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(Received 10 November 2010; revised manuscript received 28 January 2011; published 9 March 2011;

publisher error corrected 15 March 2011)

We determine the critical behavior of a reactive model with many absorbing configurations. Monomers A

and B land on the sites of a linear lattice and can react depending on the state of their nearest-neighbor sites.
The probability of a reaction depends on temperature of the catalyst as well as on the energy coupling between
pairs of nearest-neighbor monomers. We employ Monte Carlo simulations to calculate the moments of the order
parameter of the model as a function of temperature. Some ratios between pairs of moments are independent
of temperature and are in the same universality class of the contact process. We also find the dynamical critical
exponents of the model and we show that they are in the directed percolation universality class whatever the
values of temperature.
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I. INTRODUCTION

In a recent paper [1] we investigated the static properties
of a reaction model between pairs of monomers A and B on a
linear lattice, where we considered lateral interactions between
nearest-neighbor adsorbed species as well as thermal effects.
The phase diagram of the model was determined and we
observed that, depending on temperature, the absorbing state
is a poisoned state with different concentrations of monomers
A and B. In spite of this fact, the static critical exponents
of the model are in the same universality class of the directed
percolation (DP) [2,3]. The DP is the fundamental universality
class related to absorbing phase transitions. A set of static and
dynamic critical exponents, which are in full agreement with
those defining the DP in (2 + 1) dimensions, were recently
obtained in an experiment concerning different phases of a
liquid crystal [4,5]. The task of devising experimental phase
transitions to absorbing states is very complex, because in real
systems the presence of impurities and other inhomogeneities
[6] hinders large fluctuations.

Amongst the several models displaying transitions to
absorbing states, the contact process (CP) is the simplest one
that undergoes this kind of transition. This model was proposed
to mimic the spreading of a disease [7], and its dynamics
are driven by the rate of change of healthy individuals
into unhealthy ones. Surface catalytic reaction models [8],
transition to turbulence [9], and traffic flow [10] are also
examples where one can find transitions to an absorbing state.

The model proposed by Ziff, Gulari, and Barshad [8] to
explain the oxidation of the carbon monoxide over a surface
is the simplest model that exhibits first-order and continuous
phase transitions to absorbing states. In the literature there
are many other interesting examples of catalytic reaction
models with phase transitions from active to absorbing
states [11–14]. In particular, we are interested in the study
of catalytic reaction models with competitive reactions be-
tween two types of monomers: the autocatalytic reaction
A + A → A2 [15] and the simple monomer-monomer reaction
A + B → AB [16]. This competitive reaction model was
studied, at zero temperature, through the dynamical mean-field
approximation and Monte Carlo simulations [17,18]. The

results showed that the critical exponents of the model are in
the DP universality class, and that the absorbing state is
unique, with the lattice completely poisoned by monomers
of type B. The consideration of thermal effects into this model
produces a multitude of absorbing configurations; however, the
DP universality class is preserved regarding its static critical
properties [1].

A question arises concerning the dynamical critical expo-
nents of the model. As shown by Mendes et al. [19], transition
into a nonunique absorbing state may exhibit nonuniversal
behavior regarding the dynamical critical exponents. They
generalized the scaling theory to take into account exponents
that can change with the initial configuration. As the model we
studied recently presents different absorbing configurations,
we decided to investigate its dynamical critical exponents in
order to see if they are dependent on the starting configuration.
In order to accomplish this we revisit our model and calculate
its corresponding dynamical critical exponents as a function of
temperature, which is equivalent to changing the nature of the
absorbing state. We also calculate the moment ratios between
some moments of the order parameter to tune the critical point
for each value of temperature. The critical point agrees with
the values we have found in our previous work [1] and, for all
considered temperatures, the dynamical critical exponents of
the model are in the DP universality class. Special attention is
also paid to the spreading dynamics, since the initial condition
could affect the dynamical critical exponents δ, η, and ζ , as
pointed out by Mendes et al. [19].

This paper is organized as follows: in the next section we
define the model and its energy parameters. In Sec. III we
present the details related to the moment ratios calculations. In
Sec. IV, we start our time-dependent calculations, determining
the dynamic exponent z. In Sec. V, we complete the discussion
concerning the dynamic aspects of the model, performing
a spreading analysis to calculate its dynamical exponents.
Finally, in the last section, we present our main conclusions.

