamic
properties having only been properly derived in Ref. [29].
One complication that arises concerning the use of Eq. (33)
is that τ∞ could be a function of h, and so it is not known
in general. In fact, one would normally invoke Eq. (33) to
predict the values of τ∞ from some version of I-SPT, rather
than impose Eq. (33) as a condition within I-SPT. But, various
physical and geometric arguments put forth in Ref. [29]
strongly suggest (though do not prove) that τ∞ is independent
of h. For finite values of h, all cavities intersecting the wall
eventually approach a hemispherical cavity as λ → ∞. Since
an accurate expression for G already exists for h = 0, we
therefore compute τ∞ for the hemispherical case [evaluating
W for the hemisphere and applying Eq. (26) as λ → ∞] and
then assume that this τ∞ applies to all other values of h. The
accuracy of the results, including the need to impose Eq. (33)
as another condition, provide an indirect test of the assumption
that τ∞ is not a function of h.

3. An approximate condition

The final condition that we introduce is an approximation
of the value of G(h,h) for h > σ/2. [G(h,h) is known exactly
for h � σ/2.] Some approximate knowledge of G(h,h) was
found to greatly assist in fitting G(λ,h) for any h larger than
about σ . Among the conditions discussed above, the only
one relevant to λ > σ while not in the limit of λ → ∞ is
Eq. (31), which constrains the integral of G(λ,h) up to λ = h

rather than the value itself. Consequently, an interpolation of G

that does not include some information about G(h,h) directly
could produce an unreasonable value of G(h,h), impacting the
calculation of W for λ > h. [We observed, for example, that
interpolations without a condition on G(h,h) usually predicted
values of G(h,h) well below those found from simulation.
In turn, predictions of W for λ > h fell unacceptably below
simulation results.] To generate a condition for G(h,h), we
follow Ref. [40], in which the potential distribution theorem
[49,50] is again utilized to relate the local density of HS centers
at a given θ on the cavity surface to the reversible work of
inserting a HS particle or an equivalent σ -sized cavity. Using
Eq. (29), one can show that

G(h,h) = p

2ρkT

∫ π

0
exp

[
Wσ (rref ) − Wσ (λ,θ,h)

kT

]
sinθdθ,

(34)

where Wσ (λ,θ,h) is the work of inserting a HS or growing a
cavity of radius σ at the specified position and Wσ (rref ) is the
work of inserting a HS at a location far away from the λ-sized
cavity but whose center resides at the z = 0 plane (where
the local density of HS is p/kT ). Equation (34) is formally
exact, although Wσ is not rigorously known in general. Thus an
approximate expression for Wσ must be used. We compute the
various components of Wσ using a “surface thermodynamic”
approximation, which is discussed in detail in the Appendix.
Our present approximation is similar in inspiration to the
“ideal gas approximation” invoked in Ref. [40] to provide
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a sixth condition for bulk SPT, but is higher order in that it
incorporates more accurate thermodynamic information about
the cavity. The resultant approximation for G(h,h) is quite
accurate up to ρσ 3 = 0.65, though it produces poor predictions
thereafter. Numerical results for our approximated G(h,h) are
discussed later in the paper.

D. Summary of conditions on G(λ,h)

In all, ten conditions (most exact) are employed to constrain
the form of G(λ,h) for λ greater than its upper exact limit. As
a summary, the conditions on G(λ,h) used by I-SPT are as
follows:

(1) G(λ,h) is continuous at its exact limit, λ =√
h2 + (σ/2)2 for h < 0 and λ = σ/2 for h � 0;

(2) ∂G/∂λ is continuous at its exact limit, except for
h = σ/2;

(3) ∂G/∂λ at λ = σ/2+ is known exactly for h = σ/2;
(4) G(λ,h) is continuous at λ = h;
(5) G(h,h) is computed approximately via Eq. (34);
(6) exp{[μex − W (σ,h)]/kT } = ρ(h)/ρ;
(7) W (h,h) = 2πρkT h2

∫ h

−h
F (h,z)dz;

(8) limλ→∞ G(λ,h) = p/ρkT ;
(9) limλ→∞[λ2∂G(λ,h)/∂λ] = −γ∞/ρkT ;

(10) limλ→∞{(λ2/2)∂[λ2∂G(λ,h)]/∂λ} = (τ∞ − 2γ∞δ∞/

ρkT .

E. Interpolation functions for G(λ,h)

As in previous forms of SPT and I-SPT, we require an
interpolation function to represent G for values of λ outside the
exact domain. The form of this interpolation for λ � h is again
suggested by the surface thermodynamics of macroscopic
cavities. Surface thermodynamics does not, however, state
anything definitive about the form of G for σ/2 � λ � h

(which is only relevant for h > 0). In addition, since G has
a discontinuous first derivative at λ = h, an approximate
representation of G should be based on the combination of
two separate functions, one for σ/2 � λ � h and the other for
λ � h, both of which become equal at λ = h. So while the
interpolation function for λ � h is more or less dictated by
surface thermodynamics, we are free to select an appropriate
interpolation for λ � h.

In Ref. [29], the limiting form of dW for macroscopic
cavities (λ → ∞) that intersect the wall was shown to be
given by the following expansion:

dW = 2πpλ(λ + h)dλ + πγ∞(2λ + h)dλ + φ1(ρ,h)dλ

+ φ2(ρ,h)

λ2
dλ + · · · , (35)

where φi(ρ,h) is a function of ρ and h only. The above
indicates that G must expand as

G(λ,h) = ψo(ρ) + ψ1(ρ)
(2λ + h)

λ(λ + h)
+ ψ2(ρ,h)

λ(λ + h)

+ ψ4(ρ,h)

λ3(λ + h)
+ · · · (36)

in which only the coefficients ψo and ψ1 are functions of ρ,
while all higher-order coefficients are also functions of h. A
more convenient expansion of G can be obtained from Eq. (36)

(which appears in Ref. [45]) after some straightforward
algebra,

G(λ,h) = β0(ρ) + β1(ρ)

λ
+ β2(ρ)

λ(λ + h)
+ β4(ρ,h)

λ3(λ + h)

+ β5(ρ,h)

λ4(λ + h)
+ · · · , (37)

where after invoking some of the previously derived limiting
conditions on G we find that

β0(ρ) = ψo(ρ) = p

ρkT
,

β1(ρ) = 2ψ1(ρ) = γ∞
ρkT

,

(38)

β2(ρ) = ψ2(ρ,h) − hψ1(ρ) = τ∞ − 2γ∞δ∞
ρkT

,

βi(ρ,h) = ψi(ρ,h), i � 4.

β2(ρ) is listed as only being a function of ρ, since, as noted
earlier, arguments provided in Ref. [29] strongly suggest that
τ∞ is independent of h. Again no term containing λ2(λ + h)
appears in the denominator, which would lead to an unphysical
logarithmic contribution to W as λ → ∞ [48]. Equation (37)
differs slightly from the interpolation in Ref. [20], but is the
proper limiting form of G. (Ref. [20] did not rely upon the
correct expansion of dW that now appears in Ref. [29].)
Strictly speaking, Eq. (37) is only valid in the large cavity
limit, but, like bulk SPT, we again apply this interpolation
function to microscopic cavity sizes for λ � h.

The surface thermodynamic analysis that leads to Eq. (37)
does not provide any definite suggestions concerning the form
of G for λ � h. In fact, the properties of these completely
spherical cavities are not in general well understood since
they are neither “bulk” cavities in a uniform fluid nor do
they intersect the planar wall at z = 0. Hence a Laurent series
interpolation for G does not necessarily apply for λ � h. We
note, however, that for values of h far from the wall, where
the HS fluid density profile is uniform and equal to ρ, W (λ,h)
should be identical to the bulk SPT value of W (λ), at least
until λ is large enough such that some portion of the HS fluid
surrounding the cavity begins to “feel” the presence of the wall
at z = 0. In practice, h does not need to be exceedingly large
before a small enough cavity views its immediate environment
as being that of a bulk system. For example, even for a bulk
density of ρσ 3 = 0.914, the HS density profile is uniform
about 7σ away from the wall. At such a high density and h

position, even small cavities could be well described by the
bulk SPT relation.

