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The Weibull function is widely used to describe skew distributions observed in nature. However, the origin of
this ubiquity is not always obvious to explain. In the present paper, we consider the well-known Galton-Watson
branching process describing simple replicative systems. The shape of the resulting distribution, about which
little has been known, is found essentially indistinguishable from the Weibull form in a wide range of the
branching parameter; this can be seen from the exact series expansion for the cumulative distribution, which
takes a universal form. We also find that the branching process can be mapped into a process of aggregation of
clusters. In the branching and aggregation process, the number of events considered for branching and aggregation
grows cumulatively in time, whereas, for the binomial distribution, an independent event occurs at each time
with a given success probability.
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I. INTRODUCTION

Various systems in nature exhibit skew distributions, which
are properly fit to the Weibull distribution [1] as well as
lognormal and power-law distributions; relations between
those skew distributions have been discussed recently [2].
In particular, the Weibull distribution, despite the simple
mathematical form, particularly for the cumulative distribution
F (x) = 1 − exp[−(x/η)β], has flexible shapes depending on
the value of β and is widely used to describe size distributions
of, e.g., material strengths [1,3], cloud droplets [4], biological
tissues [5], ocean wave heights [6], and wind speeds [7].
However, there still lacks an appropriate explanation of its
ubiquitous emergence, in sharp contrast with the Gaussian
distribution, let aside the case-by-case derivation, such as
material breaking with the weakest element [1], entropy
maximization [4], material fragmentation [8], and extreme
value statistics [9,10].

It is well known that the binomial distribution results
from success events for given independent trials with the
success probability p given. When the success is a rare
event (i.e., p is small), it reduces to the Poisson distribution.
According to the central limit theorem [11], (discrete) binomial
and Poisson distributions approach the (continuous) Gaussian
distribution in the limit of large trial numbers. In a similar
spirit, here, we derive a continuous Weibull-like distribution
from the discrete Galton-Watson branching process, motivated
by cell replication in a tissue [5]. The branching process
can serve as a basic model to describe discrete events
having two possibilities, e.g., replication and nonreplication
or nucleation and non-nucleation. The generating function for
this distribution was first obtained in the seminal work of
general branching processes [12,13]. Specifically, asymptotics
were derived in the more general case of multiple replicates
and extinction processes at each stage of the process added
to possible immigration events (see, for example, Ref. [14]),
but little is known about the shape of the distribution itself
relative to other standard distributions, except for a few very
specific cases where the limiting distribution can be computed

exactly through the use of a rational form for the generating
function at the first stage of the process and which usually
leads to a simple exponential function. Here, we find that it is
approached by the Weibull distribution in rather a wide and
realistic range of the replication parameter p, making the two
distributions surprisingly indistinguishable in practice.

This paper consists of four sections and an Appendix. In
Sec. II, cell replication is described in terms of a branching
process. The stationary distribution of the branching process
is obtained, and its general properties are discussed. Results
of Monte Carlo simulations are also presented. Section III
examines the relation between the distributions for different
replication probabilities and probes the scaling with the help
of an ansatz, which is justified from the exact series expansion.
Finally, Sec. IV discusses and summarizes the results. In the
Appendix, all the moments of the distribution are obtained
analytically from the recurrence relation of the generating
function.

II. CELL REPLICATION AND BRANCHING PROCESS

For the binomial distribution, an independent event occurs
at each time with given success probability. In cell replication,
on the other hand, the number of replication events in
consideration depends on the current cell number of a tissue.
For example, even if there exists just a single mother cell
initially, it may replicate from time to time, and there may
occur many replications of the mother and daughter cells.
Accordingly, we consider the probability distribution fn(l) of
tissues with size (i.e., the number of cells) l at given time step
n, which satisfies the normalization condition

∑2n

l=1 fn(l) = 1
with the maximum possible cell number in the tissue after
the nth replication given by 2n. Note that this process can be
described in terms of a branching process with the branching
probability p, as illustrated in Fig. 1. Each graph in the figure,
where sites in the nth row represent cells at the time step n,
corresponds to one possible configuration of cell growth for
the given duration. Thus, each graph starts from a single site
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FIG. 1. Cell replication graphs for a branching process. Cell
number configurations at time steps n = 1 and 2 are plotted with
the replication probability at each step given by p; q ≡ 1 − p

corresponds to the probability that the cell does not replicate.

in the first row (i.e., a single mother cell initially); sites may
replicate or not, giving birth to new sites at successive time
steps (here, the time step is fixed to be a constant).

