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The stationary points of the potential energy function V of the classical XY chain with power-law pair
interactions (i.e., interactions decaying like r−α with the distance) are analyzed. For a class of “spinwave-type”
stationary points, the asymptotic behavior of the Hessian determinant of V is computed analytically in the limit
of large system size. The computation is based on the Toeplitz property of the Hessian and makes use of a
Szegö-type theorem. The results serve to illustrate a recently discovered relation between phase transitions and
the properties of stationary points of classical many-body potentials. In agreement with this relation, the exact
phase transition potential energy of the model can be read off from the behavior of the Hessian determinant
for exponents α between zero and one. For α between one and two, the phase transition is not manifest in the
behavior of the determinant, and it might be necessary to consider larger classes of stationary points.
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I. INTRODUCTION

As has long been known, the stationary points of a classical
Hamiltonian function or potential energy function can be
employed to calculate or estimate certain physical quantities of
interest. Well-known examples include transition state theory
[1] or Kramers’s reaction rate theory for the thermally activated
escape from metastable states [2], where the barrier height
(corresponding to the difference between potential energies at
certain stationary points of the potential energy function) plays
an essential role. More recently, the noise-free escape from
quasistationary states (i.e., metastable states whose lifetimes
diverge with the system size) has been related to the presence of
stationary points of marginal stability [3]. Apart from studies
of dynamical properties, stationary points have also been
extensively used for estimating thermodynamical properties
by means of the superposition approach [4].

Dynamical properties like the aforementioned ones are,
as one might expect, not unrelated to the statistical physical
behavior of a system. Accordingly, as worked out beautifully
in Ref. [5], properties of stationary points of the potential
energy function1 reflect in dynamical and statistical physical
quantities simultaneously. This observation sparked quite
some research activity, reviewed in Ref. [6], with the aim
of relating equilibrium phase transitions to stationary points
and their indices. Most importantly, it was shown in Ref. [7]
that, under a number of technical conditions, the presence of
stationary points of the potential energy function is necessary
for a phase transition to take place. Subsequently, it was noticed
in Ref. [8] that the Hessian determinant of the potential energy
function, evaluated at the stationary points, adds a crucial
piece of information for discriminating whether or not a phase
transition occurs. Omitting some of the technicalities, the
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1The authors of Ref. [5] discuss topology changes of constant-

energy manifolds in phase space. Via Morse theory, such topology
changes can be related to the stationary points of a sufficiently smooth
potential energy function.

essence of the criterion on the Hessian determinant can be
captured as follows [9].

Criterion. Let

H (p,q) = C

2

N∑
k=1

p2
k + V (q1, . . . ,qN ), (1)

with some constant C � 0, be the total energy function of a
system with N degrees of freedom, where p = (p1, . . . ,pN )
and q = (q1, . . . ,qN ) denote the vectors of momenta and
positions. The potential energy V will, in general, have
stationary points qN

s defined as solutions of the set of equations

0 = ∂V (q)

∂qk

∣∣∣∣
q=qN

s

, k = 1, . . . ,N. (2)

The stationary points are assumed to be isolated, and their
number is assumed to grow at most exponentially with N . In
the thermodynamic limit N → ∞, the stationary points can
induce a phase transition at some critical energy per degree of
freedom ec only if the following two conditions are met:

1. There exists a sequence {qN
s }∞N=N0

of stationary points
of V such that

vc := lim
N→∞

V
(
qN

s

)
N

(3)

converges and vc = 〈v〉(ec) is the ensemble expectation value
of v = V/N at the energy ec.

2. The asymptotic behavior of the Hessian matrix H of V ,
evaluated at the critical points qN

s contained in that sequence,
is such that

lim
N→∞

∣∣detH
(
qN

s

)∣∣1/N = 0. (4)

In short, the criterion requires the existence of a sequence of
stationary points whose potential energy converges to vc and
whose Hessian determinant vanishes in the sense of (4) in the
thermodynamic limit. Setting the constant C in (1) to zero, the
kinetic energy term is absent, as is the case for many classical
spin models. The criterion therefore remains valid in this case,
with the only differences that the total energy H equals the
potential energy V , and the critical energy ec is identical to
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the critical potential energy vc [10]. This is the case we will be
concerned with in the present article.

Note that the above criterion is not sufficient for a phase
transition to occur: Finding a sequence of stationary points
with the behavior specified above does not guarantee a
transition to take place at the corresponding critical energy.
However, as model calculations suggest, the criterion usually
appears to single out the correct transition energies [8].
Importantly for the application of the criterion, it is not
necessary to know all stationary points of V , but a suitably
chosen subset may be sufficient. This matter of fact was pointed
out by Nardini and Casetti, and suitably constructed sequences
of stationary points were used in Ref. [9] to single out the phase
transition of a model of gravitating masses and analytically
determine its critical energy.