Outside of requiring that G for λ � h mimic to some
extent bulk SPT properties for large enough values of h, this
condition does not provide a generally valid form of G, since
bulk behavior can no longer be invoked for small h or for
values of λ approaching h (from below) where one side of the
cavity is close enough to the hard wall. In the absence of a
suggested form of the interpolation, we nevertheless propose
that a simple Laurent series still be used to approximate G for
σ/2 < λ � h. For one, a Laurent series ensures that W (λ,h)
is composed of terms proportional to λ3, λ2, etc., that are
associated with volume and surface-area contributions to W .
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Additionally, this matches the similar known form of W for
the growth of bulk cavities at large h. Also, the use of just one
additional function, instead of multiple functions within the
same range, greatly simplifies the entire interpolation scheme
required by I-SPT. Therefore we choose to interpolate G for
σ/2 < λ � h by

G(λ,h) = ξ0(ρ,h) + ξ1(ρ,h)

λ
+ ξ2(ρ,h)

λ2
+ ξ4(ρ,h)

λ4
+ · · · ,

(39)

where all the series coefficients ξi are floating parameters
dependent on both ρ and h. This dependence on h follows
from the various conditions on G, which are functions of ρ and
h and so are not necessarily equal to the analogous coefficients
of the bulk G(λ). Note that Eq. (39) does not include a term
proportional to λ−3, which would yield a logarithmic term in
W . The suppression of a logarithmic term in W is not strictly
required since it would not be dependent on λ for λ > h. But,
to ensure that G(λ,h) becomes identical to the bulk fluid G(λ)
for h � 0, our chosen interpolation of G for σ/2 < λ � h

does not contain such a term.
Assembling the interpolation function(s) for a particular h

requires some effort since the conditions listed in Sec. III D
are not applicable to every value of h or to the subdomains
of λ. Table I contains a summary that lists the ranges of h,
each of which is given a ‘Region’ number, and the set of
conditions applicable to that region. Additionally, the table lists
which conditions apply to each subdomain of λ, σ/2 � λ � h

and λ � h (for h > 0). The number of conditions applicable
to each subdomain of λ determines the number of fitting
conditions available for the interpolation for each subdomain
[Eqs. (37) and (39)]. As an example, the table indicates that
for h = 3σ/4 (Region V), eight conditions are available, from
which we compute (ξ0,ξ1,ξ2,ξ4) and (β0,β1,β2,β4,β5).

IV. RESULTS

Using the above mentioned interpolations of and conditions
on G, values of G and, thereby, W for a variety of HS
bulk fluid densities can be computed and compared to results

obtained from molecular simulation. As discussed previously,
the determination of G requires information about ρ(z),
either by an approximation or direct simulation measure. ρ(z)
may be generated in a number of ways, including direct
measurement by molecular simulation [20,22], theoretical
approximations [52–55], and statistical mechanical density
functional theory using a nonlocal HS functional [56–58].
Here, we calculated ρ(z) using Monte Carlo simulation, as was
done in the previous I-SPT papers [20–22]. G was determined
within the exact domain via a straightforward numerical
integration of the simulation-generated ρ(z) according to
Eq. (21). HS thermodynamic properties (e.g., p, γ∞, γλ, and
δ∞ as functions of the bulk density ρ) were computed via
the thermodynamically consistent version of SPT that invokes
the Carnahan-Starling-based [44] version of SPT (CS-SPTM )
[41,42]. τ∞ was determined from Eq. (26) and various relations
contained within Ref. [29], which requires input from I-SPT
for a hemisphere (h = 0) as well as these same bulk spherical
cavity results again obtained with CS-SPTM .

All relevant simulation data were generated via the Monte
Carlo (MC) method within the isothermal-isobaric ensemble
(constant N,p,T , where N is the number of particles) with
hard walls in one direction (arbitrarily designated as the z

direction) and periodic boundary conditions in the other two
directions. Both ρ(z) and W (λ,h) were determined using the
simulation methods described in Refs. [20] and [22]. W (λ,h)
profiles were determined for h = 0.25σ , 0.5σ , 0.75σ , σ ,
1.25σ , and 3σ . For comparison at certain h and ρσ 3, G(λ,h)
was computed from simulation measurements of W . To obtain
G(λ0,h) from W , we fit W in the vicinity of λ0 to a polynomial
and entered ∂W/∂λ from the regression function into Eq. (17)
(using W = −kT ln P0).

A. Approximation of G(h,h)

In order to validate the surface thermodynamic approxi-
mation that was invoked in Eq. (34) (also see the Appendix)
when generating another condition on G, we also determined
the values of G(h,h) from simulation for different bulk fluid
densities. G(h,h) was computed indirectly from simulation
in the following manner. First, W (λ,h), which was directly

TABLE I. Summary of the interpolation scheme for G(λ,h) for all possible h domains. Column 2 connects the h domain to the ‘region
name’ used in the text. Columns 3, 4, and 5 give the number of conditions for each h domain and lists those conditions by their identification
numbers used in Sec. III D.

h domain Region name Number of available conditions Interpolation conditions for Interpolation conditions for

λ �
√

h2 + (σ/2)2

h < 0 I 5 1,a 2,a 8, 9, 10

σ/2 � λ � h λ � h

h = 0b II 5 1, 2, 6, 8, 9
0 � h < σ/2 III 6 1, 2, 6, 8, 9, 10
h = σ/2 IV 6 1, 3, 6, 8, 9, 10
σ/2 < h < σ V 8c 1, 2, 5, 7 5, 6, 8, 9, 10
h = σ VI 7c 1, 2, 5, 6 5, 8, 9, 10
h > σ VII 8c 1, 2, 5, 6, 7 5, 8, 9, 10

aFor h < 0, conditions 1 and 2 are the continuity of G and ∂G/∂λ at λ = √
h2 + (σ/2)2, respectively.

bThe interpolation for G for h = 0 provides τ∞ and hence condition 10 is satisfied automatically.
cSince condition 5 appears in both interpolations, the count in columns 3 and 4 does not add up to the number in column 2.
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TABLE II. Values of G(h,h) computed by MC simulation (marked “Sim.”) and the surface thermodynamic approximation in Eq. (34)
(marked “I-SPT”) for several densities below the freezing transition and h where the approximation is used to interpolate G(λ,h). The
value of G(∞,h) = p/ρkT is also provided in the last row. G(h,h) should not exceed p/ρkT , and we find that the surface thermodynamic
approximation does predict G(h,h) > p/ρkT for ρσ 3 > 0.74.

ρσ 3 = 0.3 ρσ 3 = 0.5 ρσ 3 = 0.6 ρσ 3 = 0.7 ρσ 3 = 0.85

h/σ Sim. I-SPT Sim. I-SPT Sim. I-SPT Sim. I-SPT Sim. I-SPT

0.75 1.583 1.588 2.007 2.125 2.432 2.532 2.766 3.502 3.392 16.635
1 1.682 1.675 2.486 2.368 2.853 2.929 3.466 4.199 4.318 17.602
1.25 1.735 1.729 2.609 2.524 3.289 3.177 3.803 4.577 5.064 16.853
3 1.874 1.863 2.956 2.926 3.790 3.792 5.308 12.741

p

ρkT
1.967 3.262 4.283 5.710 9.099

calculated from the simulation, was fit to a third-order
polynomial over the domain h − 0.1σ < λ < h + 0.1σ . Then,
G was determined by taking the derivative of the resulting fit
of W with respect to λ. Values of G(h,h) for five bulk densities
and a few representative values of h are provided in Table II.
[Note that G(λ,h) is continuous at λ = h, so that W and its
first derivative are also continuous at this same point. Thus W

can be fit to a completely smooth function across λ = h if only
information about G(h,h) is required. This approach cannot,
of course, yield information about the apparent discontinuity
in the first derivative of G at λ = h.]

The approximation for G(h,h) is quite accurate for the
three lowest densities considered, differing from the simulation
results by no more than 6%. Common among these three lowest
densities is that the approximation overpredicts G(h,h) for
small h (particularly h < σ ), though it is quite close to the
simulation values for larger h. At h = 3σ , the approximation
for G(h,h) is within 1% of the simulation value for ρσ 3 = 0.3,
0.5, and 0.6. That our approximation becomes more accurate
as h increases is unsurprising, as the approximation used in
Eq. (34) will automatically yield G(h,h) = p/ρkT in the limit
of h → ∞ (see the Appendix), which is of course identical to
the limiting value of G(λ,h) itself.