It is useful to consider the generating function for the
distribution fn at time n in the branching process [12,15],

gn(z) =
2n∑
l=1

fn(l)zl. (1)

For example, the kth moment at time n, defined to be∑2n

l=1 fn(l)lk , can be computed by successively differentiating
the generating function: (z d

dz
)kgn(z)|z=1 with gn(1) = 1 for all

n (see the Appendix for the derivation of all the moments).
In the following, for simplicity, we will impose fn(l) = 0
for l > 2n. At the initial time (n = 0), the system contains
only one element, leading to g0(z) = z. Since the distribution
fn+1 is related to the preceding one fn via combinatorial
relations, it is easy to show that the generating function
satisfies the nonlinear recursion equation gn(z) = g1[gn−1(z)]
for n � 1, where g1(z) = qz + pz2. This equation provides a
recursive function for the newly generated sites, which are all
independent, with the generating function g1(z).

From this relation, we can deduce that the total number
N (n) of configurations or graphs at (discrete) time n satisfies
the recurrence relation N (n + 1) = N (n)[1 + N (n)], with the
initial condition N (0) = 1, and grows rapidly in time. Indeed,
this relation can be obtained easily from the observation that
N (n) is equal to gn(1) with p and q replaced formally by unity.
Therefore, N (n) satisfies the same relation as gn(1) above. It is
also manifested from the physical point of view: Given N (n)
graphs at time n, there are two possible ways to generate graphs
at time (n + 1). (i) In the case of nonreplication of the original
site, we simply have N (n) graphs; (ii) in the case of replication
of the same site, we can attach a total of N (n)2 graphs to the
two offspring. As a result, we obtain N (n) + N (n)2 possible
configurations at time (n + 1). This can be checked in Fig. 1
for the first few graphs: N (0) = 1, N (1) = 2, N (2) = 6, and
so on.

Because a tissue of size l results from (l − 1)-times
proliferation starting from a single cell (see Fig. 1), the
recurrence relation

gn+1(z) = qgn(z) + pg2
n(z) (2)
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FIG. 2. (Color online) Comparison of the tissue size distribution
fn(l) at time n = 10, for the replication probability p = 0.3, 0.5,
0.8, and 0.9. Solid lines, analytical and, + signs, simulation results
agree perfectly, displaying multimodal shapes for large values of p.
In the Monte Carlo simulations of the branching process, starting
from a single cell, we let every cell replicate with a given replication
probability at each Monte Carlo step. Data have been obtained from
106 trial moves.

leads to the recursive relation for the distribution fn(l) by
simply identifying the coefficients of zl on the left and right
sides of the last expression,

fn+1(l) = qfn(l) + p

l−1∑
k=1

fn(k)fn(l − k). (3)

Namely, a tissue of size l at time n + 1 can be generated in
two ways: (i) no replication at the first time step followed
by producing l descendants at the following n time steps and
(ii) replication at the first time step followed by producing k

descendants from one offspring and l − k descendants from
the other offspring at the following n time steps.

The size distribution, computed from Eq. (3), is exhibited
in Fig. 2, together with that from Monte Carlo simulations,
manifesting perfect agreement. It is of interest that Eq. (3) can
be mapped into a process of random aggregation of clusters
with the aggregation probability p. Thus, using q = 1 − p and∑2n

k=1 fn(k) = 1, we obtain

�fn(l) = −p

2n∑
k=1

fn(l)fn(k) + p

l−1∑
k=1

fn(k)fn(l − k), (4)

with �fn(l) ≡ fn+1(l) − fn(l). Therefore, a cluster of size l

can be formed from aggregation of a cluster of size k and a
cluster of size (l − k) with the aggregation probability p.

