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Level density and level-spacing distributions of random, self-adjoint, non-Hermitian matrices
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We investigate the level density σ (x) and the level-spacing distribution p(s) of random matrices M = AF �=
M†, where F is a (diagonal) inner product and A is a random, real, symmetric or complex, Hermitian matrix
with independent entries drawn from a probability distribution q(x) with zero mean and finite higher moments.
Although not Hermitian, the matrix M is self-adjoint with respect to F and thus has purely real eigenvalues. We
find that the level density σF (x) is independent of the underlying distribution q(x) and solely characterized by F ,
and therefore generalizes the Wigner semicircle distribution σW (x). We find that the level-spacing distributions
p(s) are independent of q(x), and are dependent upon both the inner product F and whether A is real or complex,
and therefore generalize the Wigner surmise for level spacing. Our results suggest F -dependent generalizations
of the well-known Gaussian Orthogonal Ensemble and Gaussian Unitary Ensemble classes.
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I. INTRODUCTION

Since their beginning in the field of nuclear physics in the
1950s, the statistical properties of random matrices with spe-
cific symmetries have been a source of ongoing investigations
[1–4]. Wigner’s semicircle law for the eigenvalue density and
his surmise for the eigenvalue spacings are some of the most
inspired results in random matrix theory. For real, symmetric,
N × N matrices with independent, identically distributed (iid)
entries drawn from an arbitrary distribution q(x) that has
zero mean, variance one, and finite higher moments, Wigner
showed that the level density in the large-N limit is given
by σW (x) = (2/π )

√
1 − x2. He also surmised that the level-

spacing distribution for random, real, symmetric matrices,
pGOE(s) = (πs/2) exp(−πs2/4), and for random, complex,
Hermitian matrices, pGUE(s) = (32s2/π2) exp(−4s2/π ), are
independent of the underlying probability distribution q(x).
The near universality of these results led to the Gaussian
Orthogonal Ensemble (GOE) conjecture for random, real,
symmetric matrices; the Gaussian Unitary Ensemble (GUE)
conjecture for random, complex, Hermitian matrices; and
the Gaussian Symplectic Ensemble (GSE) conjecture for
fermionic Hamiltonians. The tremendous analytical progress
in this field is based on these conjectures which imply that
it is sufficient to consider Gaussian distributed entries for the
random matrices [4]. We note that the proof of the Wigner
semicircle law for an arbitrary, non-Gaussian distribution q(x)
is based on the moment method [1]. We also emphasize that
the level-spacing distribution pGOE(s), although not exact, is
an excellent approximation to the exact answer obtained for the
GOE, and it is believed that the result is valid for random, real,
symmetric matrices with arbitrary (non-Gaussian) underlying
probability distributions q(x) [4].

These ensembles arise from a fundamental constraint: the
Hermiticity of the random Hamiltonian, which guarantees
real eigenvalues, and eigenvectors that are orthogonal with
respect to the standard inner product in quantum theory [4].
However, a large class of non-Hermitian matrices—parity and
time-reversal symmetric Hamiltonians [5–7], rate-equation
matrices [8], central potentials in momentum space [9], etc.—
has real spectra, although the eigenvectors are not orthogonal
under the standard inner product [5].

This observation raises the following question: What are
the properties of random matrices that are self-adjoint with
respect to a general inner product F = F † and therefore have
purely real eigenvalues? A general inner product F , which, by
definition, is a positive-definite matrix, may represent a system
(with non-Euclidean geometry) that is not translationally
invariant. For example, consider a finite disk with rotational
symmetry around its center. The disorder potential V (r) at a
point r on such a disk will only depend on the radial distance r

from its center, and not on its angular orientation. Such a
disorder can result from sputtering deposition (for electrons)
or from a circular patterned grating (for light). The resulting
momentum-space Hamiltonian for such a potential is not
Hermitian, but it has purely real eigenvalues [9]. Motivated
by the generalization of this example to D dimensions,
in this paper we only consider a diagonal inner product
F : VN × VN → C defined by

〈φ|ψ〉F = φ†Fψ =
N∑

i=1

fiφ
∗
i ψi, (1)

where VN is an N -dimensional vector space and Fjk =
δjkfj = δjkj

D−1. Note that an arbitrary inner product 〈·|·〉F
is invariant under transformations T : VN → VN that obey
T †FT = F . When F = 1, the standard inner product, this
group of transformations corresponds to the unitary (orthog-
onal) group over a complex (real) vector space V . Under
such an inner product, an operator M is self-adjoint if and
only if M = AF , where A is Hermitian. In this paper, we
numerically and analytically investigate the level density and
level-spacing distributions of such matrices M , or equivalently
M̃ = √

FA
√

F = M̃†, obtained from random, Hermitian ma-
trices A with iid entries drawn from an arbitrary probability
distribution q(x).