For the largest densities, ρσ 3 = 0.7 and 0.85, the approxi-
mation, however, breaks down quite suddenly, overpredicting
G(h,h) for all values of h while incorrectly predicting that
G(h,h) > p/ρkT for ρσ 3 = 0.85 (while there is no rigorous
proof requiring that G always remain less than p/ρkT , surface
thermodynamics strongly suggests that for large cavities G

should approach p/ρkT from below; in addition, simulation
has so far only shown that G � p/ρkT ). A more detailed
analysis (not shown here) reveals that the approximation yields
G(h,h) > p/ρkT for ρσ 3 > 0.74, which provides a strict
upper limiting density on the validity of the approximation. In
practice, though, the approximation begins to predict G(h,h)
unreliably for ρσ 3 � 0.65. For smaller ρ, the approximation
for G(h,h) is quite reliable and so can be used for the
computation of W via I-SPT. Note that G(h,h) is known
exactly for h � σ/2, so accurate results are obtained for all
HS fluid densities at these values of h.

B. Comparison of G(λ,h) and W (λ,h) predictions to
simulation for h > 0

To provide a basis for comparison and for identifying
interesting features in G(λ,h) at h > 0, Figs. 2 and 3 plot

G(λ,h → ∞) and G(λ,h = 0), respectively, for reduced den-
sities between 0.2 and 0.7, and Fig. 4 compares W (λ,h = 0)
for ρσ 3 = 0.3, 0.5, and 0.6 obtained from both I-SPT and
MC simulations. Similar plots have already been extensively
discussed [20], but we again highlight the important aspects
of G(λ,h = 0): it has an initial value of p/ρkT , immediately
decreases to its minimum value at λ < σ/2, and then increases
asymptotically toward p/ρkT as λ → ∞.

We begin our examination of I-SPT predictions with a
comparison of simulation and theoretical results for h =
0.25σ , which utilizes the interpolation for Region III. Figure 5
contains plots of G(λ,0.25σ ) for reduced densities between
0.2 and 0.7, in which G is exactly known for λ � σ/2. The
most obvious feature of the plot is the discontinuous slope of
G at λ = h = 0.25σ , which becomes more noticeable as ρ

increases. The change in slope at λ = h for this value of h

is always negative, which agrees with the prediction from the
exact analysis of G(λ,h). [Furthermore, this result implies
that G(h,π,h) > G(h,h), verifying the intuitive arguments
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FIG. 2. Plot of G(λ) (a cavity in a bulk fluid, or h → ∞) for
reduced densities (ρσ 3) between 0.2 and 0.7. The numeric label
above each line indicates the reduced density of the plotted line.
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FIG. 3. Plot of G(λ,h) for h = 0 (a hemispherical cavity), for
reduced densities (ρσ 3) between 0.2 and 0.7. The numeric label
above each line indicates the reduced density of the plotted G(λ,h).
We note in particular that the initial value of G(λ,h) is p/ρkT , as is
the value of G(λ,h) as λ → ∞.

presented earlier.] We also observe that G(0,0.25σ ) is much
less than p/ρkT , as anticipated by the exact analysis.
Yet, G(0,0.25σ ) > 1 in all cases, a required result since
ρ(0.25σ ) > ρ for the density profiles associated with these
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FIG. 4. Work of cavity insertion, W (λ,h)/kT , for h = 0 (a
hemispherical cavity), plotted for ρσ 3 = 0.3, 0.5, and 0.6. The solid
lines are theoretical predictions from I-SPT and the filled circles are
calculations from MC simulation. Numeric labels above each data set
indicate the reduced density.
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FIG. 5. Plot of G(λ,h) for h = 0.25σ , for reduced densities (ρσ 3)
between 0.2 and 0.7. The numeric label above each line indicates the
reduced density of the plotted line.

ρ [see Eq. (22)]. The reduction in G(0,0.25σ ) compared
to the hemispherical case is representative of the decrease
in ρ(z) between z = 0 and z = 0.25σ . From λ = 0 to h,
G increases monotonically. Yet, the discontinuity in ∂G/∂λ

at λ = h is sufficiently negative to yield a sign change in
the slope so that a sudden and short-ranged decrease in G

occurs before it resumes a monotonic increase. The decrease
in G is relatively small in all cases, with, for example, an
absolute total decrease of only 0.013 for ρσ 3 = 0.7. After the
discontinuity, the asymptotic increase in G is very similar to
that of the hemispherical case, effectively reaching the limiting
value of p/ρkT by λ = 5σ . The similarity between G at any
h and the hemispherical G interpolation at large cavities is
not surprising, since the first two terms in the corresponding
interpolations are identical (deviations appear at the term
proportional to β2 and higher).

Figure 6 contains predictions of W (λ,h) for h = 0.25σ at
ρσ 3 = 0.3, 0.5, and 0.6, obtained both from I-SPT and MC
simulations. On the scale of the plot, there is no discernible
difference between these two sets of results, confirming that
G is well represented by our chosen interpolation scheme.
For ρσ 3 = 0.3, the I-SPT values of W differ from simulation
values by no more than 0.31kT up to λ = 3σ . Between
λ = σ/2 and 3σ , the relative difference is typically less than
1%, reaching 3% for only a small range of cavity radii. A
similar pattern is observed for ρσ 3 = 0.5 and 0.6, where
the absolute error is less than 0.2kT for ρσ 3 = 0.5 and less
than kT for ρσ 3 = 0.6. In relative terms, these differences
are less than 2.5%. The values of W for ρσ 3 = 0.5 are
particularly accurate, falling within 0.5% of the simulation
points for 2σ < λ < 3σ . For these three densities, the errors
are small enough to be considered statistically insignificant,
given that estimates of the standard deviations of the values
of W computed from simulation are around 1.5%–2%. Based
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FIG. 6. Work of cavity insertion, W (λ,h)/kT , for h = 0.25σ,

plotted for ρσ 3 = 0.3, 0.5, and 0.6. The solid lines are theoretical
predictions from I-SPT and the filled circles are calculations from
MC simulation.

on the rapid convergence of G to its asymptotic value, we
expect the accuracy of W to continue for larger λ, and
any error should continue to decrease relative to simulation.
Comparison with the hemispherical work values W (λ) also
indicates that W (λ,0.25σ ) usually exceeds W (λ,0) and is
always larger in the limit of λ → ∞, a consequence of the
extra volume the cavity possesses when centered at h > 0.
For ρσ 3 = 0.6, W (λ,0) is larger than W (λ,0.25σ ) for very
small radii (<0.2σ ), which follows from the sharp reduction
in G around λ = 0 relative to the hemisphere that cannot be
overcome at these radii by the larger cavity volume.

The examination of the I-SPT predictions becomes more
interesting for larger h, where the conditions at λ = h are
now required. Figure 7 contains G(λ,h) plotted for h = 0.75σ

(Region V). Much of the discussion regarding the qualitative
structure of G for h = 0.25σ applies verbatim to h = 0.75σ .
The most noticeable new feature in G is the sudden change
in shape at λ = h for ρσ 3 = 0.7, where the slope decreases
abruptly, though stays (barely) positive. Based on Table II and
the associated discussion, however, this is an artifact of the
condition on G(h,h), which is overpredicted at this higher
density. Consequently, we surmise that the proper shape of G

for ρσ 3 = 0.7 is more like the other densities in the plot,
and that we should not consider the predicted G (and, in
turn, W ) to be especially accurate for this density. A more
detailed examination of the discontinuous change in the slope
at λ = h also reveals an interesting trend as ρ increases.
The discontinuous change in the value of the slope at λ = h

is negative for ρσ 3 < 0.4, is very nearly zero for 0.4, and
becomes positive for ρσ 3 = 0.5 and 0.6, before returning to
a negative slope change for ρσ 3 = 0.7. Since G(h,h) was
provided by an approximation, it is questionable whether
the observed trend in �(∂G/∂λ)λ=h, specifically the positive
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FIG. 7. (Color online) Plot of G(λ,h) for h = 0.75σ , for reduced
densities (ρσ 3) between 0.2 and 0.7. The numeric label above each
line indicates the reduced density of the plotted line. Solid lines
are G from exact and interpolated calculations. Dashed lines are G

over σ/2 < λ < 3σ for ρσ 3 = 0.6 and 0.7 estimated from simulation
measurements of W (λ,h) (shown in Fig. 8 for ρσ 3 = 0.6).

discontinuity in the slope of G is reflective of the true behavior
in G. For comparison, Fig. 5 also includes simulation estimates
of G at ρσ 3 = 0.6 and 0.7. Though it is difficult to discern in
the figure, close examination of the simulation results at both
densities indicates that �(∂G/∂λ)λ=h > 0. These simulation
results along with others not shown confirm the idea that, in
light of Eq. (16), the discontinuity is not solely determined by
[G(h,h) − G(h,π,h)]/2h (which should always be negative)
and should still depend upon the integrals over ∂G/∂λ at both
λ = h− and λ = h+.

