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Sufficient conditions for thermal rectification in general graded materials
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We address a fundamental problem for the advance of phononics: the search of a feasible thermal diode. We
establish sufficient conditions for the existence of thermal rectification in general graded materials. By starting
from simple assumptions satisfied by the usual anharmonic models that describe heat conduction in solids, we
derive an expression for the rectification. The analytical formula shows how to increase the rectification, and the
conditions to avoid its decay with the system size, a problem present in the recurrent model of diodes given by
the sequential coupling of two or three different parts. Moreover, for these graded systems, we show that the
regimes of nondecaying rectification and of normal conductivity do not overlap. Our results indicate the graded
systems as optimal materials for a thermal diode, the basic component of several devices of phononics.
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I. INTRODUCTION

The study of the macroscopic laws of thermodynamic
transport from the underlying microscopic models is still a
challenge in statistical physics. In particular, the investigation
and control of the energy transport, which mainly involves
conduction of heat or electricity, is a fundamental problem
of huge theoretical and practical interest. The invention of
transistor and other devices used to control the electric
charge flow has led to the well-known development of
modern electronics. Its much less developed counterpart—the
study and control of heat current—has, recently, presented
interesting progress, promising to establish, in addition to
electronics, a new physical branch in energy and information
processing—the phononics [1,2]: researchers have proposed
nanodevices such as thermal diodes or rectifiers [3–5] (already
built in practice [6]), thermal transistors [7], thermal logic
gates [8], and memories [9]. The most fundamental component
of these instruments is the thermal diode, a device in which
heat flows preferably in one direction. In a short analysis,
we may say that this promising advance of phononics is
directly dependent on the development of its basic component:
a thermal diode with suitable properties.

There are analytical attempts to investigate the phenomenon
of thermal rectification such as the works on spin-boson
junctions [10], billiard systems [11], etc., but most of the results
are by means of computer simulations, see, e.g., the work of
Li and collaborators [12]. The most common and recurrent
design of diodes is given by the sequential coupling of two
or more chains with different anharmonic potentials [3–5].
Although frequently studied, this procedure is criticized [5]
due to the difficulty to construct such diode in practice, and
due to the significative decay of the rectification with the
system size. Recently, a different procedure was considered
by Chang et al. [6], who built, in an experimental work, the
first microscopic solid-state thermal rectifier by using a graded
material: nanotubes externally and inhomogeneously mass-
loaded with heavy molecules. It is worth to recall that graded
materials, i.e., inhomogeneous systems whose composition
and/or structure change gradually in space, are abundant in
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nature, can also be manufactured, and have attracted great
interest in many areas [13]: there are many works devoted
to the study of the electric, optical, mechanical, and other
properties of graded materials, but there are few studies in
relation to their heat conduction investigation.

In the present work, we address this fundamental problem
of phononics: the build of an appropriate thermal diode,
namely, a simple system that may be constructed in practice,
and with a rectification that does not decay with the system
size. We start from simple conditions for the local thermal
conductivity, conditions that are quite general and that are
satisfied by anharmonic crystal models used to describe heat
conduction in solids, and then we show that they are sufficient
to lead to rectification in graded models. Moreover, we derive
an expression for such rectification that allows us to see
how to make it larger, and how to avoid its decay with the
system size. In short, we show that properly manipulated
graded materials have suitable properties of rectification, and
so, they shall play a central role in the building of thermal
nanodevices. The simplicity of the initial conditions and of the
arguments to establish the results shows the ubiquity of thermal
rectification in graded systems. Moreover, the existence of
simple ingredients for the rectification, as described here,
deserves attention: as well known, in the literature, the
mechanism behind rectification in graded models is far from
being clear, e.g., we recall the comment of Casati [2] on the
explanation of Chang et al. [6]: “The authors speculate that
solitons might be involved in the rectification process, but
this is still to be confirmed.” Here, we do not have to make
any speculation about the vibrational spectra or other intricate
property.