II. THE MODEL

In this study we consider a reaction model where two
competitive reactions, the autocatalytic reaction A + A → A2
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[15] and the monomer-monomer reaction A + B → AB [16],
occur on a catalyst which is represented by a linear lattice. The
monomers A and B arrive at the lattice, which is in contact with
an infinite reservoir of monomers, with probabilities yA and
yB respectively, where yA + yB = 1. These probabilities are
related to the partial pressure of the gases inside the reservoir.
Each monomer can occupy only a single vacant site in the
lattice. The individual processes that can occur in our model
are the following:

A(g) + v → A(a), (1a)

B(g) + v → B(a), (1b)

A(a) + A(a) → A2(g) ↑ , (1c)

A(a) + B(a) → AB(g) ↑ , (1d)

where v represents a vacant site in the lattice and the labels
(g) and (a) denote a monomer in the gaseous and adsorbed
phases, respectively. The first two steps describe the adsorption
of the species on the substrate, and the next two steps describe
the possible reactions between adsorbed monomers occupying
nearest-neighboring sites. Immediately after a reaction, A2

or AB molecules go away from the catalyst and a pair of
nearest-neighbor vacant sites is left on the substrate. Diffusion
and desorption of the species are not take into account in this
model.

Costa and Figueiredo [17] studied this model in the
adsorption-controlled limit, where the reaction rates are much
larger than the adsorption rates. In their model, monomer A

always lands on the lattice and reacts quickly with one of its
nearest neighbors if they are occupied by A or B monomers.
The probability to react with an A monomer is the same as
to react with a B monomer. This model exhibits a unique
absorbing state, which is characterized by a lattice completely
poisoned by monomers of type B. The steps (1a)–(1d) are
equivalent to a lattice model for the birth and death of
vacancies, akin to the contact process. The processes (1a)
and (1b) account for the annihilation of a vacancy due to the
adsorption of a particle, while the processes (1c) and (1d) give
the birth of a vacancy due to the reaction step. In this way, we
can summarize the four steps above by a simple birth-death
process for vacancies: ν → ∅ and ν → 2ν.

As in our previous study concerning the static properties of
the model, the temperature of the catalyst and interactions
between nearest-neighbor adsorbed species are the main
ingredients of the model. As a matter of fact, the adsorption
process cannot occur, even if the chosen lattice site for
deposition is empty. Every time we try to deposit a new
monomer on an empty site of the lattice, we calculate the
change �E in energy that this event would cause in the whole
system. We assume that there is a repulsive energy ε (ε > 0)
between nearest-neighbor pairs of A monomers or A and B

monomers, as well as between monomers and the catalyst. For
any temperature, the probability that a B monomer is adsorbed
is one, provided that its nearest neighbors are vacant sites or
occupied by B monomers. On the other hand, an A monomer
is always adsorbed if its nearest-neighbor sites are both empty.

The adsorption of a monomer occurs with probability

exp[−Ea/(kBT )]

exp[−Ea/(kBT )] + exp[−Eb/(kBT )]
, (2)

FIG. 1. Transitions and their respective weights.

where Ea and Eb mean the energies after and before adsorption,
respectively. Writing �E = (Ea − Eb), and introducing a
factor 2 in the last equation to render probabilities in the range
0 to 1, we finally get the Boltzmann-like weight factor for the
probability of an adsorption event:

α = 2

1 + e+�E/(kBT )
, (3)

where the temperature T of the substrate is measured in units
of ε/kB, and kB is the Boltzmann constant. In Fig. 1 we display
a diagram illustrating the transitions for which the factor given
by Eq. (3) is evaluated.

Then, due to the interaction-energy parameters of our
model, we always have �E > 0, which gives α → 0 when
T → 0 and α → 1 at high temperatures. If the monomer is
not adsorbed, it reacts with probability (1 − α). This choice
recovers, in the limit T → 0, the model considered by Costa
and Figueiredo [17] where the absorbing state is unique,
corresponding to a lattice completely filled with B monomers.
In that model, it is not possible for a monomer of type A to
stay adsorbed in the presence of another A or B monomer, and
Eq. (1), for T → 0, is consistent with an absorbing state where
the lattice is filled only with monomers of type B. Through
mean-field calculations and Monte Carlo simulations we have
seen that, at finite temperatures, the absorbing states depend on
temperature. When temperature changes from zero to infinite
we find that the absorbing state also changes continually from
a pure B state to a pure A state. For finite values of temperature,
the absorbing state is a mixture of A and B monomers, with
fixed values of their concentrations, but with many different
microscopic configurations of the species.

