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Origin of lognormal-like distributions with a common width in a growth and division process
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Lognormal statistical distributions are observed in a variety of scientific fields. The widths of these distributions
in the log scale are often similar, but the underlying mechanism that maintains these widths within a small range
has not been well explained. We show that a stochastic process of halving followed by addition can yield a
stationary distribution that resembles the universal lognormal distribution with a certain width. The mechanism
that we propose here would provide insight into the essence of why lognormal-like distributions in many systems
have a common width.
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I. INTRODUCTION

The shape of a frequency distribution curve provides clues
to the underlying processes that form the distribution. The
lognormal distribution is a type of probability distribution in
which the logarithm of a variable is normally distributed [1,
2]. Lognormal distributions are observed in various fields of
science including the life sciences [3], materials sciences, and
social sciences [4]. Interestingly, although the kinetics that
govern the systems represented by such distributions are likely
to be diverse, the width of observed lognormal distributions
on the logarithmic scale is often similar across fields when
they are normalized, as seen in some of the examples from
literatures plotted in Fig. 1(a). More specifically, the variance
of the natural logarithm of the variable (V) ranges from about
0.2 to 0.5 in these examples [4–14], and in this paper we refer
to it as the “common width.”

Here we are specifically interested in the fact that the
sizes of the living cells from bacteria to mammalian cells
also fall into lognormal distributions with the common width
[Fig. 1(a)]. Cell size distributions should be determined
by the growth and division processes [5], and the kinetics
of consecutive division (fragmentation) processes are well
studied and known to yield lognormal distributions under
certain conditions [15,16]. In this paper, we consider a simple
growth and division model mimicking bacteria as a basis for
the investigation of the underlying mechanism that produces a
lognormal distribution with the common width. We show that
a simple process involving the stochastic decrease of a variable
by halving (binary division) followed by an increase by growth
can yield a lognormal-like distribution with the common width
[V ≈ (ln 2)/2 = 0.35] as a stationary probability distribution
(SPD). We also discuss the universality and applicability of this
model, by showing that this characteristic distribution appears
regardless of the values of some set of parameters that govern
the dynamics.

II. MODEL

A bacterium grows in size and divides into two individuals,
which initially are each half the size of the original. Mimicking
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these dynamics, we assume an object with a positive variable x
(e.g., the size of bacteria) that grows at a rate hg(x) and divides
into b different individuals, each of which has a valuable
that is 1/b of the original (b > 1; b = 2 for halving) at a
probability hd (x) per unit time [Fig. 1(b)]. Then, we derive the
rate equation

∂f (x,t)

∂t
= b2hd (bx)f (bx,t) − hd (x)f (x,t) − ∂hg(x)f (x,t)

∂x
,

where f(x,t) is the frequency of the objects with variable x at
time t. The first term on the right-hand side, b2hd (bx)f (bx,t),
represents the increase in the frequency due to cell division
[Fig. 1(b), arrow i]. Because the range of x for the parental
objects [b�x in Fig. 1(b)] is b-fold greater than that of the
daughter objects (�x) and the division of a single parental
object bx produces b daughter objects of x, this term is
multiplied by b2. The second term, −hd (x)f (x,t), represents
the decrease in the objects’ frequency due to division [Fig. 1(b),
arrow ii]. The third term, − ∂hg(x)f (x,t)

∂x
, represents the flux of

the frequency due to continuous growth [Fig. 1(b), difference
of arrows iii and iv]. In this model, the total frequency
N (t) = ∫ ∞

0 f (x,t) dx increases over time as a result of the
increase in the number of objects by the division process;
therefore, we normalized f(x,t) to obtain the probability density
function p(x,t) = f (x,t)/N(t). By integrating ∂f (x,t)

/
∂t

with respect to x, we obtain dN(t)
/
dt = (b − 1)ν(t)N (t),

where ν(t) = ∫ ∞
0 hd (x) p(x,t) dx. Taking this increase in the

total frequency into account, we derive the rate equation of
p(x,t):

∂p(x,t)

∂t
= b2hd (bx)p(bx,t) − hd (x)p(x,t)

− (b − 1)ν(t)p(x,t) − ∂hg(x)p(x,t)

∂x
. (1)