Figure 3 shows the normalized size distribution for p =
0.3 at several time steps n = 10, 12, and 14. Remarkably,
when size l is rescaled by the factor (1 + p)n, the distributions
collapse into a single curve independent of n, suggesting the
presence of a stationary distribution for the branching process
[12]. Indeed, the average cell number in a tissue after the
nth replication with the replication probability p is given by
(1 + p)n = ∑2n

l=1 lfn(l). Note that fn(l) may be regarded as a
continuous function fn(x) when n is large (see Fig. 3). Since
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FIG. 3. (Color online) Weibull distribution of tissue sizes in the
cell replication process. Cell-number distribution for p = 0.3 at three
different time steps. Distributions versus the rescaled size are plotted
in the inset; the collapse is fitted with a Weibull function with the
shape parameter β = 1.37, represented by the black line.

the average cell number after the (n − 1)th replication is (1 +
p)n−1, we have the scaling relation∫

dx xfn(x) = (1 + p)
∫

dx ′x ′fn−1(x ′)

=
∫

dx(1 + p)−1xfn−1[(1 + p)−1x], (5)

which is consistent with the fact that the distribution in
the long-time limit can be described by a time-independent
stationary function f (x̃) with the rescaled size x̃ = x/η and the
scale parameter η = a(1 + p)n. The scale factor a introduced
here depends, in particular, on the replication probability p via
boundary conditions, as discussed later.

Finally, a quantity of interest is given by the Laplace
transform f̂ (λ) ≡ ∫ ∞

0 dx̃e−λx̃f (x̃), for which the recursive
relation in Eq. (3) reads [12]

f̂ [(1 + p)λ] = qf̂ (λ) + pf̂ (λ)2. (6)

Equation (6) takes the form of a Poincaré-type equation [16],
which is directly related in property to Mahler functional
equations [17] via an appropriate change of variables [18].

In the limit of small p where cells replicate very rarely,
one may expand Eq. (6) as f̂ [(1 + p)λ] ≈ f̂ (λ) + pλf̂ ′(λ) to
obtain the differential equation,

λf̂ ′(λ) = f̂ (λ)2 − f̂ (λ), (7)

with the initial conditions f̂ (0) = 1 and f̂ ′(0) = −a−1. The
solution reads f̂ (λ) = a(λ + a)−1, the inverse Laplace trans-
form of which is given by the simple exponential function
f (x̃) = a exp(−ax̃). With the constraint F (1) = 1 − e−1 on
the cumulative distribution F (x̃) ≡ ∫ x̃

0 dx̃ ′f (x̃ ′), we obtain the
scaling factor a = 1, and, therefore, f (x̃) = exp(−x̃). In the
opposite case of p = 1 where every cell replicates, we have
f̂ (2λ) = f̂ (λ)2, with the simple solution satisfying the initial
conditions given by f̂ (λ) = exp(−λ/a). This leads to the
Dirac δ distribution f (x̃) = δ(x̃ − a−1) and the Heaviside
cumulative distribution F (x̃) = θ (x̃ − a−1). The constraint on
F (1) again imposes a = 1.

III. SCALING OF THE SIZE DISTRIBUTION

In this section, we consider the general case of 0 < p < 1.
As for the unique stationary distribution f (x̃) for given p, one
may question whether there exists any relation between the
distribution f (x̃) corresponding to two different replication
probabilities p and p0, respectively. Since the final stationary
distributions result from the same branching process, albeit
with different branching probabilities, they are expected to
qualitatively share the same properties.