As shown in Fig. 8, the I-SPT calculations and simulation
results for W at h = 0.75σ are again in good agreement at large
cavity radii, with no significant differences for λ � 3σ . At
λ = 3σ , the two differ by less than 1% at all three of the chosen
densities. For σ/2 < λ � σ , however, the differences become
greater. At ρσ 3 = 0.3, the relative error is minor, remaining
below 1%. However, for ρσ 3 = 0.5 and 0.6 the relative error
exceeds a 2% and 7% overprediction, respectively (in absolute
terms, the error is always less than 0.12kT , but the small
value of W amplifies the relative error for these cavity radii).
Based on the results presented in Table II, most of the error is
probably due to the slight overprediction of G(h,h), with some
additional error arising from the chosen interpolation scheme.
Nevertheless, the simple Laurent series approximation of G

between λ = σ/2 and h is still quite accurate. For λ > h, the
relative error remains below 1.5% for both ρσ 3 = 0.3 and
0.5. For ρσ 3 = 0.6, however, the error approaches 7% in the
vicinity of λ = h. Examination of the fitting data indicates
that this error arrives via the condition on W (h,h) that was
derived from F (λ,h) [see Eq. (31)]. For λ = 0.75σ , F (λ,h)
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FIG. 8. Work of cavity insertion, W (λ,h)/kT , for h = 0.75σ,

plotted for ρσ 3 = 0.3, 0.5, and 0.6. The solid lines are theoretical
predictions from I-SPT and the filled circles are calculations from
MC simulation.

and hence W (h,h) becomes increasingly inaccurate as ρσ 3

increases [22].
The final case we consider is for h > σ . Since this region is

the largest of all regions, we present I-SPT data for two groups
of cavities, one centered at h = 1.25σ and another at h = 3σ .
Hence our discussion includes cavities centered fairly close
to the wall where ρ(z) is still oscillating for moderate and
high densities and those centered farther from the wall where
ρ(z) is effectively uniform except at the highest bulk densities.
Figures 9 and 10 contain plots of G(λ,h) for h = 1.25σ and
h = 3σ , respectively. For h = 1.25σ , G exhibits oscillations
after λ = σ/2 as it approaches its asymptotic limit, which
are more prominent at higher density. These oscillations are
much larger than those seen in Fig. 7. For comparison, Fig. 9
includes simulation estimates of G at ρσ 3 = 0.6 and 0.7. Both
simulation traces show oscillatory structure, but while the
interpolation is quite accurate at ρσ 3 = 0.6, the interpolated G

is exaggerated at ρσ 3 = 0.7. The reasons for this exaggerated
behavior are limitations and deficiencies in the interpolation
scheme that together give rise to the error. First, as discussed
in Sec. IV A, G(h,h) is overpredicted by the approximation in
condition 5 for ρσ 3 � 0.65. Second, the interpolation scheme
fixes the integral of G to λ = σ via condition 6 instead of the
value of G itself. Since G(h,h) is larger than it should be, G is
necessarily decreased in some regions such that the condition
on W (σ,h) is satisfied. This type of error in G, given the
present interpolation scheme and fitting conditions, should be
common for high density [as defined by the limitations in our
approximation of G(h,h)] and h in the vicinity of σ . For larger
h, the oscillation should become less prominent or nonexistent,
since the condition on W (σ,h) is further removed from the
approximated value of G(h,h). Accordingly and among all
the interpolation regions, we should expect predictions of G
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FIG. 9. (Color online) Plot of G(λ,h) for h = 1.25σ , for reduced
densities (ρσ 3) between 0.2 and 0.7. The numeric label above each
line indicates the reduced density of the plotted line. Solid lines
are G from exact and interpolated calculations. Dashed lines are G

over σ/2 < λ < 3σ for ρσ 3 = 0.6 and 0.7 estimated from simulation
measurements of W (λ,h) (shown in Fig. 11 for ρσ 3 = 0.6).

and, thereby, W to be least accurate for Regions V, VI, and
VII in the vicinity of λ = σ . Consistent with this reasoning,
we see in Fig. 10 that the oscillatory structure in G is not
present for h = 3σ . As expected, for this value of h, G

quickly approaches the bulk G(λ). For the higher densities, G

is smaller than G(λ) between λ = σ/2 and h, which is another
signature of a depletion effect [i.e., W (λ,h) < W (λ,h → ∞)].
Finally, the discontinuity in the slope at λ = h is becoming ever
smaller as h increases, being barely perceptible for h = 3σ .
The discontinuity is quite obvious for h = 1.25σ at ρσ 3 = 0.7,
but this discontinuity is likely exaggerated given the previous
discussion.

Comparison of W (λ,h) predicted by I-SPT to simulation
results for h = 1.25σ and 3σ yields many conclusions similar
to h = 0.75σ . Figures 11 and 12 contain W (λ,h) for the same
densities discussed previously, though we have computed the
results up to λ = 5σ for h = 3σ so as to examine results
for λ > h. For h = 1.25, all three densities exhibit only minor
differences between the theoretical and simulation results. The
error for ρσ 3 = 0.3 does not exceed 0.5kT , but the error
does creep up to nearly 2.2kT for ρσ 3 = 0.5 and 3kT for
ρσ 3 = 0.6. On a percentage basis, these correspond to less
than 1.6% error at λ = 3σ for all three densities. Thus as
the cavities become large, the I-SPT predictions are still well
within the error margins of simulation calculations. Between
λ = σ/2 and λ = 1.25σ , however, the percentage error is
somewhat larger, which follows from the discussion above
and is consistent with that observed for smaller values of h.
For all three densities shown, the error never exceeds 3.1% in
this domain of λ where the interpolation is known to be least
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FIG. 10. Plot of G(λ,h) for h = 3σ , for reduced densities (ρσ 3)
between 0.2 and 0.7. The numeric label above each line indicates the
reduced density of the plotted line.

accurate. It is reassuring to see that the error is smaller than
that for h = 0.75σ , from which we conclude that the simple
Laurent series interpolation utilized between λ = σ/2 and h

is becoming ever closer to the true form of G. The improving
accuracy is probably also obtained by the increasing accuracy
of the approximation for G(h,h). Results for h = 3σ are much
the same case, exhibiting only small differences between the
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FIG. 11. Work of cavity insertion, W (λ,h)/kT , for h = 1.25σ,

plotted for ρσ 3 = 0.3, 0.5, and 0.6. The solid lines are theoretical
predictions from I-SPT and the filled circles are calculations from
MC simulation.
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FIG. 12. Work of cavity insertion, W (λ,h)/kT , for h = 3σ,

plotted for ρσ 3 = 0.3, 0.5, and 0.6. The solid lines are theoretical
predictions from I-SPT and the filled circles are calculations from
MC simulation.

I-SPT predictions and simulation values of W . In fact, on
the scale of Fig. 12 the error is not appreciably larger than
that for h = 1.25σ . Examination of numerical results confirms
this observation. The results for ρσ 3 = 0.3 differ by less than
3% for all values of λ, exceeding 1% only between λ = σ/2
and h. For ρσ 3 = 0.5 the error is as much as 2% prior to
λ = h, but remains below 1.6% thereafter. Even in absolute
terms the errors for these densities is small, being less than
3.7kT in both cases. (This larger error is not of great concern
because W is on the order of 650kT , leading to a small relative
error.) At the reduced density 0.6, the error is seemingly larger,
becoming as large as 16kT at λ = 5σ , but the value of W is
about 1100kT , so the percentage error is only 1.5%. Even for
extremely large values of W , I-SPT is proving to be a robust
method of computing W , falling within the error margins of
simulation in the large cavity limit. The error does, however,
give reason for future improvements to I-SPT, perhaps by
modifications to the interpolation or fitting conditions. Given
the present understanding of I-SPT, the current results strive
to be as accurate as possible.