Comparing the Hessian determinant criterion to other
analytic tools in the statistical physics of phase transitions, its
remarkable property is that it is local in configuration space.
In contrast to, say, the calculation of a partition function,
no averaging over a large, high-dimensional manifold is
necessary. Instead, only the local properties of a sequence
of stationary points need to be analyzed. Of course, finding an
appropriate sequence of stationary points can be equally hard
or impossible, but in certain instances such a local approach
may prove beneficial.

In this article, we study the stationary points of the potential
energy function of a chain of classical XY spins (or rotators),
coupled by a pair interaction which decays like r−α with the
distance r of the spins on the lattice. The model is introduced
in detail in Sec. II. Although one-dimensional, it shows a phase
transition from a ferromagnetic to a paramagnetic phase for
exponents α between zero and two, and the aim of the present
work is to explore the relation between stationary points and
phase transitions for these values of α.

There are a number of interesting aspects of this
study that deserve mention: First, inspired by Ref. [9], in
Sec. III a method is devised of how to construct special classes
of stationary points for lattice spin systems. The potential
energy at such stationary points is evaluated in Sec. IV.
The Hessian at such a stationary point, as required by (4),
is found to be a Toeplitz matrix. As carried out in Sec. V,
this property allows us to employ a Szegö-type theorem for
the calculation of the asymptotic behavior of the Hessian
determinant in the limit of large system sizes N . The results
of Sec. V depend on the exponent α not only quantitatively,
but also qualitatively: For 0 � α � 1, the asymptotic behavior
of the Hessian determinant indeed signals the phase transition
at the exact value of the transition energy, as purported by
the criterion of Sec. I. For 1 < α � 2, no signature of the
phase transition is detected from the Hessian determinant of
the special class of stationary points considered, and one might
conclude that other (or larger) classes of stationary points have
to be taken into account. The findings are summarized and
discussed in Sec. VI.

II. CLASSICAL XY CHAIN WITH POWER-LAW
INTERACTIONS

Consider a set of N lattice sites labeled by an integer number
j ∈ {1, . . . ,N} where, to ease the notation, we assume N to

be odd. To each site, a planar vector of unit length is assigned,
parametrized by the angular variable θj ∈ (−π,π ]. The classi-
cal XY chain with power-law interactions is characterized by
the potential energy function

V (θ ) = N
N∑

i=1

(N−1)/2∑
j=1

1 − cos(θi − θi+j )

jα
(5)

with θ = (θ1, . . . ,θN ) and some nonnegative exponent α.
Although suppressed in the notation, indices i of the θi

variables are always to be considered modulo N , such as to
account for periodic boundary conditions and to guarantee
indices in the range from 1 to N . The potential energy function
(5) describes N classical spin variables on a ring (chain with
periodic boundary conditions), where each spin interacts with
every other. The interaction strength between two spins decays
proportionally to 1/jα , where j is the minimal distance of the
two spins on the ring. The potential energy (5) is endowed
with a normalization factor defined as

N =
(

2
(N−1)/2∑

j=1

1

jα

)−1

. (6)

The asymptotic behavior of N in the limit N → ∞ can be
computed, yielding

2N ∼

⎧⎪⎨
⎪⎩

(1 − α)21−αNα−1 for 0 � α < 1,

1/ ln N for α = 1,

1/ζ (α) for α > 1,

(7)

where ζ denotes the Riemann zeta function. This normal-
ization factor, introduced in Ref. [11], is chosen such as to
guarantee extensivity of the potential energy, i.e., a finite limit
of the potential energy per particle in the limit N → ∞.

The thermodynamic behavior of this model depends on the
exponent α in the following way: For 0 � α � 1, the ther-
modynamic behavior is identical to that of the mean-field (or
Curie-Weiss) case α = 0, showing a ferromagnetic continuous
phase transition characterized by mean-field critical exponents
[12]. For 1 < α � 2, the model also shows a phase transition,
but thermodynamic functions differ from the mean-field case
(see [13] and the comment in Sec. 5 of Ref. [14]). For α > 2,
no phase transition occurs. The three regimes for the exponent
α, the corresponding thermodynamic behavior, and also the
methods of proof are analogous to Dyson’s analysis of the
Ising chain with spin-spin interaction strengths decaying as
1/jα [15].