III. MOMENT RATIOS CALCULATIONS

From our previous results [1] concerning the critical values
of the control parameter yA we calculate the ratios between
some moments of the order parameter nv , which is the fraction
of empty sites in the lattice. This approach was applied in the
context of equilibrium systems [20] and, later, successfully
extended to models out of equilibrium that present transitions
to absorbing states [21–23]. The procedure is based on the
fact that some ratios between different moments of the order
parameter do not depend upon the system size at the critical
point, showing universal values. The curves corresponding to
these moment ratios for different system sizes cross themselves
at the critical point where the transition from the active to the
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FIG. 2. Ratio R1 versus yA. Left panel shows results for T = 0.5 and the right panel for T = 0.9. The symbols are associated with different
system sizes L as follows: �= 256, �= 512, �= 1024, � = 2048, �= 4096.

absorbing state occurs. The moments of the order parameter
are defined by

mk = 〈
nk

v

〉
, (4)

where k indicates the order of the moment. We consider
moments up to fourth order and the second-order cumulant
Q2 = m2 − m2

1. Static Monte Carlo simulations are then used
to achieve the stationary states for different values of yA and for
system sizes ranging from L = 256 to L = 4096. It is worth
mentioning that the only true stationary state is the absorbing
one, since we are dealing with finite lattices. Actually, one must
refer to the transition between absorbing and quasistationary
states. We look for a time window where the system can be
found in a stationary active state, and then calculate averages
over several samples, taking into account only the surviving
ones. The time spent by the system in the active phase depends
on the system size L and on the distance from the critical point
(� = yA − yAc

). For large L and small �, the quasistationary
order parameter can be written as

m1(�,L) ∝ L−β/ν⊥f (�L1/ν⊥ ), (5)

where the scaling function f (x) ∝ xβ for large x, and β and ν⊥
are the critical exponents associated with the order parameter
and the spatial correlation length, respectively. For � = 0 we
can write

m1(0,L) ∝ L−β/ν⊥ , (6)

since f (x) ≈ 1 when x approaches 0. To calculate higher-order
moments it is useful to consider the probability distribution
P (nv,L) for the density of empty sites at the critical point.
The kth moment of the order parameter comes from

mk =
∫ 1

0
nk

vP (nv,L)dnv = IkL
−kβ/ν⊥ , (7)

where the quantity Ik does not depend upon L in the large-L
limit. Thus, it is possible to write ratios between powers of
some moments of the order parameter; for example,

mr
k

ms
l

∝ L−(β/ν⊥)(kr−ls). (8)

If we choose kr = ls, the ratio becomes independent of the
system size at the critical point. In this scenario, plots of these
ratios as function of the control parameter yA will intercept
themselves at the critical point for any L. We evaluated the
following ratios for each temperature: R1 = Q2/m2

1, R2 =
m4/m2

2, R3 = m3/m3
1, R4 = m3/m1m

2
1, R5 = m2/m2

1.
The simulations were carried out considering periodic

boundary conditions and a lattice completely empty as the
initial condition. In order to save computational time we
applied a continuous-time algorithm. Instead of looking for
an empty site in the whole lattice, we restrict our search to
the sites of a list of empty sites at each instant of time. It is
worthwhile because, close to absorbing states, the number
of empty sites is very small. Thus, our Monte Carlo step
(MCs) is a dynamic time unit. For the lattice size L = 256
and T = 0.5 we computed averages for 1.0 × 105 samples
in the interval between 600 to 800 MCs, where the samples
showed a quasistationary behavior. For L = 4096 and T =
1.3, we needed 1.0 × 103 samples in the interval 9.0 × 103

to 1.2 × 104 MCs. From these averages we determined the
mean fraction of empty sites for each yA, T , and L. Figure 2
shows the ratio R1 versus yA for different system sizes and
temperatures T = 0.5 and T = 0.9.