V. COMPARISON OF THE I-SPT G(λ,h) TO THE SPT G(λ):
DEPLETION EFFECTS

As follows from Widom’s inverse potential distribution
theorem [49,50], or Eq. (29), the local density of a hard-solute
sphere or its equivalent cavity at a particular point in the system
is related to the reversible work required to insert the cavity
at that point. The ratio of the local densities at two locations
is therefore determined by the exponential of the difference
in the works of insertion at these locations. This difference
in works of insertion is nothing more than a potential of
mean force defined between these two points, the derivative
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of which is related to the mean, or effective, force (based on
the ensemble average of all the solvent particles) required to
keep the solute fixed at a particular location. In the colloidal
literature, this potential of mean force is called a depletion
potential, which accounts for the additional (effective) forces
that arise between colloidal particles or between particles and
various surfaces [23,24,31,59,60].

A comparison of the relative shapes of G(λ,h) and bulk
G(λ) sheds light on the properties of the depletion potential
that develops between a cavity (or equivalent solute) and a
hard, structureless wall. In a sense, G(λ,h), as it compares
to G(λ), is a visual tool that helps in the understanding of
depletion effects in hard particle fluids. As noted above, a
depletion potential and its corresponding depletion force exist

when the free energy of a particle or other object at some
position relative to some inhomogeneity differs from the free
energy that particle or object would have in the absence of
the inhomogeneity (i.e., either a bulk fluid or a position in
the fluid very far from the inhomogeneity). For our system
of cavities near a hard wall, a depletion potential exists when
the W (λ,h) for a cavity differs from W (λ,h → ∞), where
W (λ,h → ∞) is equal to W (λ) for a cavity grown in a bulk
HS fluid at the same state point (i.e., bulk density) as the inho-
mogeneous fluid. As such, the depletion potential Us(λ,h) is
defined as

Us(λ,h) = W (λ,h) − W (λ,h → ∞), (40)

which, using I-SPT and SPT, may be expressed as

Us(λ,h) =
{∫ λ

0 ρkT
[
G(r,h) − G(r)

]
4πr2dr, λ � h,

W (|h|,h) − W (|h|,h → ∞) + ∫ λ

|h| ρkT
[
G(r,h)2π (r2 + rh) − G(r)4πr2

]
dr, λ > h.

(41)

[Note that Eq. (41) provides Us for all cavities, including those
that do not correspond to hard spheres with positive diameters.]
Since Us is an integral of an appropriate subtraction of G(λ)
from G(λ,h), any difference between these two functions
may signal a (likely) difference in the corresponding values
of W , and so a nonzero value of Us . We must point out,
however, that Us is not solely determined by the differences
in G(λ,h) and G(λ). Each W term in Eq. (40) has different
geometric terms in its integrand that are related to the surface
area or, equivalently, the differential volume of the cavity.
When determining W , G(r,h) is multiplied by 4πr2ρkT for
λ � h and 2π (r2 + rh)ρkT for λ > h, while G(r) is always
multiplied by 4πr2ρkT . Hence even if G(λ,h) and G(λ) were
identical over a given range of cavity radii, Us would not
necessarily be zero for λ > h due to possible differences in the
(full) volume of the cavity at h → ∞ and the (nonoverlapping
with the z = 0 plane) volume of the cavity at various values of
h. In fact, since our analysis already requires G(λ,h) = G(λ)
in the limit of λ → ∞, we should expect Us �= 0 at some large
λ > h by geometric arguments alone.

To better understand how the differences between G(λ,h)
to G(λ) may generate the corresponding depletion potential,
we plot G(λ,h) and W (λ,h) at ρσ 3 = 0.6 for h = 0, 0.25σ ,
0.5σ and h → ∞ in Figs. 13 and 14, respectively, and Figs. 15
and 16 for h = 0.75σ, 1.25σ , 3σ , and h → ∞. In both sets of
figures, W (λ,h) is plotted up to a value of λ after which quali-
tative trends do not change [e.g., W (λ,0) < W (λ,0.25σ ) <

W (λ,0.5σ ) < W (λ,h → ∞) for Fig. 14] unless otherwise
noted. For the following discussion, we focus our analysis
on cavities with radii less than λ = 1.25σ . (Note that for these
values of λ, the cavity is equivalent to a hard-sphere solute
when h � 0.5σ .)

At h = 0, the value of G(λ,h) is larger than G(λ) for all
λ. But since h = 0, the surface area (or differential volume)
of the overlapping cavity is much smaller over the entire
range of integration than that of the fully spherical cavity. The
interplay of these two effects yields W (λ,h = 0) > W (λ,h →

∞) for λ < 0.55σ and W (λ,h = 0) < W (λ,h → ∞) at larger
radii. Hence Us or the depletion potential, is negative for
λ > 0.55σ . (While Us < 0 is an “energetically” favorable
depletion potential, knowledge of just the sign of Us alone
is insufficient to determine whether the depletion force is
attractive or repulsive. Of course, with Us → 0 as h → ∞,
knowing that Us < 0 at a finite value of h implies that an
attractive force had to have developed at some value of h,
though not necessarily at the given h of interest. By the same
argument, Us > 0 requires that a repulsive depletion force
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FIG. 13. (Color online) Plot of G(λ,h) for h = 0, 0.25σ , 0.5σ

and h → ∞ at ρσ 3 = 0.6. Solid lines indicate G(λ,h), and the value
of h for each line is noted. G(λ,h → ∞), identical to G(λ), is plotted
with the dotted line.
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FIG. 14. (Color online) Plot of W (λ,h) for h = 0, 0.25σ , 0.5σ

and h → ∞ at ρσ 3 = 0.6. Solid lines indicate W (λ,h), and the value
of h for each line is noted. W (λ,h → ∞), identical to the bulk SPT
W (λ), is plotted with the dotted line.

arose at some h, which is the case for λ < 0.55σ . Note that for
these small cavities, h can become negative before the cavity
itself intersects the actual hard wall, located at h = −σ/2. As
these small cavities are moved such that their equivalent hard
sphere comes into contact with the wall, the depletion potential
is found to become negative.)
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FIG. 15. (Color online) Plot of G(λ,h) for h = 0.75σ, 1.25σ , 3σ ,
and h → ∞ at ρσ 3 = 0.6. Solid lines indicate G(λ,h), and the value
of h for each line is noted. G(λ,h → ∞), identical to G(λ), is plotted
with the dotted line.
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FIG. 16. (Color online) Plot of W (λ,h) for h = 0.75σ, 1.25σ ,
3σ , and h → ∞ at ρσ 3 = 0.6. Solid lines indicate W (λ,h), and the
value of h for each line is noted. W (λ,h → ∞), identical to the bulk
SPT W (λ), is only barely visible on the plot, as it nearly identical to
W (λ,h = 3σ ) for the plotted domain.

For h = 0.25σ , the trend is qualitatively identical, with
Us = 0 at λ = 0.88σ and Us < 0 thereafter. The persistence
of W (λ,h = 0.25σ ) > W (λ,h → ∞) to a higher value of λ

than at h = 0 is due to the larger surface area of the cavity for
a given λ when h = 0.25σ as compared to when h = 0. At
h = 0.5σ , the situation is more complex as W (λ,h = 0.5σ )
intersects W (λ,h → ∞) twice. For λ < 0.5σ , Us < 0 owing
to the smaller value of G(λ,0.5σ ) as compared to G(λ)
over this interval. For 0.5σ < λ < 1.17σ , W (λ,h = 0.5σ ) >

W (λ,h → ∞) or Us > 0 due to the much larger value of
G over this interval. Finally, for λ > 1.17σ , W (λ,h = 0.5σ )
again becomes less than W (λ,h → ∞), or Us < 0. Although
G(λ,0.5σ ) is still consistently larger than G(λ) for these radii,
the different geometric terms appearing in Eq. (41) lead to the
appearance of a negative depletion potential. Overall, we find
for h = 0.5σ that the depletion potential begins with a negative
value at λ = 0, becomes positive as the radius is increased,
only to become negative again as λ is further increased.