III. STATIONARY POINTS

Stationary points of the potential energy function (5) are
defined as the real solutions of the set of equations

0 = ∂V (θ )

∂θk

= N
(N−1)/2∑

j=1

sin(θk − θk+j ) + sin(θk − θk−j )

jα
(8)

for k = 1, . . . ,N . Since the potential energy function (5) is
invariant under a global rotation θi → θi + φ with φ ∈ R, the
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solutions of (8) come in one-parameter families: Given a sta-
tionary point (θ1, . . . ,θN ), every point (θ1 + φ, . . . ,θN + φ) is
also a solution of (8). The criterion of Sec. I, however, requires
all stationary points to be isolated, and we therefore have to get
rid of the trivial rotational degeneracy. We explicitly destroy
the rotational symmetry by fixing θN = 0 and eliminating
the equation with k = N in (8). The thermodynamics of this
reduced model is identical to that of the full one, since the
contribution of one degree of freedom to the partition function
is negligible in the thermodynamic limit.

Determining all solutions of the remaining set of nonlinear
equations is presumably a hard task (too hard for the author
at least). There are, however, two particularly simple classes
of solutions, similar in spirit to those constructed in [9] for
a one-dimensional model of gravitating masses: First, any
combination of θi ∈ {0,π} for i = 1, . . . ,N − 1 will make the
sine functions in (8) vanish and therefore satisfies the set of
equations. A second class of solutions is given by

θ (x)
m = mx with x = 2πn/N, (9)

where m,n ∈ {1, . . . ,N} and hence 0 < x < 2π . These so-
lutions have constant radian x between neighboring spins,
implying sin(θk − θk+j ) = sin(θk−j − θk), and therefore each
of the summands in (8) vanishes separately.

These two classes of solutions are illustrated in Fig. 1
and, as is easily checked numerically, are not exhaustive.
This is probably expected, in particular when comparing with
the results for the nearest-neighbor XY chain for which all
stationary points can be computed analytically [16]. The two
classes of solutions introduced above are also solutions in the
case of nearest-neighbor interactions, but many more solutions
exist. Since nearest-neighbor interactions can be considered
as the limit α → ∞ of the power-law decay discussed in the
present article, it is maybe not too surprising to find that (at
least many of) these solutions persist to finite α.

We will in the following restrict the analysis to “spinwave”
stationary points (9), mainly for the reason that the Hessian
matrix at these points, as discussed in detail in Sec. V, is a
Toeplitz matrix. This structure is particularly helpful when
calculating the large-N asymptotics of the Hessian determi-
nant. Moreover, from the results on the nearest-neighbor XY

chain in Ref. [16], one may be led to conjecture that the
spinwave stationary points are of particular importance for
our purposes: At least for nearest-neighbor interactions, the
spinwave stationary points have the smallest absolute value of

FIG. 1. Sketch of stationary points of the potential V for N = 8,
where θi is the angle between the arrow and the dashed axis. Top:
Stationary points where all θi ∈ {0,π}. Bottom: Spinwave stationary
point (9), where all differences θi − θi−1 between neighboring angles
are equal, with differences chosen such that θ0 = θN , in compliance
with the periodic boundary conditions.

the Hessian determinant among the stationary points of a given
potential energy and therefore determine whether the criterion
of Sec. I is satisfied or not.

IV. POTENTIAL ENERGY AT STATIONARY POINTS

The criterion of Sec. I involves the potential energy
evaluated at the stationary points. Inserting the spinwave
stationary points (9) into the potential energy function (5),
we obtain

v(x) := V (θ (x))

N
= N

N

N∑
i=1

(N−1)/2∑
j=1

1 − cos(jx)

jα

= 1

2
− N

(N−1)/2∑
j=1

cos(jx)

jα
. (10)

Since | cos x| � 1 for all x, we have∣∣∣∣∣N
(N−1)/2∑

j=1

cos(jx)

jα

∣∣∣∣∣ � N
(N−1)/2∑

j=1

1

jα
= 1

2
, (11)

confirming that the normalization factor N in (6) had been
chosen appropriately in order to render the potential energy
per spin finite in the thermodynamic limit.