This is the master equation for the general model.
As representative functions for hg(x) and hd (x) to be

analyzed, we examined cases in which the growth rate and
the division probability are proportional to arbitrary powers
of x(ng and nd , respectively), i.e., hg(x) = kgx

ng and
hd (x) = kdx

nd , where kg and kd are constants. These are
monotonic functions with a positive value for x > 0. This
description can generally cover various possible cases; for
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FIG. 1. (Color online) (a) Probability distributions of the vari-
ables for various objects reported in the literature. From these data,
the variance of the natural logarithm of the variable (V) was derived
by fitting to a normalized lognormal distribution exp[−X2/(2V )],
where X is the natural log of the normalized variable. Systems
include the following: E. coli size by forward scattering • [6]
(V = 0.35), E. coli volume from a Coulter counter ◦ [7] (0.28), mouse
lymphoblast volume + [9] (0.29), human platelet volume × [10]
(0.33), mouse islets of Langerhans size (cube root of cell number)
∗ [11] (0.48), liposome surface area (square of the diameter) � [12]
(0.41), nanoparticle length � [13] (0.32), and number of words in a
sentence – [14] (0.48). The dashed black line shows the SPD obtained
from the numerical simulation using the bacterial model [Eq. (1)
with hg(x) = 2.3 × 10−7x,hd (x) = 3.1 × 10−3x,b = 2], which gave
V = 0.43. The bold gray line shows the lognormal curve with V = (ln
2)/2 = 0.35. Our model gives a value for V that roughly falls within
the range described in the literature. The normalized variable on the
horizontal axis was calculated by subtracting a value for the invalid
range of variables where the frequency was zero from the original
value. The resulting value was then normalized so that the variable
at the maximum frequency (i.e., the mode) of the moving average of
three data points was one. The frequency of the normalized variable
on the linear scale from the literature was converted to frequency
on the logarithmic scale by multiplying by the variable itself.
(b) Schematic diagram of the general model described by Eq. (1).

example, when ng < 0, the object with a larger value of x
grows more slowly, and when ng > 0, the object with a larger
value of x grows faster. For such cases, Eq. (1) is rewritten as

∂p(x,t)

∂t
= bnd+2kd xnd p(bx,t) − kdx

nd p(x,t)

− (b − 1)kdμnd
(t)p(x,t) − kg

∂xngp(x,t)

∂x
, (2)

where μi(t) is the ith raw moment of p(x,t).

III. RESULTS

A. Distribution of the variable derived from the bacterial model

Let us first show a simple case regarding bacterial size. We
assume that both of the growth rate and the division probability
are proportional to x, i.e., ng = nd = 1 in Eq. (2) [17]. We also
assume that the division is a halving, i.e., b = 2. We designate
this condition as the bacterial model. We have used the finite
difference method to numerically solve Eq. (2). Because x
spans multiple orders of magnitude, we used a logarithmic
scale (grid width in the simulation was set to create a constant
bin for the logarithm of x) in the calculation. As a result, we
obtained a lognormal-like SPD [Fig. 1(a), black dashed line].
Again, the shape of this SPD is similar not only to that of

the size distributions of bacteria [5–8] but also to that of the
size distributions of other single-celled microorganisms [8],
mammalian cells [8–10], and organs [11] as well as nonliving
material such as liposomes [12] and nanoparticles [13] and
the number of words in a sentence [14] [Fig. 1(a), symbols].
Thus, the bacterial model representation of Eq. (2) might
possess an intrinsic feature that is common to a variety of
examples.

B. Dependence of the shape of the SPDs on the constants

To show how the model applies to more general cases other
than the bacterial model, we analyze the dependence of the
shape of the SPD on the constants in Eq. (2) (kg and kd,b, and
ng and nd ).

1. Dependence on kg and kd

Primarily, we show that the shape of the SPD is independent
of the rate constants kg and kd when ng = nd (including
the bacterial model). We will prove this by transforming the
equation. Let us define q(z) as the SPD for a normalized
variable z = x/a, where a = kg/kd , which satisfies p(x) dx =
q(z) dz. In this case, the shape of the probability distribution
for ln(z) is the same as that for ln(x), with the only difference
being in the scale. At the stationary state (∂p(x,t)

/
∂t = 0),

Eq. (2) is transformed to

b2(bz)nd q(bz) − znd q(z) − (b − 1)q(z)
∫ ∞

0
znd q(z) dz

− ang−nd
dzngq(z)

dz
= 0.

In this formulation, a is canceled out when ng = nd .
Therefore, in the bacterial model and in its extended model,
the shape of the SPD is independent of the rate constants kg

and kd .

2. Dependence on b

We performed a numerical simulation of Eq. (2) for various
values of b when ng = nd = 1 [Fig. 2(a)]. The resultant SPDs
fit a lognormal distribution; however, when b �= 2, the widths
deviated from the common width. We calculated the variance
of ln(x) (defined as VV) that represents the width of the SPD
in the log scale and plotted it against b [Fig. 2(b), ◦]. The
plot shows a monotonic increase of V with increasing b. We
have thus shown that b = 2 is an important parameter that
determines the common width.