In Figs. 15 and 16, we return to cases that show a single
intersection of W (λ,h) and W (λ,h → ∞). At h = 0.75σ ,
the two work functions intersect at λ = 0.74σ , below which
W (λ,h = 0.75σ ) < W (λ,h → ∞). Us and the depletion po-
tential are therefore negative for λ < 0.74σ at h = 0.75σ .
This is entirely due to G(λ,0.75σ ) being smaller than G(λ)
over most of this interval. Thereafter, the surface area or
differential volume term is dominant and overcomes the
(positive) difference between G and G. For h = 1.25σ , the
trend is reversed in that W (λ,h = 1.25σ ) > W (λ,h → ∞) up
to their intersection point at λ = 0.85σ . This occurs despite
the oscillations in G(λ,1.25σ ) about G(λ). Thus Us is positive
up to 0.85σ and negative thereafter. For h = 3σ , there is no
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discernible difference between W (λ,h = 3σ ) and W (λ,h →
∞) up to λ = 0.625σ , which follows from the near equality
of G and G over the same interval. For 0.625σ < λ < σ ,
W (λ,h = 3σ ) > W (λ,h → ∞) or Us > 0. Afterwards (not
shown in the plot of W ), Us < 0 for σ < λ < 3σ and
Us < 0 for λ > 3σ . Hence the depletion potential Us is, with
increasing λ, first negative, then positive, again negative, and
again positive.

We can use the results above to assemble the depletion
potential profile of a particular λ for successive values of h.
For example, if we select λ = 1.25σ (which corresponds to
a hard sphere of diameter 1.5σ ), Us is negative for h = 0,
0.25σ , and 0.5σ , becomes positive for h = 0.75σ and 1.25σ ,
and becomes negative (with a small magnitude) for h = 3σ .
(Us eventually decays to zero at large enough h.) In turn,
as follows from the sign changes in Us , the depletion force,
or −∂Us/∂h, also changes sign at various h, exhibiting an
attractive region for small and large values of h and a repulsive
region at intermediate separations.

This section demonstrates a particular advantage of SPT in
describing the depletion potential (or depletion force). Some
other methods generate the depletion potential by determining
directly the equilibrium arrangement of hard-sphere particles
outside of a cavity. While the source of the depletion force
is seen via the local arrangement of particles, the physics
leading to the depletion potential are somewhat obscured (that
is how and why the arrangement of particles about the cavity
changes as the cavity radius is altered). SPT, on the other hand,
provides a description of depletion effects that already relies
upon those physical and geometric arguments that describe
how the average density of hard-sphere particles on the surface
of the cavity varies as the cavity center moves away from
the wall. As such, SPT more clearly demonstrates that the
transitions between attractive and repulsive depletion forces
are strongly influenced by the interplay between geometry and
the variations of the local density around the cavity.

VI. CONCLUSIONS

We have presented a fully generalized form of I-SPT
that can accurately predict up to moderate bulk densities the
reversible work of inserting a cavity of any radius located at
any distance from a hard wall. This version of I-SPT relies
upon a number of recently identified conditions, based again
on physical and geometric arguments, each of which provides
additional insights into the behavior of hard particle fluids
near planar surfaces as well as improving the accuracy of
earlier versions of I-SPT. Despite its overall success, deviations
from simulation results become apparent at bulk densities
exceeding ρσ 3 = 0.7. Such deviations are consequences of
the inherent difficulties in accurately approximating the central
I-SPT function G(λ,h) at the point where the cavity just
ceases to intersect the z = 0 plane, i.e., λ = h. Accurate
information about this location, or G(h,h), is a crucial
ingredient in the interpolation scheme needed to represent
G(λ,h) over those cavity sizes and positions where neither
exact relations nor thermodynamic arguments can be invoked
to describe the surface-averaged local density of hard particles
in contact with the cavity surface. While our introduced surface
thermodynamic formalism for approximating G(h,h) is quite

accurate at low to moderate bulk densities, improvements at
higher densities are certainly needed and will be the focus of
future work in I-SPT.

As noted earlier, the further development of I-SPT was
not the only purpose of our current work. With an improved
version of I-SPT now available, and in particular a version that
can describe all cavities at any distance from the hard wall, we
can now employ I-SPT to study the behavior of the line tension
of cavities that intersect a planar surface. Recently, the proper
boundary thermodynamic relations needed to determine the
line tension of hard particle fluids were derived [29], and
the generalized version of I-SPT provided here will now
provide the required inputs needed to estimate this important
thermodynamic property.

In addition, I-SPT relations were used to predict the
depletion potential and depletion force between a hard-sphere
solute and a hard wall. As we hoped to have demonstrated,
I-SPT is well suited to studying depletion interactions, and
provides interesting physical and geometric insights into the
origin of depletion effects. Specifically, the interplay between
G(λ,h) and the bulk SPT G(λ), which is influenced by the
variations in the local density around each cavity, as well as the
differences between the differential volumes of the intersecting
cavity and the cavity growing far away from the wall, was
shown to give rise to the oscillatory nature (attractive and
repulsive) of depletion interactions. The accuracy of these
predicted depletion potentials, however, needs to be more
fully tested. A detailed comparison with depletion interactions
determined via molecular simulation is certainly required.

Finally, I-SPT has so far been specifically tailored to
describe hard particle fluids confined by hard, structureless
walls. The methods presented here are nevertheless readily
extendable to nonplanar geometries, such as curved surfaces
or surfaces with given microstructures. For these cases, the
resulting equations may not be superficially simple. Yet, I-SPT
does offer advantages over other methods when analyzing
these more complex surface geometries.
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APPENDIX: APPROXIMATION OF G(h,h) VIA BOUNDARY
THERMODYNAMICS

In this Appendix, we present the derivation of our chosen
approximation of G(h,h) given in Eq. (34). From Widom’s
potential distribution theorem [49,50], one may write

ρ(r1)

ρ(r2)
= exp

[
Wσ (r2) − Wσ (r1)

kT

]
, (A1)

where Wσ (r) is the reversible work of inserting a hard sphere
of diameter σ and ρ(r) is the ensemble-averaged density
of the same hard spheres, both at position r. Equation (A1)
follows from the uniformity of the chemical potential for an
equilibrium system, which accounts for the local variation of
density within an inhomogeneous fluid [49,50]. Let us now set
r1 as a position on the surface of a cavity of radius λ centered at
z = h, i.e., r1 = (λ,θ,h) using the coordinate system of Fig. 1,
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and r2 as a yet unidentified position rref . Using SPT notation,
Eq. (A1) becomes

G(λ,θ,h) = ρ(rref )

ρ
exp

[
Wσ (rref ) − Wσ (λ,θ,h)

kT

]
. (A2)

After entering Eq. (A2) into Eq. (10) with λ = h, we obtain

G(h,h) = ρ(rref )

2ρ

∫ π

0
exp

[
Wσ (rref )−Wσ (h,θ,h)

kT

]
sin θdθ,

(A3)

which is nearly identical to Eq. (34). As it stands, Eq. (A3) is
formally exact.

Since Wσ is not available in general, we require some
suitable approximation thereof for use in Eq. (A3). Using
the analogy between a hard sphere and a cavity, Wσ may
be thought of as the work of growing a cavity of radius σ (a
“σ -cule” [1]) centered at the specified position, followed by
insertion of the actual hard sphere at that position. Thus using
boundary thermodynamic concepts that lead to Eq. (26) and
are present in every form of SPT, Wσ may be expressed as [37]

Wσ (λ,θ,h) = p�V (λ,θ,h) +
∑

i

γi�Ai(λ,θ,h)

+
∑

j

τj�Lj (λ,θ,h). (A4)

In Eq. (A4), �V is the fluid volume that must be emptied of
other hard-sphere centers, the �Ai are the surfaces that must

be created or destroyed, and the �Lj are the linear interfaces
that must be created or destroyed while growing the cavity.
Furthermore, p is the fluid pressure, γi is the surface (or
boundary) tension of the ith surface, and τj is the line tension
of the j th line interface. Figure 17(b) illustrates the geometric
terms (save for the �Lj ) for three different hard spheres or
cavities. As noted in the figure, cavities at different positions
have different numbers of interfaces.