For the temperature T = 0.5 and for all lattice sizes, they
cross themselves at yA = 0.6435, and for T = 0.9 they cross at
yA = 0.692. In Fig. 3 we collect all these ratios for T = 0.5 at
the critical point. There is a small dependence of the moment
ratios on the lattice size L. By linearly extrapolating these
ratios for L → ∞ and considering only the three largest lattice
sizes (i.e., L = 1024, 2048, and 4096), we determined the five
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FIG. 3. Moment ratios as a function of the lattice size L at the
critical point for T = 0.5.

ratios for four different temperatures. In Table I we summarize
these results.

As we can see, these ratios do not depend on temperature
and present universal values at the critical point. Within the
uncertainty errors, the values we found are in close agreement
with those determined for the contact process [21].

IV. DYNAMIC CRITICAL EXPONENTS

The mean time for a selected sample s to become poisoned
is defined as

τs =

∑
t

tpv

∑
t

pv

. (9)

For each temperature the characteristic time τs is a function of
the system size L and of the control parameter yA. Averaging
over all the samples we have τ = 〈τs〉, which is expected to
follow the scaling relation [15]

τ ∼ Lzf
(
�L1/ν⊥

)
, (10)

where the scaling function f behaves as f (0) ∼ 1. Thus, at
the critical point, a log-log plot of τ versus the system size
L is a straight line whose slope is the dynamical exponent z.
We started the simulations with an empty lattice and recorded

TABLE I. Estimates of the moment ratios at the critical point for
each temperature. We consider a range of temperatures from T = 0.5
up to T = 1.3, covering different regions of the phase diagram.

T R1 R2 R3 R4 R5

0.5 0.167(3) 1.551(2) 1.551(7) 1.291(6) 1.168(3)
0.9 0.166(4) 1.546(3) 1.515(4) 1.289(7) 1.169(2)
1.3 0.168(2) 1.548(3) 1.517(2) 1.296(4) 1.165(2)
1.33 0.169(3) 1.549(4) 1.511(6) 1.294(4) 1.169(3)
CP [21] 0.1736(2) 1.554(2) 1.523(6) 1.301(3) -

FIG. 4. Characteristic time τ versus system size L. The top figure
displays the results for T = 0.5 and the bottom one for T = 0.9.
The straight lines indicate the critical point and their slopes give the
dynamical exponent z.

the time until the lattice becomes completely occupied by
monomers A and B. By employing the critical values we found
from the moment-ratio calculations, we simulated several
samples close to the critical point. In this way we determined
a more precise value for yAc

and calculated the dynamical
exponent z from the slope of the curve.

We show in Fig. 4 plots of τ against L for two temperatures.
When T = 0.5 we have a straight line for yA = 0.643 76 and
its slope is z = 1.590(7), while for T = 0.9, yA = 0.692 05
and z = 1.575(6). We also performed the calculation for other
values of temperature. For instance, for T = 1.3, we have yA =
0.8693 and z = 1.583(8) and for T = 1.33, we have yA =
0.9262 and z = 1.584(7). We also observe that the dynamic
exponent z does not depend on temperature and its values
are, within the uncertainty errors, in good agreement with
those of the DP universality class. In the next section we also
investigate the dynamical critical behavior by means of an
epidemic analysis.
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FIG. 5. Ps(t), R2(t), and nv(t) versus t in log-log scale for T =
0.5. The curves are associated, from bottom to top, with the values
yA = 0.6435, yA = 0.6436, and yA = 0.6437. The central line defines
the critical point.

V. SPREADING DYNAMICS

Originally proposed by Grassberger and de la Torre [24],
this method considers the evolution of the activity generated
by a single seed in the lattice, very close to the absorbing state.
In our case a single seed means one empty site at the center
of a completely covered lattice. The quantities of interest are
the survival probability Ps(t), the mean number of empty sites
nv(t), and the mean square displacement R2(t). Starting from
an initial condition with only one empty site at the center of
the lattice, we followed the time evolution of 2.6 × 106 inde-
pendent samples until a maximum time t = 1 × 104 MCs. We
defined our time step as being 100 attempts to change the con-
figuration of the lattice. In order to prevent boundary effects we
simulate our system in a lattice of size L = 5 × 105, so there
will be no activity at the edges of the lattice for the time scale
we are dealing with. It is worth mentioning that nv(t) is aver-
aged over all the samples, while Ps(t) and R2(t) are calculated
only with those samples which have not reached the absorbing
state at time t . Following Grassberger and de la Torre, we
assume that the quantities of interest depend on the parameters
t , �(� = yAc