In the limit N → ∞ and for certain values of the exponent
α, the summation in the second line of (10) can be performed
explicitly: For α = 1 we use formula (1.441.2) of Ref. [17],
and for α ∈ 2N0 formula (1.443.1) of the same reference, to
obtain

v(x) = 1

2
+ N

2

{
ln[2(1 − cos x)] for α = 1,

(−4π2)α/2Bα[x/(2π )]/α! for α ∈ 2N0,

(12)

for the potential energy of a spinwave solution θ (x) in the
thermodynamic limit. Bα denotes the Bernoulli polynomial of
order α as defined, for example, in Sec. 9.62 of Ref. [17]. The
graph of v(x) is shown in Fig. 2 (upper plot) for exponents
α = 0,1,2,4, and 6. For noninteger values of α, the infinite
sum in (10) cannot be performed, but v(x) can be evaluated
numerically for reasonably large system sizes N . The resulting
curves (not shown in Fig. 2) are found to interpolate smoothly
between the curves for integer α. For a given positive, even
α = 2,4,6, . . . , the potential energy values cover densely the
entire range of potential energies per spin accessible to the
system in the thermodynamic limit. This is a desirable property
when applying the criterion of Sec. I, as it allows us to use
spinwave stationary points for the construction of sequences
of stationary points whose potential energies converge to any
desired value accessible to the system.

For exponents in the range 0 � α � 1, the situation is
more intricate. For large, but finite, system sizes N , the
potential energies corresponding to the spinwave stationary
points θ (x) become denser and denser on the interval (0,1/2)
with increasing N . In the thermodynamic limit, however, the
potential energy converges to 1/2 for any given value of
x ∈ (0,2π ), and to zero for x = 0, resulting in the straight line
plotted in Fig. 2 (upper plot). The approach to this behavior
with increasing system size N is illustrated in Fig. 2 (lower
plot) for the exponent α = 1/2.
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Equation (12) and the numerical results in Fig. 2 demon-
strate that the potential energy per spin of a sequence {θ (x)} of
spinwave stationary points for increasing N , but with a fixed
value of x, indeed converges to a limiting value, as required
in Eq. (3) of the criterion in Sec. I. To construct a sequence
of stationary points with a given value of x, it will in general
be necessary to restrict the sequence to some infinite subset
{N1,N2, . . . } of system sizes such that 2πn/Ni = x for some
n ∈ {1, . . . ,Ni}.

V. HESSIAN DETERMINANT AT STATIONARY POINTS

In order to apply the criterion stated in Sec. I, we also
need to evaluate the determinant of the Hessian matrix at a
stationary point. Again, in order to destroy the trivial global
rotational symmetry of the potential energy function V , one
of the spin variables, say, θN , is fixed at zero. The resulting
potential energy is a function of N − 1 variables θ1, . . . ,θN−1,
and its HessianHN is an (N − 1) × (N − 1) symmetric matrix
with entries

[HN ]kl(θ ) = ∂2V (θ )

∂θk∂θl

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N
(N−1)/2∑

j=1

cos(θk − θk+j ) + cos(θk − θk−j )

jα
for k = l,

−N cos(θk − θl)

�(l − k)α
for k �= l,

(13)
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FIG. 2. (Color online) Upper plot: The graph of the potential
energy per spin e(x) of a spinwave solution θ (x) in the thermo-
dynamic limit as given in (12). For a given positive, even α =
2,4,6, . . . , the energy values cover densely the entire range of
energies per spin accessible to the system in the thermodynamic
limit. Lower plot: Potential energy per spin e(x) for α = 1/2 and
spinwave stationary points (9), plotted for various system sizes
N . With increasing N , the curve approaches a horizontal line of
energy 1/2.

for k,l = 1, . . . ,N − 1, where

�(l − k) =
{|l − k| for |l − k| � (N − 1)/2,

N − |l − k| else,
(14)

is the minimal distance between k and l on the ring. Evaluating
the Hessian at a spinwave stationary point θ (x) as defined in
(9), one obtains

[HN ]kl(θ
(x)) =

{
1 − 2v(x) for k = l,

h
(x)
l−k for k �= l,

(15)

with

h
(x)
j = −N cos(jx)

�(j )α
(16)

and with the potential energy per spin v(x) as given in (10).
Without fixing θN to zero, this matrix would be circulant, and
the eigenvalues were readily obtained by Fourier transforming
a row vector of the matrix. Fixing θN corresponds to eliminat-
ing the N th row and column of the matrix, and although the
resulting matrix is not circulant anymore, it retains the Toeplitz
property: As is evident from (15), the elements [HN ]kl depend
only on the difference l − k of the indices.