II. EXISTENCE OF THERMAL RECTIFICATION

Let us introduce our assumptions and derive our results.
We consider a chain with N sites, where the first site is

connected to a thermal bath at temperature T1, and the last
site is connected to a bath at temperature TN . It is possible
to extend our analysis also for a d-dimensional lattice with
two thermal baths at the boundaries: the chain structure is
represented by the axis (direction) of the heat flow. We assume
that it is possible to build a temperature gradient in the system.
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Such condition always happens if Fourier’s law holds, but we
do not demand this law here (anyway, we will study cases
where Fourier’s law holds). Precisely, we assume that the heat
flow from site j to j + 1 is given by

Fj,j+1 = −Kj (∇T )j = 1

Cj T
α
j + Cj+1T

α
j+1

(Tj − Tj+1), (1)

i.e., with, say, the local thermal conductivity given by the
average of a function of the local temperatures and other
parameters of the system. For the homogeneous model, such
expression reads

FH
j,j+1 = 1

C
(
T α

j + T α
j+1

) (Tj − Tj+1) = 1

C ′T̄ α
j

(Tj − Tj+1),

where T̄ α
j = (T α

j + T α
j+1)/2, C ′ = 2C, which is exactly the

formula described by several results (on homogeneous models)
from the literature, e.g., in Ref. [14], we have α = 2, C ′T 2 =
1/K = λ2T 2/ω9μ3, where λ is the coefficient of the quartic
anharmonic potential, ω is the coefficient of the interparticle
quadratic interaction, and μ is the harmonic pinning coef-
ficient. Still for this φ4 model, in different conditions and
methods, Bricmont and Kupiainen [15] and Spohn et al. [16]
found Kj = T −2

j . And, in reference to works with detailed
computer simulations, Aoki and Kusnezov [17] obtain for
this one-dimensional φ4 model, K ∝ T −1.35; similarly, N. Li
and B. Li [18] obtain K ∝ T −1.5, with slight changes in
the exponent that depend on the values of the pinning and
anharmonicity. It is also worth to recall that, by using an
analytical simplified scheme (derived from a rigorous and
more intricate approach [19]), we obtain a similar formula for
the local thermal conductivity of the graded anharmonic self-
consistent chain [20], i.e., of the anharmonic, inhomogeneous
model given by a chain of oscillators with quartic on-site
potential, quadratic nearest-neighbor interparticle interaction,
particles with different masses and inner stochastic reservoirs
connected to each site.

Let us now prove the existence of thermal rectification for
a graded anharmonic system with a temperature gradient in
the bulk, and whose local thermal conductivity depends on
temperature (which does not follow in the harmonic case), and
changes as we run the chain.

From the fact that the heat current comes into the system
by the first site, passes trough the chain and goes out by the
last site, we have

F1,2 = F2,3 = · · · = FN−1,N ≡ F . (2)

These equations together with Eq. (1) give us

F
(
C1T

α
1 + C2T

α
2

) = T1 − T2,

F
(
C2T

α
2 + C3T

α
3

) = T2 − T3,

· · · = · · · ,
F

(
CN−1T

α
N−1 + CNT α

N

) = TN−1 − TN.

Summing up the equations, we find

F = K (T1 − TN )

N − 1
,

where

K = {
C1T

α
1 + 2C2T

α
2 + · · ·

+ 2CN−1T
α
N−1 + CNT α

N

}−1
(N − 1), (3)

that is Fourier’s law for the case of the thermal conductivity
K remaining finite as N → ∞. From Eqs. (1) and (2), it
follows that

T1 − T2

C1T
α

1 + C2T
α

2

= T2 − T3

C2T
α

2 + C3T
α

3

= · · ·

= TN−1 − TN

CN−1T
α
N−1 + CNT α

N

. (4)