Our three salient results are as follows: (i) The level
density σF (x) is independent of q(x) and is characterized
by the inner product F , and therefore it is not the same as
the Wigner semicircle distribution, σF (x) �= σW (x). (ii) For
bulk eigenvalues, we find that the level-spacing distribution
is independent of q(x), and is solely characterized by F and
whether the matrix A is real or complex. Since these results
are invariant under the group of transformations mentioned
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above, and depend only on whether A is real or complex,
we use pGOE

F (s) and pGUE
F (s) to represent the level-spacing

distributions. Thus pGOE
F (s) and pGUE

F (s) provide F -dependent
generalizations of the GOE and GUE universality classes
for real and complex random matrices, respectively. (iii) In
each case, as D increases, the level-spacing distribution shifts
toward the origin and decays slowly compared to the GOE and
GUE results.

The plan of the paper is as follows. In Sec. II we present
numerical data for the level density, which show a clear F

dependence, and discuss the properties of the level density
σF (x). Section III starts with numerical data for level-spacing
distributions in the real and complex cases. We then present a
simple model that qualitatively explains the evolution of level-
spacing distributions with increasing D � 1 as the inner prod-
uct FD deviates from the standard inner product FD=1 = 1. We
conclude the paper in Sec. IV with a brief discussion. Although
the non-Hermitian, random matrices M considered in this
paper appear similar to those in Refs. [10–13], we point out the
crucial differences among them in Sec. IV. We emphasize that
the probability distribution for the random matrices considered
here is p(M) ∝ exp[− Tr (A†A)] ∝ exp[− Tr (F−2M†M)]; it
is not a function of Tr (M†M), and therefore the traditional
methods [4,11,14,15] used to analyze eigenvalue statistics may
not be applicable.

II. LEVEL DENSITY

We start this section with numerical data that hint at our
result. For independent entries of the random matrix A, we use
a Gaussian distribution G(x) with zero mean and variance one,
or a uniform distribution U (x) with zero mean and variance
one, or a distribution qθ (x) that corresponds to random entries
ri = cos θGi + sin θUi . Note that the distribution qθ (x) =
qθ (−x) interpolates continuously from the Gaussian (θ = 0)
to the uniform (θ = π/2) distribution, and has zero mean,
variance one, and finite higher moments. Since the variance
of iid entries is one, the eigenvalue scale for the level density
is given by �F = 2 Tr F/

√
N (�F = 2

√
2 Tr F/

√
N ) when

M is a real (complex) matrix. This scale implies that the
second moment μ2 of the resulting level density is fixed,
μ2 = 1/4 [15,16].

Figure 1 shows the level density for D = {1,1.4,2}. We
have verified that these results are essentially independent of
the number of trials Nt 	 1, the matrix size N � 102, the
number of bins Nb, and the underlying probability distribution
qθ (x). The top left panel in Fig. 1 reproduces the Wigner result
σW (x) that is expected when D = 1. The bottom left panel
(D = 1.4) and the top right panel (D = 2) show that, with
increasing D, the level density σF (x) broadens and becomes
sharply peaked near the origin. The top right and bottom right
panels show that, when scaled appropriately, the level density
σF (x) is the same for real and complex matrices and thus
depends only on the inner product F . These numerical data
strongly suggest that σF (x) is independent of qθ (x) and is
solely characterized by the inner product F .