A. Szegö’s theorem

For our purposes, the Toeplitz property comes in handy,
as a number of theorems on the large-N asymptotics of
determinants are known for sequences of N × N Toeplitz
matrices [18]. The kind of sequence {TN }∞N=1 of matrices TN

that is typically considered in the mathematics literature is
where the matrix elements

[TN (f )]kl ≡ tl−k(f ) (17)

are given as Fourier coefficients of a complex-valued function
f defined on the circle,

tj (f ) = 1

2π

∫ π

−π

f (φ)e−ijφ dφ. (18)
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For particularly well-behaved f , Szegö’s theorem states that
the large-N asymptotic behavior of the determinants of such a
sequence is given by

lim
N→∞

|det[TN (f )]|1/N = exp

[
1

2π

∫ 2π

0
ln f (φ) dφ

]
, (19)

and many generalizations of this result to larger classes of
symbols f can be found in the literature [18]. Inverting the
Fourier transformation (18), we can write

f (φ) =
∞∑

j=−∞
tj eijφ. (20)

For the XY chain, using Eqs. (15) and (16) and a standard
trigonometric identity, we obtain

f (x)(φ) = 1 − 2v(x)

−N
∞∑

j=1

cos[j (x + φ)] + cos[j (x − φ)]

jα
. (21)

for the symbol of the Hessian, evaluated at a spinwave
stationary point θ (x) as defined in (9). Then, as in the calculation
of the potential energy in Sec. IV, the formulas (1.441.2) and
(1.443.1) of Ref. [17] can be used to perform the summation
in (21) for the values α = 1 or α ∈ 2N of the exponent.

1. Exponent α = 1

In the case of α = 1 we can use the identity

∞∑
j=1

cos(jx)

j
= −1

2
ln[2(1 − cos x)] (22)

(formula 1.441.2 of Ref. [17]) to write (21) in the form

f (x)(φ) = N
2

ln

[(
cos x − cos φ

cos x − 1

)2]
. (23)

To compute the Hessian determinant as a function of the
potential energy per spin, we invert the first case in Eq. (12),
yielding

cos x(v) = 1 − 1

2
exp

(
2v − 1

N

)
. (24)

Inserting this expression into (23) gives

f (x(v))(φ) = 1 − 2v + N ln

∣∣∣∣2(1 − cos φ) − exp

(
2v − 1

N

)∣∣∣∣ .
(25)

As a consequence of the asymptotic behavior (7) of N , the
logarithmic term on the right-hand side vanishes, and we obtain

f (x(v))(φ) = 1 − 2v. (26)

From Eq. (19), the large-N asymptotic behavior of the Hessian
determinant (15) is found to be

D1(v) := lim
N→∞

| detHN (θ (x))|1/N = 1 − 2v (27)

in the case of α = 1, valid for accessible potential energy
values from the interval [0,1/2]. The straight line (27) is
plotted in Fig. 3 together with numerical results for the Hessian
determinants for several finite system sizes. The convergence
of the finite-system data to their infinite-system limit D1 is
slow, but this is no surprise as the finite-N corrections in (25)
are logarithmic.

Interpreting (27) in terms of the criterion of Sec. I
[and Eq. (4) in particular], we observe a vanishing Hessian
determinant at the potential energy per spin v = 1/2. This
value coincides precisely with the known phase-transition
potential energy of the model and nicely illustrates the criterion
of Sec. I.

2. Exponents α ∈ 2N0

In the case α ∈ 2N0 we can use the identity
∞∑

j=1

cos(jx)

jα
= −(−1)α/2 1

2

(2π )α

α!
Bα

(
x

2π

)
(28)

(formula 1.443.1 of Ref. [17]), valid for 0 � x � 2π . From
this formula, and considering that x,φ ∈ [0,2π ], we can write

∞∑
j=1

cos[j (x ± φ)]

jα
= −(−1)α/2 1

2

(2π )α

α!

×
{

Bα

(
x±φ

2π

)
for 0 � x ± φ � 2π,

Bα

(
x±φ

2π
∓ 1

)
else.

(29)

Inserting these identities into (21), we obtain

f (x)(φ) = −(−1)α/2 N
2

(2π )α

α!

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Bα

(
x+φ

2π

) − 2Bα

(
x

2π

) + Bα

(
x−φ

2π

)
for φ � x and φ � 2π − x,

Bα

(
x+φ

2π
− 1

) − 2Bα

(
x

2π

) + Bα

(
x−φ

2π

)
for φ � x and φ > 2π − x,

Bα

(
x+φ

2π
− 1

) − 2Bα

(
x

2π

) + Bα

(
x−φ

2π
+ 1

)
for φ > x and φ > 2π − x,

Bα

(
x+φ

2π

) − 2Bα

(
x

2π

) + Bα

(
x−φ

2π
+ 1

)
for φ > x and φ � 2π − x.