3. Dependence on ng and nd

We again performed a numerical simulation and plotted
the SPDs for various values of ng and nd with b = 2 as a
constant [Fig. 2(c)]. The results show that the SPDs are similar
when ng = nd = n (n = −1∼4), although the SPD becomes
slightly narrower as n recedes from 1 [Fig. 2(c)]. When ng �=
nd [ng = 1.5 and nd = 1; Fig. 2(c), �], the SPD is still
lognormal-like, but there is a significant change in the width
of the distribution. Therefore, ng = nd is also an important
condition that determines the common width.
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FIG. 2. (Color online) The dependency of SPD on b, ng , and
nd . (a) SPDs derived from numerical simulations of Eq. (2) with
ng = nd = n = 1 and b = 1.2 (×), 2 (◦), and 5.7 (+). The solid lines
show the fit of each SPD to the lognormal. (b) The b dependency of
the variance of ln(x) (V). V was calculated from the SPDs derived
from the numerical simulation of Eq. (2) with various b values when
n = 0 (•), 1 (◦), 2 (+), and 3(×). The solid gray line shows V = (ln
b)/2. (c) SPDs with various ng and nd . The SPDs were derived from
numerical simulations of Eq. (2) with b = 2 for ng = 1.5 and nd = 1
(�) and for ng = nd = n = −1 (�), 0 (•), 1 (◦), 2 (+), 3 (×), and
4(�). The gray dashed line shows the fit of � to the lognormal, and
the solid gray line shows the lognormal with V = (ln 2)/2. (d) The
dependency of V on ng and nd . The V values were calculated from
Eq. (3) with b = 2 and nd − ng > −1 because nd − ng > −1 is a
sufficient requirement for the existence of the SPD. The dashed line
shows ng = nd .

4. Approximated analytical solution of V

To further investigate the dependence of the width of the
lognormal-like distribution on the constants, let us derive an
approximate analytical solution of V. By multiplying both
sides of Eq. (2) by xm and integrating both sides with respect
to x (0∼∞), we obtain an equation for the raw moments
of the SPD in the stationary state: kd (b1−m − 1)μnd+m −
(b − 1)kdμmμnd

+ kgmμng+m−1 = 0. From this equation, we
obtain two equations for m = 1 and m = 2. Then, using
the lognormal approximation with the mean of ln(x) M
and the variance of ln(x) V, the ith raw moment of the
lognormal can be expressed as μi = exp(iM + i2V/2).
From these three equations we obtain the equation for
V as

b + e2ndV = 2be(ng−1)V . (3)

In Eq. (3), the rate constants kg and kd are again canceled
out. When ng = nd = 1, V is obtained as (ln b)/2, which
agrees with the value of V derived from the numerical
simulation [Fig. 2(b), ◦] and shows that V is approximately
proportional to ln b. As b increases, the deviation of V from
(ln b)/2 increases because the approximation for V is based on
the raw moments of the linear variable x; the disagreement is

enhanced when the width of the SPD in the log scale increases.
We then plotted a contour map of V for ng and nd as derived
from Eq. (3) with b = 2 [Fig. 2(d)]. This plot clearly shows that
V is smaller when ng is smaller (objects with a smaller variable
grow relatively faster) and nd is larger (objects with a larger
variable divide relatively more frequently). More importantly,
the isocontours are parallel to the line ng = nd . This result
implies that V is nearly constant when ng = nd , regardless
of the values of each. We also used Eq. (3) to estimate
an approximate analytical solution for V when ng = nd . By
assuming that V is proportional to ln b for ln b near 0 and
for ng = nd = n, differentiating both sides of Eq. (3) with
ln b gives V = (ln b)/2. Indeed, the value of V from the
SPD derived from the numerical simulation is insensitive to n
and approximately (ln b)/2 even when n �= 1 [Fig. 2(b)]. As
mentioned above, V is approximately (ln b)/2 regardless of
kg,kd , and n as long as ng = nd ; that is, the common width
appeared [V ≈ (ln 2)/2] when the division is halving and the
growth rate and the division probability are proportional.

C. When the division is not exactly even

We have so far assumed that the variables of daughter
objects after division are exactly 1/b of the parental object.
Realistically, resultant variables after division often fluctuate.
To consider the effect of fluctuations in the division process,
we revise the division term in Eq. (2) with the conditions
ng = nd = n and b = 2. When the probability of the variable
after division is set to the uniform distribution function, the first
term on the right side in Eq. (2) becomes 2

∫ ∞
x

kds
n−1p(s,t) ds,

where s is the integration variable. This type of formulation
of the division has been described as a fragmentation of a
cluster [16,18,19]. In this case of the uniform distribution
function, the SPDs derived from the numerical simulation were
skewed in the log scale, and their widths were greater than
V = (ln 2)/2 [Fig. 3(a)]. This result indicates that there might
be some limit to the variability of the division process. We
next examined the case when the division fluctuates within
a Gaussian probability distribution. In this case, objects with
variable x divide into two daughters with variable ξ (0 < ξ