To characterize the D dependence of the resulting level
density, we calculate its even moments and compare them
with the results for the Wigner distribution σW (x) [1,16].
The kth moment (k even) of the level density is given by
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FIG. 1. (Color online) Level density σF (x) for D = {1,1.4,2}.
The top left panel reproduces the Wigner result for D = 1, obtained
using Nt = 103, N = 3 × 103, Nb = 500, and Gaussian distributed
complex entries (θ = 0). The bottom left panel shows the result for
D = 1.4, with Nt = 500, N = 103, Nb = 200, and real entries with
θ = π/4. The top right panel shows the result for D = 2, Nt =
500, N = 2 × 103, Nb = 200, and real entries from a uniform
distribution (θ = π/2), whereas the bottom right panel shows the
result for the same D, with Nt = 103, N = 3 × 103, Nb = 500,
and complex entries from a distribution qθ (x), with θ = π/3. As D

increases, we see that the level density σF (x) sharpens near the origin,
broadens, and, when scaled appropriately, is the same for both real
and complex random matrices.

μk = limN→∞〈 Tr ((AF )k)/N〉A, where 〈· · ·〉A denotes ran-
dom averaging. It is straightforward, but tedious, to calculate
the nonvanishing averages systematically; for k = {4,6,8}, the
results are

μ4 = lim
N→∞

N

24

[
2

Tr F 2

( Tr F )2

]
, (2)

μ6 = lim
N→∞

N2

26

[
3

( Tr F 2)2

( Tr F )4
+ 2

Tr F 3

( Tr F )3

]
, (3)

μ8 = lim
N→∞

N3

28

[
8

Tr F 2 Tr F 3

( Tr F )5
+ 4

( Tr F 2)3

( Tr F )6
+ 2

Tr F 4

( Tr F )4

]
.

(4)

Note that when F = 1 the sum of terms in a square bracket
gives the corresponding Catalan number [1,16]. Since F =
diag(jD−1), Tr Fm ∼ Nm(D−1)+1 for D > 0, and finite mo-
ments require D � 1. Figure 2 shows the numerically obtained
even moments scaled by their values for D = 1, μk/μkW

(solid symbols), and the analytical results (open symbols) for
D = {1,1.5,2}. The monotonic increase in the even moments
with D is consistent with the broadening of the level density
σF (x) relative to the Wigner result σW (x). Although an exact
solution for σF (x) is known through implicit equations [17],
our (numerical and analytical) approach provides detailed
information.
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FIG. 2. (Color online) Even moments μk of the level density
σF (x) scaled by their values μkW for the Wigner distribution, for
D = {1,1.5,2}. Each numerical data point (solid symbols) is obtained
by using a different set of values for Nt,N, and qθ (x). As D increases,
the ratio μk/μkW ∼ D(k/2−1) increases, consistent with the broadening
of the level density σF (x) relative to the D = 1 result.

We recall that the level density σF (x) is independent of the
underlying probability distribution q(x) only when q(x) has
finite second moment; for example, even for F = 1, if q(x)
is the Cauchy distribution, the resulting level density is not
the same as the Wigner distribution σW (x) [16]. We also point
out that the existence of the asymptotic limit in Eqs. (2)–(4)
is determined by the large-N behavior of the inner-product
elements Fjk = δjkfj . In particular, if limN→∞ Tr F is finite
or diverges as Nα with α < 1, it follows that the level density
σF (x) has divergent higher moments and therefore it cannot
have a compact support. Numerical data obtained by using
Fjk = δjkj

D−1 with D < 1, or Fjk = δjke
−jα , show that the

support of the level density σF,N (x) widens as N increases.
Thus, universal results for the level density σF (x) are obtained
only when the underlying probability distribution q(x) and the
inner product F obey the constraints established here.

III. LEVEL-SPACING DISTRIBUTION

The level-spacing distribution pF (s) is formally given by

pF (s) = lim
N→∞

〈
1

N

(N−1)∑
i=1

δ

(
s − λi+1 − λi

�λavg

)〉
A

, (5)

where λi(M = AF ) are the eigenvalues listed in ascending
order, λi+1 � λi , and �λavg = ∑N−1

j=1 (λj+1 − λj )/(N − 1) is
the average spacing between the eigenvalues. Note that the
eigenvalue scale �F does not explicitly enter Eq. (5).