(30)

For our purposes, the case α = 2 is particularly interesting,
as this is the only positive even exponent for which the

XY chain with power-law interactions exhibits a phase
transition. In this case, making use of the Bernoulli polynomial
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B2(x) = x2 − x + 1/6, the symbol simplifies to

f (x)(φ) = − 6

π2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ2 for φ � x and φ � 2π − x,

(φ − 2π )2 − 2π (x − φ) for φ � x and φ > 2π − x,

(φ − 2π )2 for φ > x and φ > 2π − x,

φ2 + 2π (x − φ) for φ > x and φ � 2π − x.

(31)

To compute the Hessian determinant as a function of the
potential energy per spin, we invert the function v(x) in (12),
yielding

x(v) = π (1 ±
√

1 − 4v/3) (32)

in the case of α = 2, and insert this expression into (31).
The symbol f (x)(φ), plotted in Fig. 4, is easily seen to

be positive for some values of x and φ, and negative for
others. In principle this causes a problem when computing

the large-N asymptotic behavior of the Hessian determinant
(15) from Szegö’s theorem (19), where we have to integrate
the logarithm of f (x). Instead, to circumvent this problem,
we chose to replace f (x) in (19) by its absolute value and
compute

D2 := exp

{
1

2π

∫ 2π

0
ln |f (x(v))(φ)|dφ

}
. (33)

Inserting (31) and performing the integration, we obtain

D2 = 1

6
(3 − √

9 − 12v)2

⎧⎪⎨
⎪⎩

exp
[
−2 + 2

√
2
√

1 − 4v/3 − 1arccoth
(√

3−4v

2
√

9−12v−3

)]
for 0 � v � 9/16,

exp
[
−2 + 2

√
2
√

1 − 4v/3 − 1arctanh
(√

3−4v

2
√

9−12v−3

)]
for 9/16 < v � 3/4.

(34)

The graph of D2 is shown in Fig. 5 together with numerical
results for the Hessian determinants for several finite system
sizes. The numerical results are in such excellent agreement
with (34) that it is tempting to believe that taking the absolute
value of f [x(v)] in (33) is not merely an approximation, but gives
an exact asymptotic expression for the Hessian determinant.
Unfortunately, the author was unable to proof this conjecture.2

Interpreting (34) in terms of the criterion (4), we observe
a strictly positive Hessian determinant on the entire range of
accessible potential energies per spin v ∈ [0,3/4]. For the class
of spinwave stationary points considered, the analysis of the
Hessian determinant therefore fails to give an indication of the
phase transition known to exist for α = 2.

For even exponents α = 4, 6, 8, . . . , analogous calculations
can be performed. The corresponding asymptotic results for
the determinant, computed according to (33), share the most
important features of the case α = 2: The analytic large-N
asymptotic result Dα is bounded away from zero (see Fig. 6)
and in excellent agreement with numerical data (not shown).
For α > 2, however, the fact that Dα is bounded away from
zero was to be expected, as no phase transition occurs in
this case. The graphs in Fig. 6 also suggest that, in the
limit α → ∞, Dα approaches the function D∞(v) = |2v − 1|.
This limit corresponds to nearest-neighbor interactions on the
lattice, and indeed D∞ coincides with the behavior of the

2The author suspects a fairly trivial reason for why the replacement
of f (x) by its absolute value in (33) works but is for some reason
failing to track it down.

determinant of the nearest-neighbor XY chain reported in
Ref. [16]. Despite the absence of a phase transition in the
XY chain with nearest-neighbor interactions, D∞ vanishes
at v = 1/2. Note that this finding is not in conflict with the
criterion of Sec. I, since a vanishing D is not claimed to
be sufficient for a phase transition. Moreover, as explained
in more detail in Ref. [16], the potential energy v = 1/2 at
which D∞ vanishes corresponds to infinite temperatures in
the nearest-neighbor model, and at least within the standard

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1.0

N 501

N 301

N 101

|d
et

H
N
|1

/
N

v

FIG. 3. (Color online) The N th root of the Hessian determinant
detHN for α = 1, evaluated at spinwave stationary points θ (x),
plotted versus the corresponding potential energy per spin v(x). With
increasing system size N , the numerically computed determinant
slowly (logarithmically) approaches the analytic large-N asymptotic
result D1 (black line).
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FIG. 4. (Color online) The graph of the symbol f (x)(φ) for α = 2
as given in (31), plotted as a function of x and φ.

canonical setting where temperature is the control parameter,
such a transition would be elusive in any case.

3. Other values of α

For other values of the exponent α, Szegö’s theorem can still
be used to obtain the asymptotic behavior Dα of the Hessian
determinant but, to the best of the author’s knowledge, the
infinite sums in (10) and (21) cannot be calculated anymore.
Numerical results for the cases α = 5/4 and α = 3 are
shown in Fig. 6. Again, Dα is bounded away from zero for
all α > 1.