< x) and x−ξ , where the probability of ξ follows a Gaussian
distribution function with a mean value x/2 and a standard de-
viation σx [G(x/2,σx,ξ )] [Fig. 3(b), insets]. This function was
truncated to satisfy the expression

∫ x

0 G(x/2,σx,ξ ) dξ = 1.
Thus, the first term on the right side of Eq. (2) becomes
2
∫ ∞
x

kds
nG(s/2,σ s,x)p(s,t) ds. For the bacterial model (n =

1), the results of the numerical simulation for various values
of σ show that the skewness of ln(x) is close to zero for a
value of σ up to 0.1 [Fig. 3(b)]. This result implies that if
the fluctuation in b is Gaussian and moderate (σ < 0.1), the
shape of the SPD is insensitive to fluctuations in the division
process.

IV. DISCUSSION

Our numerical and analytical investigations show that
lognormal-like size distributions with the common width
[V ≈ (ln 2)/2; Fig. 1(a), bold gray line] result from a balance
between growth (continuous additive increase) and stochastic
division (discrete multiplicative decrease) processes that have
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FIG. 3. (Color online) The effect on the model when the variables
for daughter objects after halving are not exactly half of the
parental object. (a) SPDs derived from numerical simulation when
the probability of the variable after division is set to the uniform
distribution with n = 0 (•), 1 (◦), 2 (+), and 3 (×). The solid
gray line shows the lognormal with V = (ln 2)/2. By differentiating
both sides of the master equation by x in the stationary state, the
SPD can be solved only when n is 0 or 1 as 4a−2xexp(−2a−1x) or
a−1exp(−a−1x), respectively. (b) The σ dependency of the skewness
of ln(x) for SPDs calculated from the numerical simulation when
the probability of the variable after division is set to the truncated
normal distribution and when n = 1. The insets show the probability
distribution of the daughter variable ξ (0 to x) for each σ .

the following characteristics: (i) division is a halving process
(b = 2) and (ii) growth rate and division probability are pro-
portional (ng = nd ). We will now discuss the mechanism that
produces a stationary distribution such as size homeostasis.
Let us consider the average rates of increase and decrease for
the variables controlling the growth and division processes.
Because division occurs stochastically, the average decrease
rate should be the product of the division probability and the
amount of decrease in a single division. Here, the amount of
decrease in a single division is proportional to the variable (i.e.,
x−x/b = (1−1/b)x] because the division is a multiplicative
process [Fig. 1(b)]. From requirement (ii) above, the growth
rate hg(x) and the division probability hd (x) are proportional
such that the difference between the average increase rate
hg(x) and the average decrease rate hd (x)(1 − 1/b)x is
hd (x)(c − (1 − 1/b)x) [where c is a proportionality constant
c = hg(x)/hd (x)]. For smaller variables, the average increase
rate then becomes greater than the average decrease rate, while
for larger variables, the reverse applies. Because of this feature,
the variable remains within a range that forms a stationary
distribution. If the amount of decrease in a single division is
constant for all ranges of the variable, then the ratio of the
increase rate and the decrease rate is constant for all ranges of
the variable. In such a case, the distribution diffuses due to the

stochasticity in the division, and there is then no stationary dis-
tribution. As mentioned above, when requirement (ii) is true,
the major factor for producing stationary distribution is the
multiplicative property of the division. For a rigorous proof of
the existence of the stationary distribution, further studies are
required.

Next, we discuss the factors that produce the lognormality
and the common width of the SPD. In our model, the
variability of the value of x results only from the discreteness
of the stochastic division process. Because the amount of
the discrete decrease in a single division in the log scale is
constant for all ranges of the variable, i.e., ln(x)−ln(x/b) =
ln b, the distribution appears as a normal-like shape in the
log-scale curve. This aspect is in accordance with existing
fragmentation theories [15,16]. An important finding of our
model is that the distribution becomes stationary over time
due to the presence of the continuous growth term, and the
result for the width [V ≈ (ln b)/2] is determined by the
amount of the discrete decrease in a single division in the log
scale.

The two prerequisites of our model for producing a
lognormal distribution with the common width are reasonable
assumptions in nature. Halving might be applicable to a
process where division appears to be b > 2 because division
can be thought of as a sequence of halvings. Furthermore,
the proportionality of the growth rate and the division
probability is not a strict assumption because growth and
division dynamics may be governed by the same factors.
In reality, specific dynamics could be involved in producing
each frequency distribution. For instance, specific regulatory
mechanisms might play important roles in determining the
size of specific bacteria or of mammalian cells. Thus, the
applicability of our model to particular examples should be
examined in each case. However, the consideration of growth
and division processes would provide general insight into the
essence of the underlying processes that form lognormal-like
distributions with the common width. The combination of
the processes of addition and halving might contribute to the
ubiquity of these distributions in nature.
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