Figure 3 shows numerically obtained level-spacing dis-
tribution for the bulk (�10%) eigenvalues of random, real,
N × N matrices M = AF for D = {1,2.5,3}. Note that the
level-spacing scale is chosen so that the average level-spacing
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FIG. 3. (Color online) Level-spacing distribution pGOE
F (s) for

random, real, N × N matrices M = AF with D = {1,2.5,3}. The
D = 1 results (black open squares) are obtained by using Nt =
103, N = 2 × 103, Nb = 500, and a Gaussian distribution, and
match well with Wigner surmise pGOE(s) (black solid line). The
D = 2.5 results (red circles), obtained by using Nt = 103, N =
3 × 103, Nb = 500, and θ = π/4, show that the level-spacing
distribution maximum shifts toward the origin, its slope increases,
and it broadens. The D = 3 results (blue stars) are obtained by using
Nt = 100, N = 104, Nb = 500, and a uniform distribution.

is 1:
∫ ∞

0 spF (s)ds = 1. We have verified that these results are
independent of Nt 	 1, N � 102, and qθ (x) used to create
the matrix A. When D = 1, F is the identity matrix and the
numerical results (black squares) match well with the Wigner
surmise pGOE(s) (black solid line). As D increases, we see that
the level-spacing distribution becomes broader and the weight
of the distribution near the origin increases, as does its slope at
the origin. We recall that this distribution is invariant under real
matrix transformations O that obey OT FO = F . Since when
F = 1, they correspond to the group of orthogonal matrices,
we use the notation pGOE

F (s) to denote the level-spacing results
that are invariant under the F -dependent group of real matrix
transformations.

Figure 4 shows the level-spacing distribution for the bulk
(�10%) eigenvalues of random, complex, N × N matrices
M = AF for D = {1,2.5,3.0}. When D = 1, the numerical
results (black squares) match with the Wigner surmise pGUE(s)
(black solid line). As D increases, we see that the level-spacing
distribution becomes broader and the weight of the distribution
near the origin increases, as does its second derivative
at the origin. This distribution is invariant under complex
matrix transformations U that obey U †FU = F . Since they
correspond to the group of unitary matrices when F = 1, we
use the notation pGUE

F (s) to denote the level-spacing results that
are invariant under the F -dependent group of complex matrix
transformations. These numerical results strongly suggest
that the level-spacing distributions pGOE

F (s) and pGUE
F (s) are

independent of the underlying probability distribution qθ (x)
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FIG. 4. (Color online) Level-spacing distribution pGUE
F (s) for

random, complex, N × N matrices M = AF with D = {1,2.5,3}.
The D = 1 results (black open squares) are obtained by using
Nt = 103 = N , Nb = 200, and a Gaussian distribution, and match
well with the Wigner surmise pGUE(s) (black solid line). The D = 2.5
results (red circles), obtained using Nt = 103 = N , Nb = 500, and
θ = π/3, show that the level-spacing distribution maximum shifts
toward the origin, its second derivative at the origin increases, and
it broadens. The D = 3 results (blue stars) are obtained by using
Nt = 100, N = 3 × 103, Nb = 500, and a uniform distribution.

and are F -dependent generalizations of the GOE and GUE
universality classes.

The D dependence of the large-N level-spacing distri-
butions may be qualitatively understood by exploring it for
2 × 2 matrices M = AF . Here, A is a 2 × 2 random, real,
symmetric or complex, Hermitian matrix with entries drawn
from a Gaussian distribution with zero mean, variance σ , and
F = diag(1,f2), where we choose f2 = ND−1 	 1 to mimic
the effects of a nonstandard inner product F . We remind
the reader that, when D = 1, this procedure gives excellent
approximations, pGOE(s) and pGUE(s), to the large-N results
[1,18]. When D > 1, for real, 2 × 2 matrices M = AF , the
result is [19]

pGOE
2×2 (s) = 4

αβ
se−B+s2

I0(B−s2), (6)

where α2 = 16σ 2f2, β2 = 8σ 2(1 + f 2
2 ), B± = (α−2 ± β−2),

and I0(x) is the modified Bessel function of the first kind. The
variance σ is chosen so that the mean level spacing is unity.
In the limit f2 = ND−1 	 1, B± → πf2/32, (B+ − B−) →
1/π , and the constraint on the mean level spacing leads to
pGOE