We may make a simplification to Wσ by ignoring the
contribution of linear terms, while still including all the
interfacial terms. The line tension terms are, of course,
necessary for a proper description of the cavity, but are known
to be small contributions compared to the pressure and surface
terms [37]. Hence we drop the linear interface terms and
approximate Wσ by

Wσ (λ,θ,h) ≈ p�V (λ,θ,h) +
∑

i

γi�Ai(λ,θ,h)

≈ p�V (λ,θ,h) + γσ�Aσ (λ,θ,h)

+ γλ�Aλ(λ,θ,h) + γ∞�Aw(λ,θ,h), (A5)

where the second line separates the sum over γi�Ai into the
possible surface terms. As illustrated in Fig. 17(b), there are
three surfaces of importance, the curved surface of radius σ

(blue), �Aσ , created by the insertion or growth of the σ -
cule, the erased curved surface of radius λ (green), �Aλ, and
the erased portion of wall area (red), �Aw. Each area has
an associated surface tension that depends on the radius of
curvature of the particular surface. The subscript on each γ

)
)

)

)

VrefΔ

(θVΔ
(θσAΔ

(θλAΔ

(θAΔ w

AΔ w,ref
ΔAσ,ref

λ,ref =0ΔA

σAΔ (θ)

λAΔ (θ)

VΔ (θ)

AΔ w(θ)=0

=hλ

(a) (b)

σ

σ/2

θ

Reference

FIG. 17. (Color online) Illustration to aid the explanation of the boundary thermodynamic approximation of Wσ . In (a), a cavity of radius
λ = h (dot-dash line) is centered at z = h and two hard-sphere particles are placed at distinct positions on the cavity surface and their equivalent
σ -cule cavities are shown with dashed lines. A third hard sphere and its σ -cule are placed at the reference position, which is assumed to
be sufficiently far from the cavity such that the cavity of radius λ no longer influences the local fluid. In (b), the hard-sphere particles are
removed and the volumes and surfaces associated with the creation of the σ -cule at each position are noted. Insertion of each σ -cule requires
the evacuation of a region of volume �V and the creation of a surface of area �Aσ with radius of curvature σ , noted in blue. Creation of a
σ -cule in contact with the cavity of radius λ requires the destruction of some part of the cavity’s surface �Aλ, which is noted in green. Some
σ -cules also destroy part of the wall surface area �Aw , which is noted in red.
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indicates the radius (and dividing surface [61]) at which that
surface tension is evaluated. Figure 17 reveals that �Ai is
sometimes zero, depending on the position of the σ -cule. For
the case of λ = h (as shown in Fig. 17), all �V and �Ai may
be computed analytically (see Ref. [45]) and we only need p

and γi . To obtain those thermodynamic properties, we again
use the CS-SPTM version of SPT [42] since it predicts p and
γi with high accuracy.

All that remains is the appropriate selection of rref . Since
ρG(λ,θ,h) is not generally available, we can select a position
with z = 0, so that the reference hard sphere is in contact with
the confining hard wall. If this position is far from the cavity
of radius λ, the local density at rref is equal to p/kT . Finally,
with the selection of this reference position and using Eq. (A5)
for Wσ , we arrive at Eq. (34). The integral may be separated
into two parts, one that may be computed analytically and the
other that must be computed numerically. For further details,
consult Ref. [45].

The limit of G(h,h) for h → ∞ is available from inspection
of Eq. (A5) with the aid of Fig. 17. As h → ∞, the work
associated with creating a σ -cule cavity that does not intersect

the z = 0 plane will become identical to Wσ (rref ), since
the surface of the cavity of radius h is effectively planar,
meaning the integrand of Eq. (34) is equal to unity. Further-
more, the domain of θ over which the σ -cule cavity intersects
the z = 0 plane (where Wσ �= Wref ) becomes increasingly
small, so that the nonoverlapping domain is the dominant
contribution to G(h,h). Therefore the integral portion of
Eq. (34) approaches the value of 2, or G(h,h) → p/ρkT for
h → ∞. Estimated limits on derivatives of G at λ = h are
also available from Eqs. (34) and (A5) (see Appendix B of
Ref. [45]).

The procedure in this Appendix that is used to generate
G(h,h) is similar to that used by Heying and Corti [40]
to generate a sixth condition for SPT, though with some
important distinctions. In their paper describing SPT6, the
term equivalent to Wσ (r) was approximated by ρkT �V (r),
which is really a zeroth-order ideal gas approximation. Our
approximation of Wσ , which incorporates both pressure and
surface tension terms, is a higher-order approximation that
should represent Wσ more accurately than the ideal gas
expression.

[1] H. Reiss, H. L. Frisch, and J. L. Lebowitz, J. Chem. Phys. 31,
369 (1959).

[2] J. L. Lebowitz, E. Helfand, and E. Praestgaard, J. Chem. Phys.
43, 774 (1965).

[3] R. M. Gibbons, Mol. Phys. 17, 81 (1969).
[4] M. A. Cotter and D. E. Martire, J. Chem. Phys. 52, 1902 (1970).
[5] M. A. Cotter and D. E. Martire, J. Chem. Phys. 52, 1909 (1970).
[6] R. Tenne and E. Bergmann, Phys. Rev. A 17, 2036 (1978).
[7] A. J. Richard and R. B. Westkaemper, Biopolymers 25, 2017

(1986).
[8] Y. Rosenfeld, J. Chem. Phys. 89, 4272 (1988).
[9] M. Irisa, K. Nagayaka, and F. Hirata, Chem. Phys. Lett. 207,

430 (1993).
[10] F. M. Floris, M. Selmi, A. Tani, and J. Tomasi, J. Chem. Phys.

107, 6353 (1997).
[11] S. Punnathanam and D. S. Corti, Ind. Eng. Chem. Res. 41, 1113

(2002).
[12] S. D. Zhang, P. A. Reynolds, and J. S. V. Duijneveldt, Mol. Phys.

100, 3041 (2002).
[13] S. M. Oversteegen and H. N. W. Lekkerkerker, J. Chem. Phys.

120, 2470 (2004).
[14] F. H. Stillinger, P. G. Debenedetti, and S. Chatterjee, J. Chem.

Phys. 125, 204504 (2006).
[15] S. Chatterjee, P. G. Debenedetti, and F. H. Stillinger, J. Chem.

Phys. 125, 204505 (2006).
[16] H. S. Ashbaugh and L. R. Pratt, Rev. Mod. Phys. 78, 159 (2006).
[17] G. Graziano, Chem. Phys. Lett. 432, 84 (2006).
[18] A. Jain and H. S. Ashbaugh, J. Chem. Phys. 129, 174505 (2008).
[19] H. S. Ashbaugh, J. Chem. Phys. 130, 204517 (2009).
[20] D. W. Siderius and D. S. Corti, Phys. Rev. E 71, 036141 (2005).
[21] D. W. Siderius and D. S. Corti, Phys. Rev. E 71, 036142 (2005).
[22] D. W. Siderius and D. S. Corti, Phys. Rev. E 75, 011108 (2007).
[23] S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954).
[24] A. Vrij, Pure Appl. Chem. 48, 471 (1976).

[25] M. Oettel, Phys. Rev. E 69, 041404 (2004).
[26] A. R. Herring and J. R. Henderson, Phys. Rev. Lett. 97, 148302

(2006).
[27] A. R. Herring and J. R. Henderson, Phys. Rev. E 75, 011402

(2007).
[28] M. Oettel, H. Hansen-Goos, P. Bryk, and R. Roth, Europhys.

Lett. 85, 36003 (2009).
[29] D. W. Siderius and D. S. Corti, J. Phys. Chem. B 113, 13849

(2009).
[30] P. D. Kaplan, J. L. Rouke, A. G. Yodh, and D. J. Pine, Phys. Rev.