To probe the scaling of the tissue size in the replication
process, in Fig. 4, we display the cumulative distribution for
the replication probability p = 0.1, 0.3, and 0.5. Note that the
scale factor a in the rescaling of the size has been adjusted
to satisfy the condition F (x̃=1) = 1 − e−1. To probe the
functional relations between the cumulative distributions for
different values of p under the constraints for F , we consider
the change of variable x̃ → x̃β , as the simplest possibility,
where the exponent β = β(p) is then adjusted to make all
curves for considered values of p collapse onto a single curve.
This ansatz indeed leads to the collapse of different cumulative
distributions into a unique distribution F0(x̃) = 1 − e−x̃ , as
shown in the inset. Therefore, the new variable x̃β determines
the functional form of F (x̃), at least for the numerical cases
considered. Indeed, using the known result F (x̃) = 1 − e−x̃

in the limit p → 0, we obtain F (x̃) = 1 − e−x̃β

with good
precision for p > 0, which leads to the Weibull distribution.

The ansatz of the scaling x̃β can be justified from the exact
series expansion of the distribution f (x̃). Multiplying both
sides of Eq. (6) by exp(−iλx̃), performing the rotation λ → iλ,
and integrating over λ along the real axis, we obtain

1

1 + p
f [(1 + p)−1x̃] = qf (x̃) + p

∫ x̃

0
dx̃ ′f (x̃ ′)f (x̃ − x̃ ′).

(8)

It can be shown that f (x̃) admits a series expansion in powers
of x̃ consistent with the previous relation. In particular, f (x̃)
vanishes at the origin as f (x̃) ≈ a0x̃

β−1, with some constant a0

and exponent β = −[ln(1 + p)]−1 ln(1 − p) � 1 [12]. Here,
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FIG. 4. (Color online) Cumulative distribution for p = 0.1, 0.3,
and 0.5. The rescaled size is given by x̃ = a−1(1 + p)−nl with
n = 20, where a is the scale factor to adjust F (1) = 1 − e−1. The
black line in the inset describes rescaled cumulative distribution
functions, disclosing the collapse into the function F (x̃) = 1 − e−x̃β

.
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this analysis can be extended to consecutive terms to yield the
following expansion:

f (x̃) = x̃β−1
∑
k�0

akx̃
kβ, (9)

where identifying the powers in Eq. (8) gives the recursion
relation for the coefficients,

(qk+1 − q)ak = p

k−1∑
l=0

B[β(1 + l),β(k − l)]alak−1−l , (10)

with the β function B(x,y) = ∫ 1
0 dttx−1(1 − t)y−1. Here,

a0 is the only unknown parameter depending on boundary
conditions, since Eq. (10) implies the proportionality relation
ak ∝ a1+k

0 .
From these results, it is easy to see that f (x̃) can be cast

into the form

f (x̃) = a0x̃
β−1F(a0x̃

β), (11)

with the unique regular expansion of the scaling function
F(x̃) = ∑

k�0 ãkx̃
k , where ãk satisfies the relation in Eq. (10)

but with the initial term ã0 = 1; this uniquely determines all
the other coefficients ãk for k � 1. The cumulative distribution
F (x̃) is equal to a scaling function of the variable a0x̃

β alone
since

F (x̃) = 1

β

∑
k�0

ãk

k + 1
(a0x̃

β)k+1 = G(a0x̃
β ), (12)

where G is, like F , uniquely defined by the coefficients
ãk . The parameter a0 is defined according to the constraint
F (1) = 1 − e−1 and can be related to a via the equation for
the first moment

∫ ∞
0 dx̃x̃f (x̃) = a−1. This relation simply

gives a0 = aβ[
∫ ∞

0 u1/βF(u)du]β . Note that the cumulative
distribution F is a function of the variable x̃β up to a
scaling factor, which is also true for the Weibull distribution
F (x̃β) = 1 − exp(−x̃β ) with x̃ = x/η. In the limit of small
p, β is close to unity, and one can show that the expansion
coefficients satisfying Eq. (10) are approximatively given
by ãk = (−1)k/k!. Therefore, G(a0x̃