B. Hadamard bounds

The Szegö-type theorem we used in Sec. V A allowed us
to obtain exact asymptotic large-N results of the Hessian
determinant of spinwave stationary points. The drawback,
however, is that an evaluation of the resulting infinite Fourier
sums is possible only for the exponents α = 1 and α ∈ 2N0.
In the present section we will supplement these results by
an upper bound on Dα , valid for any α � 0. Comparing to

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.2

0.4

0.6

0.8

N 501

N 301

N 101

|d
et

H
N
|1

/
N

v

FIG. 5. (Color online) The N th root of the Hessian determinant
detHN for α = 2, evaluated at spinwave stationary points θ (x),
plotted versus the corresponding potential energy per spin v(x).
Already for moderate system sizes N , the finite-system data are in
excellent agreement with the analytic large-N asymptotic result D2

(black line).
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FIG. 6. Asymptotic large-N behavior Dα of the Hessian determi-
nant, plotted as a function of the potential energy per spin v for various
exponents α. Dark lines correspond to values of α for which exact
analytic results are available, light lines (for α = 6/5 and α = 3)
were obtained numerically. The dark solid straight line is obtained
analytically for α = 1, but coincides with the numerical results [and
also with the Hadamard bound (39)] for α ∈ [0,1]. Dα vanishes at
v = 1/2 for α ∈ [0,1] (long-range interactions) as well as for α = ∞
(nearest-neighbor interactions). For all finite α > 1, Dα is bounded
away from zero.

numerical data, we will observe that the bound is sharp for
0 � α � 1.

A bound on the determinant of a (real or complex) N ×
N -matrix M can be obtained by the celebrated Hadamard
inequality

|det M| �
N∏

j=1

‖cj‖, (35)

where cj denotes the j th column (or row) vector of M ,
and ‖cj‖ its Euclidean norm. In contrast to the methods of
Sec. V A that are based on the Toeplitz property of the Hessian,
the Hadamard inequality can be used to bound the Hessian
determinant not only of spinwave stationary points (9), but
also of any kind of stationary point. In the context of phase
transitions and their relation to stationary points and their
determinants, Hadamard bounds first have been used in [9].

The Hadamard bound (35) becomes particularly simple for
a circulant matrix. In this case, ‖cj‖ = ‖ck‖ for all j,k =
1, . . . ,N , and hence

|det M|1/N � ‖cj‖ (36)

for any j . The Hessian (15) of a spinwave stationary point we
want to study is not quite a circulant matrix, but it is closely
related: HN (θ (x) is an (N − 1) × (N − 1)-matrix, obtained
from an N × N circulant matrix by deleting one row and one
column. The norm of every column of HN (θ (x) is therefore
bounded above by the norm

‖c‖ =
{

[1 − 2v(x)]2 + N 2
N∑

j=2

cos2[x(j − 1)]

�(j − 1)2α

}1/2

�
√

[1 − 2v(x)]2 + N (37)
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of any column of the original N × N circulant matrix. A bound
on the Hessian determinant is then given by

|detHN (θ (x(v)))|1/N � ‖c‖ �
√

(1 − 2v)2 + N . (38)

For α ∈ [0,1], we have observed in (7) that the normalization
constant N goes to zero in the limit N → ∞, yielding

lim
N→∞

|detHN (θ (x(v)))|1/N � |1 − 2v|. (39)

For the accessible values of the potential energy per spin
v ∈ [0,1/2], this bound coincides with the exact α = 1
asymptotic result for D1 obtained in Sec. V A. Comparing
(39) to numerical data, it is tempting to conjecture that the
bound is tight, i.e., coinciding with the exact asymptotics, for
all α ∈ [0,1], but the author was not able to prove this. Such
a result for Dα (i.e., one that is independent of the precise
value of α) would also agree well with the known fact that
the thermodynamics of the XY chain has no α-dependence as
long as α is between zero and one [12]. In particular, the bound
(39) vanishes at v = 1/2, and this value coincides with the
phase-transition potential energy of the model for α ∈ [0,1].
At the same time, the value v = 1/2 is also the maximum
potential energy per spin of the model, and the phase transition
is of the “partial equivalence of ensembles”-type as described
in [19]. For α > 1, N converges to the finite value 1/[2ζ (α)]
in the thermodynamic limit, and the resulting bound (38) is
strictly positive and cannot give any indication of the phase
transition of the model.