− yA), and −→x , according to the scaling variables
x2/tζ and �t1/ν‖ times some power of t , �, or x2. In the scaling
regime, for large system sizes and long times, the conditional
probability of finding an empty site at the position −→x , provided
that at t = 0 we had only one empty site at −→x = 0, is given by

ρ
(−→x ,t

) ≈ tη−dζ/2F (x2/tζ ,�t1/ν‖), (11)

FIG. 6. Ps(t), R2(t), and nv(t) versus t in log-log scale for T =
0.9. The curves are associated, from bottom to top, to the values
yA = 0.69, yA = 0.692 05, and yA = 0.693

where d is the system dimensionality. The survival probability
can be written as

Ps(t) ≈ t−δϕ (�tν‖) , (12)

with ν‖ being the critical exponent associated to the temporal
correlation length. From Eq. (11) we can write expressions
for the mean number of empty sites:

nv(t) =
∫

tη−dζ/2F (x2/tζ ,�t1/ν‖ )ddx, (13)

and for the mean square displacement:

R2(t) =
∫

x2tη−dζ/2F (x2/tζ ,�t1/ν‖)ddx

nv(t)
. (14)

TABLE II. Dynamic exponents of the one-dimensional model for
some selected temperatures.

T δ η ζ Z

0.[18] 0.160(3) 0.314(2) 1.260(1) 1.54(5)
0.5 0.164(5) 0.308(3) 1.263(2) 1.590(7)
0.9 0.162(4) 0.313(3) 1.262(4) 1.575(6)
1.3 0.159(2) 0.311(2) 1.258(3) 1.56(2)
1.33 0.158(3) 0.314(2) 1.260(2) 1.584(8)
DP[25] 0.159464(6) 0.313686(8) 1.26523 1.580 745(10)
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TABLE III. Spreading exponents and the ultimate-survival-probability exponent for three different initial conditions. ρnat stands for the
initial concentration of A monomers obtained from the evolution rules of the model.

ρA,ini. δ∗ η∗ ζ ∗ β∗ 2(1 + β/β∗)δ∗ + 2η∗ − ζ ∗

ρnat. = 0.108 0.162(4) 0.313(3) 1.262(4) 0.273(6) 0.01(2)
0.4 0.101(2) 0.378(3) 1.268(2) 0.171(2) 0.01(3)
0.8 0.035(4) 0.472(5) 1.353(2) 0.059(3) −0.01(5)

The exponents δ, η, and ζ in the last three equations are the
dynamic critical exponents that we want to evaluate. At the
critical point (� = 0) these equations are reduced to

Ps(t) ≈ t−δ, (15)

nv(t) ≈ tη, (16)

R2(t) ≈ t ζ , (17)

and we can find the exponents δ, η, and ζ from the straight-line
behavior of the log-log plots of the quantities Ps(t), nv(t), and
R2(t) versus t , respectively. A key issue here is the choice
of initial condition. Only one empty site at the center of the
lattice is a mandatory requirement, but the other sites can be
occupied by monomers of type A and B in several ways.
For each value of temperature the configuration of the lattice
is a composition of different concentrations of monomers A

and B. The results we show below were obtained from an
initial condition generated by the dynamic rules of the model,
producing a natural configuration. We fixed T and started
with an empty lattice, waiting for the complete coverage of
the lattice. Then, the central site is made empty, and we
restart the simulation to measure Ps(t), nv(t), and R2(t). Later
in this section we return to the discussion concerning the
initial condition. In Fig. 5 we show the log-log plots of the
quantities of interest for T = 0.5. The three curves shown are
associated, from bottom to top, with the values yA = 0.6435,
yA = 0.6436, and yA = 0.6437. The central curve in each
plot indicates the critical point and its slope gives the critical
exponent. Then, we find that δ = 0.164(5), η = 0.308(3), and
ζ = 1.263(2). In Fig. 6 we show the results for the temperature
T = 0.9. In this case the curves are associated with the values
yA = 0.69, yA = 0.692 05, and yA = 0.693. From the slope
of the central curves in each plot we have δ = 0.162(4),
η = 0.313(3), and ζ = 1.262(4).