Lett. 72, 582 (1994).
[31] A. D. Dinsmore, A. G. Yodh, and D. J. Pine, Phys. Rev. E 52,

4045 (1995).
[32] A. D. Dinsmore, A. G. Yodh, and D. J. Pine, Nature (London)

383, 239 (1996).
[33] R. Dickman, P. Attard, and V. Simonian, J. Chem. Phys. 107,

205 (1997).
[34] P. Bryk, R. Roth, M. Schoen, and S. Dietrich, Europhys. Lett.

63, 233 (2003).
[35] L. Harnau, F. Penna, and S. Dietrich, Phys. Rev. E 70, 021505

(2004).
[36] M. Mastrangeli, S. Abbasi, C. Varel, C. V. Hoof, J. Celis, and

K. F. Bohringer, J. Micromech. Microeng. 19, 083001 (2009).
[37] D. S. Corti and H. Reiss, Mol. Phys. 95, 269 (1998).
[38] H. Reiss, in Statistical Mechanics and Statistical Methods in

Theory and Application: A Tribute to Elliott W. Montroll, edited
by U. Landman (Plenum, London, 1977), pp. 99–140.

[39] M. J. Mandell and H. Reiss, J. Stat. Phys. 13, 113 (1975).
[40] M. D. Heying and D. S. Corti, J. Phys. Chem. B 108, 19756

(2004).
[41] D. W. Siderius and D. S. Corti, Ind. Eng. Chem. Res. 45, 5489

(2006).
[42] D. W. Siderius and D. S. Corti, J. Chem. Phys. 127, 144502

(2007).

031126-19

http://dx.doi.org/10.1063/1.1730361
http://dx.doi.org/10.1063/1.1730361
http://dx.doi.org/10.1063/1.1696842
http://dx.doi.org/10.1063/1.1696842
http://dx.doi.org/10.1080/00268976900100811
http://dx.doi.org/10.1063/1.1673231
http://dx.doi.org/10.1063/1.1673232
http://dx.doi.org/10.1103/PhysRevA.17.2036
http://dx.doi.org/10.1002/bip.360251014
http://dx.doi.org/10.1002/bip.360251014
http://dx.doi.org/10.1063/1.454810
http://dx.doi.org/10.1016/0009-2614(93)89025-D
http://dx.doi.org/10.1016/0009-2614(93)89025-D
http://dx.doi.org/10.1063/1.474296
http://dx.doi.org/10.1063/1.474296
http://dx.doi.org/10.1021/ie010554q
http://dx.doi.org/10.1021/ie010554q
http://dx.doi.org/10.1080/00268970210130146
http://dx.doi.org/10.1080/00268970210130146
http://dx.doi.org/10.1063/1.1637573
http://dx.doi.org/10.1063/1.1637573
http://dx.doi.org/10.1063/1.2374889
http://dx.doi.org/10.1063/1.2374889
http://dx.doi.org/10.1063/1.2374890
http://dx.doi.org/10.1063/1.2374890
http://dx.doi.org/10.1103/RevModPhys.78.159
http://dx.doi.org/10.1016/j.cplett.2006.10.016
http://dx.doi.org/10.1063/1.3003577
http://dx.doi.org/10.1063/1.3143716
http://dx.doi.org/10.1103/PhysRevE.71.036141
http://dx.doi.org/10.1103/PhysRevE.71.036142
http://dx.doi.org/10.1103/PhysRevE.75.011108
http://dx.doi.org/10.1063/1.1740346
http://dx.doi.org/10.1351/pac197648040471
http://dx.doi.org/10.1103/PhysRevE.69.041404
http://dx.doi.org/10.1103/PhysRevLett.97.148302
http://dx.doi.org/10.1103/PhysRevLett.97.148302
http://dx.doi.org/10.1103/PhysRevE.75.011402
http://dx.doi.org/10.1103/PhysRevE.75.011402
http://dx.doi.org/10.1209/0295-5075/85/36003
http://dx.doi.org/10.1209/0295-5075/85/36003
http://dx.doi.org/10.1021/jp901451t
http://dx.doi.org/10.1021/jp901451t
http://dx.doi.org/10.1103/PhysRevLett.72.582
http://dx.doi.org/10.1103/PhysRevLett.72.582
http://dx.doi.org/10.1103/PhysRevE.52.4045
http://dx.doi.org/10.1103/PhysRevE.52.4045
http://dx.doi.org/10.1038/383239a0
http://dx.doi.org/10.1038/383239a0
http://dx.doi.org/10.1063/1.474367
http://dx.doi.org/10.1063/1.474367
http://dx.doi.org/10.1209/epl/i2003-00517-6
http://dx.doi.org/10.1209/epl/i2003-00517-6
http://dx.doi.org/10.1103/PhysRevE.70.021505
http://dx.doi.org/10.1103/PhysRevE.70.021505
http://dx.doi.org/10.1088/0960-1317/19/8/083001
http://dx.doi.org/10.1080/00268979809483159
http://dx.doi.org/10.1007/BF01221372
http://dx.doi.org/10.1021/jp040398b
http://dx.doi.org/10.1021/jp040398b
http://dx.doi.org/10.1021/ie051038t
http://dx.doi.org/10.1021/ie051038t
http://dx.doi.org/10.1063/1.2768967
http://dx.doi.org/10.1063/1.2768967


DANIEL W. SIDERIUS AND DAVID S. CORTI PHYSICAL REVIEW E 83, 031126 (2011)

[43] D. M. Tully-Smith and H. Reiss, J. Chem. Phys. 53, 4015 (1970).
[44] N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51, 635 (1969).
[45] D. W. Siderius, Ph.D. thesis, Purdue University, West Lafayette,

IN, 2007.
[46] J. R. Henderson, Physica A 313, 321 (2002).
[47] V. Botan, F. Pesth, T. Schilling, and M. Oettel, Phys. Rev. E 79,

061402 (2009).
[48] F. H. Stillinger and M. A. Cotter, J. Chem. Phys. 55, 3449 (1971).
[49] B. Widom, J. Stat. Phys. 19, 563 (1978).
[50] B. Widom, J. Phys. Chem. 86, 869 (1982).
[51] R. C. Tolman, J. Chem. Phys. 17, 333 (1949).
[52] G. Navascues and R. Bragado, J. Chem. Phys. 81, 887 (1984).

[53] G. Navascues and R. Bragado, Phys. Rev. A 28, 1848 (1983).
[54] R. Bragado and G. Navascues, Phys. Rev. A 29, 2134 (1984).
[55] D. Henderson, S. Sokolowski, and D. Wasan, J. Stat. Phys. 89,

233 (1997).
[56] P. Tarazona, Phys. Rev. A 31, 2672 (1985).
[57] Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989).
[58] E. Kierlik and M. L. Rosinberg, Phys. Rev. A 42, 3382 (1990).
[59] J. Y. Walz and A. Sharma, J. Colloid Interface Sci. 168, 485

(1994).
[60] B. Gotzelmann, R. Evans, and S. Dietrich, Phys. Rev. E 57, 6785

(1998).
[61] M. J. Mandell and H. Reiss, J. Stat. Phys. 13, 107 (1975).

031126-20

http://dx.doi.org/10.1063/1.1673873
http://dx.doi.org/10.1063/1.1672048
http://dx.doi.org/10.1016/S0378-4371(02)00991-3
http://dx.doi.org/10.1103/PhysRevE.79.061402
http://dx.doi.org/10.1103/PhysRevE.79.061402
http://dx.doi.org/10.1063/1.1676598
http://dx.doi.org/10.1007/BF01011768
http://dx.doi.org/10.1021/j100395a005
http://dx.doi.org/10.1063/1.1747247
http://dx.doi.org/10.1063/1.447725
http://dx.doi.org/10.1103/PhysRevA.28.1848
http://dx.doi.org/10.1103/PhysRevA.29.2134
http://dx.doi.org/10.1007/BF02770763
http://dx.doi.org/10.1007/BF02770763
http://dx.doi.org/10.1103/PhysRevA.31.2672
http://dx.doi.org/10.1103/PhysRevLett.63.980
http://dx.doi.org/10.1103/PhysRevA.42.3382
http://dx.doi.org/10.1006/jcis.1994.1446
http://dx.doi.org/10.1006/jcis.1994.1446
http://dx.doi.org/10.1103/PhysRevE.57.6785
http://dx.doi.org/10.1103/PhysRevE.57.6785
http://dx.doi.org/10.1007/BF01221371