VI. DISCUSSION AND CONCLUSIONS

We have analyzed the stationary points of the potential
energy function (5) of the classical XY chain with power-law
pair interactions, decaying like r−α with the distance r on
the lattice. Computing all stationary points of V seems to be
way out of reach, but special classes of stationary points can be
constructed. For the class of “spinwave-type” stationary points
where all differences θi − θi−1 between neighboring angles
are equal, we have analytically computed, in the limit of large
system size N , the asymptotic behavior Dα of the Hessian
determinant of V as a function of the potential energy per spin
v. The computation is based on the Toeplitz property of the
Hessian and makes use of a Szegö-type theorem. The analytic
results have been compared to numerical computations of the
Hessian determinants for system sizes of up to N = 501, and
the agreement was found to be excellent.

The motivation behind these calculations is based on a
recently discovered relation between phase transitions and
the properties of stationary points of classical many-body
Hamiltonian functions, as reviewed in Sec. I. According to this
relation, a phase transition is signaled by the vanishing of the
(suitably scaled) Hessian determinant of V , evaluated along
a suitably chosen sequence of stationary points of V , in the
thermodynamic limit (4). Moreover, the thermodynamic limit
value of the (potential) energy of such a sequence of stationary
points coincides with the phase-transition (potential) energy of
the model described by V .

For the XY chain with power-law pair interactions with
exponent 0 � α � 1, we found that the asymptotic value
Dα of the Hessian determinant at the spinwave stationary
points is zero at the potential energy per spin v = 1/2. In
agreement with the criterion on phase transitions and stationary
points, this value coincides precisely with the phase-transition
potential energy of the model.

For α > 1, Dα is bounded away from zero, giving no
indication of the phase transition occurring for 1 < α � 2.
This is, of course, a somewhat disappointing result, as this
is the most interesting case: For α > 1 an exact solution
of the thermodynamics of the XY chain is not known, and
obtaining an exact expression for the critical energy would
have been a remarkable result. However, the reader should
keep in mind that we have considered only the special class
of spinwave stationary points. One good reason to focus
on this class was the observation that, for the XY chain
with nearest-neighbor interactions studied in Ref. [16], the
spinwave stationary points were the “flattest” ones (in the
sense of having the smallest value of Dα for a given value
of the potential energy per spin v), and therefore good
candidates for Dα to vanish. On the other hand, the presence of
spinwave stationary points depends crucially on the boundary
conditions, and their number grows slower than exponentially
with the system size. Hence, in order to find an asymptotically
vanishing Hessian determinant in the sense of (4), it appears
to be necessary to go beyond the study of spinwave stationary
points.

Beyond the analysis of specific features of the XY chain
with power-law interactions, the results reported in the article
provide a number of more general indications that might prove
useful for further applications of the criterion of Sec. I: First,
the strategies of how to construct special classes of stationary
points can be extended straightforwardly to other types of spin-
spin-interactions and to higher-dimensional lattices. Second,
Szegö-type results should be applicable for the computation
of the large-N asymptotics of the Hessian determinant also in
other one-dimensional models. And third, the crucial step for
successfully applying the criterion to some model is certainly
the choice of a suitable class of stationary points. The present
case study, although not fully conclusive by itself, provides
a further piece of information that can contribute toward an
understanding of this issue.

An interesting open question is why the spinwave stationary
points discussed in this article allow one to successfully detect
the phase transition for exponents α between zero and one but
fail in the case of α ∈ (1,2], but unfortunately the author can
only speculate about the reasons. In general, one would expect
that a phase transition can be detected successfully only from
stationary points that are somehow “relevant” for the transition,
in the sense that they correspond to states that dominate the
behavior of a phase in the thermodynamic limit. Physical
intuition about the phases of a model should therefore be of
help when choosing a class of stationary points. But for the XY

model with power-law interactions, no significant difference
seems to distinguish the cases α ∈ [0,1] and α ∈ (1,2]: In
both cases, the transition separates a ferromagnetically ordered
from a paramagnetic phase, and it remains unclear to the author
why spinwave stationary points capture the transition in one
case, but not the other.
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[14] J. Fröhlich, R. Israel, E. H. Lieb, and B. Simon, Commun. Math.

Phys. 62, 1 (1978).
[15] F. J. Dyson, Commun. Math. Phys. 12, 91 (1969); F. J. Dyson,

Commun. Math. Phys. 12, 212 (1969).
[16] D. Mehta and M. Kastner, Ann. Phys. (NY) (2011).
[17] I. S. Gradshteyn and I. M. Ryzhik, in Table of Integrals, Series,

and Products, 7th ed., edited by A. Jeffrey and D. Zwillinger
(Academic Press, San Diego, 2007).
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