β ) ≈ 1 − exp(−a0x̃
β) is

indeed close to the Weibull distribution.
The previous results show that the distribution can be

expanded as a series and vanishes as a power law with the
exponent β − 1 related to the replication probability p. In
the opposite case of large x̃, the integral equation (8) can be
analyzed. Since we expect f (x̃) to decrease with x̃ and assume
the stretched exponential behavior f (x̃) ≈ exp(−a∞x̃β ′

) with
a∞ constant, we observe that, in Eq. (8), the left-hand-side term
f [(1 + p)−1x̃] ∝ exp[−a∞(1 + p)−β ′

x̃β ′
] is dominant over

the first term f (x̃) on the right-hand side. The last term can be
analyzed by means of the saddle point analysis for the function
x̃ ′β ′ + (x̃ − x̃ ′)β

′
appearing in the exponential contribution.

The saddle point, obtained by taking the extremum of this
quantity with respect to x̃ ′, corresponds to the middle point of
the integration x̃ ′ = x̃/2. Therefore, the overall integral gives
a dominant contribution proportional to exp[−2a∞(x̃/2)β

′
].

The ansatz is consistent if the two coefficients satisfy the
relation (1 + p)−β ′ = 21−β ′

. This results in a new exponent
β ′ = ln 2[ln 2 − ln(1 + p)]−1 valid in the asymptotic limit;
this was also obtained in Ref. [12].
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FIG. 5. (Color online) Relation between exponent βw of the
Weibull distribution and the replication probability p of the branching
process. The exponent β is also plotted for comparison.

IV. DISCUSSION

It has been shown that the replication process of cells
with not too large replication probability (p � 0.5) gives rise
to a distribution extremely close to the Weibull function.
The parameters of the Weibull distribution can then be
related to the first two moments of the distribution function
fn(x): (1 + p)n = η�(1 + β−1

w ) and 2(1 + p)2n−1 = η2�(1 +
2β−1

w ), where �(x) is the gamma function. This leads to the
following relation between the replication probability p and
the shape parameter βw of the Weibull distribution:

p = 2
�2

(
1 + β−1

w

)
�

(
1 + 2β−1

w

) − 1, (13)

which is exhibited in Fig. 5. In addition, the scale factor a

in the rescaling parameter η = a(1 + p)n is given by a =
�−1(1 + β−1

w ). Note that the exponents β and βw are hardly
distinguishable for p � 0.5, where the scaling function F is
asymptotically similar to an exponential. This suggests that
the distribution in Eq. (11) belongs to the Weibull class for
small p. This regime applies to many cases in nature that a
certain event, such as replication or nucleation, occurs with
probability less than 50% at a given time unit. On the other
hand, the replication process with a large value of p results in
a different type of distribution, e.g., a multimodal distribution
(see Fig. 2).

In conclusion, the branching process provides a general
mechanism of the Weibull distribution with β � 2, corre-
sponding to the branching probability p � 0.5. We also have
found that the branching process can be mapped into a process
of aggregation of clusters. A recent example includes the
protein aggregation process with fission, where the Weibull
distribution with β ∼ 2 emerges as a stationary solution [19].
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APPENDIX: MOMENT EXPRESSION

The functional equation, given by Eq. (6), for the Laplace
transform of the size distribution can also be derived with the
help of moments of the distribution. Here, we briefly mention
how to recursively evaluate all these moments starting from
the generating function. From the relation

〈x〉n = z
d

dz
gn(z)|z=1 = zg′

1[gn−1(z)]g′
n−1(z)|z=1, (A1)

with the initial condition g′
0(1) = 1, the average number of

elements is simply

〈x〉n = (1 + p)〈x〉n−1 = (1 + p)n,

whereas, the second moment is given by

〈x2〉n = zg′
n(z) + z2g′′

n(z)|z=1. (A2)

To evaluate g′′
n(1), we differentiate the recursion relation for

the generating function and obtain

g′′
n+1(z) = g′′

1 [gn(z)]g′2
n (z) + g′

1[gn(z)]g′′
n(z),

which leads to

g′′
n+1(1) = 2p(1 + p)2n + (1 + p)g′′

n(1).