2×2 (s) = (π
√

f2/32)s exp(−s2/π ). Thus, as D increases,
the distribution pGOE

2×2 (s) shifts toward the origin, the slope of
the distribution near the origin diverges, and, at large s, the
distribution decays more slowly than pGOE ∼ exp(−πs2/4).
When the 2 × 2 matrix A is complex, the result for the level-
spacing distribution is given by

pGUE
2×2 (s) =

√
2

π
μ2νs2e−ν2s2/2 D(sτ )

sτ
, (7)
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FIG. 5. (Color online) Normalized level-spacing distribution
pGOE

2×2 given by Eq. (6) (blue squares thick line), the Wigner surmise
pGOE (blue solid thin line), the distribution pGUE

2×2 given by Eq. (7) (red
dotted line), and the Wigner surmise pGUE (red dashed line). In each
case, as f2 	 1 increases, the distribution pGOE

2×2 (pGUE
2×2 ) shifts toward

the origin, its slope (second derivative) at the origin increases, and
the distribution broadens.

where μ−2 = 4σ 2f2, ν−2 = 2σ 2(1 + f 2
2 ), D(x) is the Daw-

son integral which satisfies D(x) ∼ x when x � 1 and
D(x) ∼ 1/(2x) when x 	 1, and τ 2 = (μ2 − ν2)/2. When
f2 = ND−1 	 1, the constraint on the mean level spac-
ing implies that σf2

√
4/π = 1. This leads to pGUE

2×2 (s) =√
8f2/π3se−s2/πD(s

√
f2/2π ). Therefore, as D > 1 in-

creases, the distribution pGUE
2×2 (s) shifts toward the origin, the

second derivative of the distribution at the origin diverges,
and, at large s, the distribution decays more slowly than
pGUE ∼ exp(−4s2/π ).

Figure 5 shows the level-spacing distributions pGOE
2×2 (s)

(blue squares thick line), the corresponding Wigner sur-
mise pGOE(s) = (πs/2) exp(−πs2/4) (blue solid thin line),
the distribution for complex matrices pGUE

2×2 (s) (red dotted
line), and the corresponding Wigner surmise pGUE(s) =
(32s2/π2) exp(−4s2/π ) (red dashed line) obtained by using
f2 = 100 	 1. We emphasize that although the analytical
results of the 2 × 2 case qualitatively correspond to the
large-N numerical data in regions s � 1 and s > 1, they are
not a good approximation in the intermediate range, and the
analytical answer for the large-N level-spacing distributions
pGOE

F (s) and pGUE
F (s) remains unknown.

IV. DISCUSSION

In this paper, we have investigated the level density and
level-spacing distributions for matrices M = AF �= M† that
are self-adjoint with respect to a diagonal inner product F ,
motivated by the radial integral in D � 1 dimensions.

We have shown that the level density σF (x) is dependent
upon, and solely characterized by, the inner product F . With
increasing D, the level density σF (x) develops a peak at the
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origin, and broadens its base, but continues to have a compact
support. We found that the level-spacing distribution pF (s)
for such matrices is dependent upon the inner product F ,
and upon whether the matrix A is real or complex. As D

increases, the level-spacing distributions pGOE
F (s) and pGUE

F (s)
shift toward the origin, become steeper near the origin, and
broaden. Our numerical results and qualitative analysis thus
strongly suggest F -dependent generalizations of the GOE and
GUE universality classes; in each case, however, analytical
expressions for the F -dependent n-point correlation functions
remain unknown [4].

The analysis in this paper is limited to a specific functional
form of the inner product F . Our results, however, raise the
broader question of universality classes for random matrices
that are self-adjoint with respect to a generic, nondiagonal,
positive-definite inner product F . The random, non-Hermitian
matrices M = AF are similar to those in Refs. [10] and [11],

except for the crucial difference that, in contrast to Refs. [10]
and [11], the eigenvalues of M = AF are always purely
real. The probability distribution p(M) ∝ exp[− Tr (A†A)] is
also similar to the measure for random, generalized Wishart
matrices [12,13]. In contrast to Refs. [12] and [13], however,
we have explored the eigenvalues of the matrix M = AF ,
and not the positive-definite matrix A†A. The generalizations
of the Wigner semicircle law, and the GOE and GUE
surmises for level-spacing distributions presented in this paper,
suggest that the statistical properties of random, self-adjoint
matrices, although independent of the underlying probability
distribution q(x), are richly varied.
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