In Table II we present the results for other values of
temperature and for the dynamic exponent z. We also show in
the table the best values of these dynamical exponents found
for the DP universality class in one dimension. Once again,
we also note that the dynamical exponents found in this work
do not depend on temperature despite the initial configuration
being dependent on it. The set of dynamical critical exponents
of the present model are in close agreement with those of the
DP universality class in one dimension.

Grassberger and de la Torre also showed that the spreading
exponents should obey the hyperscaling relation

4δ + 2η = dζ, (18)

where d is the system dimensionality. From Table II it
is clear that the exponents we have obtained follow the

relation given by equation (18). We have also considered an
arbitrary initial configuration that is different from the natural
configuration of the system. Actually, the hyperscaling relation
is obeyed only for the natural configuration. Consider, for
instance, the case where we start the simulation with the
lattice filled exclusively with monomers of type B except
by its central site, which is left empty. For T = 0.9 the
critical value of yA remains the same (i.e., yA = 0.692 05);
however, the exponents assume the following new values:
δ = 0.182(6), η = 0.286(4), and ζ = 1.250(4). These figures
do not belong to the DP universality class and do not satisfy
the hyperscaling relation (18). The same occurs starting with
a lattice randomly filled with monomers of type A and B.
Again, for T = 0.9, the critical point is not shifted, but the new
exponents are δ = 0.076(3), η = 0.402(4), and ζ = 1.248(6).
The spreading exponents are clearly sensitive to the initial
condition, changing with the concentration of monomers A

and B. To deal with this surprising behavior, a generalized
scaling theory was devised to allow the dynamic exponents to
depend on the initial configuration [19]. This approach led to
the generalized scaling relation

2

(
1 + β

β∗

)
δ∗ + 2η∗ = dζ ∗, (19)

where β is the usual DP exponent associated to the order
parameter and the starred exponents are functions of the initial
condition. The modified hyperscaling relation expression
given by Eq. (19) was successfully applied to the dimer
reaction model and to the threshold transfer process [19].
In order to illustrate this behavior in our model, we have
determined the ultimate survival probability exponent β∗ for
three different initial conditions, including the natural one. The
initial condition is characterized in terms of the concentration
ρA,ini of A monomers. In Table III we show the four exponents,
and a test of the generalized hyperscaling relation for each
initial condition and T = 0.9. Within the uncertainties, the
generalized hyperscaling relation is verified. When ρA,ini =
ρnat we see that β∗ � β, and Eq. (19) is reduced to Eq. (18).
For ρA,ini �= ρnat we have β∗ �= β, and the exponents must be
related by the generalized Eq. (19).

VI. CONCLUSIONS

In this work we have studied a one-dimensional model
of competitive reactions between two types of monomers
(A and B) that exhibits a continuous phase transition from
active to absorbing states. We have taken into account in
our model the temperature of the catalyst as well as lateral
interactions between pairs of nearest-neighbors monomers
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adsorbed on the surface. For each value of temperature, the
absorbing state is characterized by different concentrations of
monomers A and B. We have calculated some ratios between
moments of the order parameter of the system, which is the
fraction of empty sites of the lattice. We have shown that the
moment ratios do not depend on the temperature and are in
close agreement with those calculated for the contact process.
We have also determined the dynamic exponent z, which is
related to the lifetime of the active states, and we have seen
that it is also insensitive to changes in temperature, and its
values are in accordance with the DP universality class. The
spreading exponents δ, η, and ζ are clearly sensitive to the
initial conditions. If the simulation is carried out from a system-
generated initial configuration, which is a natural configuration

of the model, the exponents assume the DP values and follow
the usual hyperscaling relation. However, when we start the
simulations with a nonnatural configuration as, for instance,
ρA,ini �= ρnat, we find new dynamical exponents that do not
belong to the DP universality class. In this case, we have seen
they satisfy the generalized hyperscaling relation, which is
valid for arbitrary initial conditions.
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