Noting that g′′
1 (1) = 2p and g′′

0 (1) = 0, we obtain the general
solution of the previous recursion,

g′′
n(1) = 2[(1 + p)2n−1 − (1 + p)n−1],

and the second moment,

〈x2〉n = 2(1 + p)2n−1 − (1 − p)(1 + p)n−1

≈ 2(1 + p)2n−1. (A3)

In this large-n (i.e., long-time) limit, one may define the
scaling relation 〈xk〉n � g(k)

n (1) � hk(1 + p)kn, where the first
few coefficients read

h0 = h1 = 1, h2 = 2

1 + p
. (A4)

For the kth moment 〈xk〉n, given by a sum of derivatives of
gn, it is indeed sufficient to compute the largest (i.e., kth)
derivative of gn, which gives the essential contribution to the
coefficient hk .

A general method can be developed to evaluate the
successive moments by computing the dominant part of the
derivatives of gn(z) in the large-n limit. The kth derivative
g(k)

n (z) indeed satisfies the following relation:

g
(k)
n+1(z) = g′′

1 [gn(z)]Tn,k(z) + g′
1[gn(z)]g(k)

n (z), (A5)

with the initial conditions Tn,1(z) = 0, Tn,2(z) = g′2
n (z), and

Tn,3(z) = 3g′
n(z)g′′

n(z). Taking the derivative of Eq. (A5)

with respect to z, we obtain the relation for the
coefficient Tn,k(z),

Tn,k+1(z) = ∂

∂z
Tn,k(z) + g′

n(z)g(k)
n (z). (A6)

This can be solved by iterations,

Tn,k+1(z) =
k−1∑
m=0

∂m

∂zm

[
g′

n(z)g(k−m)
n (z)

]

=
k−1∑
m=0

m∑
l=0

(
m

l

)
g(l+1)

n (z)g(k−l)
n (z), (A7)

where it has been noticed that Tn,k(z) contains, at most, the
(k−1)th derivative of gn(z).

Since g′
1(1) = 1 + p and g′′

1 (1) = 2p, Eq. (A5), together
with Eq. (A7), bears the solution for z = 1,

g
(k)
n+1(1) = 2p

n−1∑
j=0

(1 + p)j Tn−j,k(1)

= 2p

k−2∑
m=0

m∑
l=0

n−1∑
j=0

(1 + p)j
(
m

l

)
g

(l+1)
n−j (1)g(k−1−l)

n−j (1).

(A8)

In the large-n limit, we may use the scaling relation g(k)
n (1) =

hk(1 + p)kn so that the dependency on n can be factorized,
which leads to the nonlinear recursive relation for hk ,

hk = 〈xk〉n
(1 + p)kn

= 2p

(1 + p)k − (1 + p)

k−2∑
m=0

m∑
l=0

(
m

l

)
hl+1hk−1−l . (A9)

This equation, together with the low-order coefficients in
Eq. (A4), gives all the successive coefficients by simple
iterations.

From the nonlinear relations in Eq. (A9), one can directly
reconstruct the Laplace transform of the stationary distribution
in Eq. (6),

f̂ (λ) ≡
∫ ∞

0
dx̃ e−λx̃f (x̃) =

∑
k�0

(−λ)k

akk!
hk (A10)

for which the functional equation can be obtained.
In addition, Eq. (9) directly gives the exact large-λ behavior

of the Laplace transform f̂ (λ) (see also Ref. [12]), which can
be written as

f̂ (λ) =
∫ ∞

0
dx̃e−λx̃f (x̃) =

∑
k�0

ak

∫ ∞

0
e−λx̃ x̃β(k+1)−1dx̃

=
∑
k�0

ak

�[β(k + 1)]

λβ(k+1)

λ�1≈ a0�(β)

λβ
. (A11)
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