Thus, given the temperatures of the baths T1 and TN , by using
the equations above we determine the inner temperatures T2,
T3, . . . , TN−1. For ease of computation, let us consider the
system submitted to a small gradient of temperature: T1 = T +
a1ε, TN = T + aNε, ε small. Hence, Tk = T + akε + O(ε2).
We will carry out the computations only up to O(ε). And so,
up to O(ε), we have T α

k = T α + αT α−1εak (that comes from
the Taylor series), and

Tk − Tk+1

CkT
α
k + Ck+1T

α
k+1

= (ak − ak+1)ε

(Ck + Ck+1)T α
,

as said, up to O(ε). From this equation and Eq. (4), we obtain

a1 − a2

C1 + C2
= a2 − a3

C2 + C3
= · · · = aN−1 − aN

CN−1 + CN

. (5)

We may rewrite these equations as

a1 − a2

C1 + C2
= a1 − a2

C1 + C2
,

a1 − a2

C1 + C2
= a2 − a3

C2 + C3
,

· · · = · · · ,
a1 − a2

C1 + C2
= aN−1 − aN

CN−1 + CN

.

Summing them up, we obtain

a1 − a2

C1 + C2
(C1 + 2C2 + · · · + 2CN−1 + CN ) = a1 − aN

⇒ a2 = a1 + (aN − a1)

C̃(N )
(C1 + C2),

where C̃(N ) ≡ (C1 + 2C2 + · · · + 2CN−1 + CN ). Similarly,
writing (ak−1 − ak)/(Ck−1 + Ck) instead of (a1 − a2)/(C1 +
C2) in the left-hand side of the list of equations above, we
obtain

ak = a1 + (aN − a1)

C̃(N )
C̃(k), (6)

for k = 2, . . . ,N − 1. And so, for the thermal conductivity (3)
it follows that

K = (N − 1){T αC̃(N ) + αT α−1ε(a1C1 + 2a2C2 + · · ·
+ 2aN−1CN−1 + aNCN )}−1. (7)

To investigate the existence or absence of rectifica-
tion, we need to analyze the heat flow for the sys-
tem with inverted thermal baths, that is, we compute the
new thermal conductivity for the same system, but with
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temperatures T ′, where T ′
1 = TN and T ′

N = T1. Following
the previous manipulations, we see that, in the system with
inverted baths, the new temperature for the site k is T ′

k =
T + a′

kε, where, for k = 2,3, . . . ,N − 1,

a′
k = aN − (aN − a1)

C̃(N )
C̃(k). (8)

Obviously a′
1 = aN , and a′

N = a1. Hence, the expression for
the “inverted” thermal conductivity becomes

K′ = (N − 1){T αC̃(N ) + αT α−1ε(a′
1C1 + 2a′

2C2 + · · ·
+2a′

N−1CN−1 + a′
NCN )}−1. (9)

And, with simple manipulations, we get

1

K − 1

K′ = αT α−1ε(a1 − aN )

(N − 1)C̃(N )

×{C̃(N )2 − 4Q̃(N ) − 2CN C̃(N )}, (10)

where Q̃(N ) ≡ C̃(2)C2 + · · · + C̃(N − 1)CN−1. As a simple
test for the expression above, note that it vanishes (as expected)
in the case of a homogeneous system (C1 = C2 = · · · = CN ).

To continue the analysis, we take a chain with three sites
(say, the smallest possible system). A direct computation gives
us

[C̃(3)]2 − 4Q̃(3) − 2C3C̃(3) = C2
1 − C2

3 .

Now we prove, by induction, that such relation is valid for any
number of sites: we assume that it is valid for k sites (i.e., for
k replacing 3 in the relation above), and then we show that it
follows for k + 1. In fact, by using the definitions we see that

C̃(k + 1) = C1 + 2C2 + · · · + 2Ck + Ck+1

= C̃(k) + Ck + Ck+1,

Q̃(k + 1) = C̃(2)C2 + · · · + C̃(k)Ck = Q̃(k) + C̃(k)Ck.

Then, a direct computation shows that

[C̃(K + 1)]2 − 4Q̃(k + 1) − 2Ck+1C̃(k + 1) = C2
1 − C2

k+1.

Hence, for the difference between the thermal conductivities
of the system with N sites, we obtain

1

K − 1

K′ = αT α−1ε(a1 − aN )

(N − 1)C̃(N )

[
C2

1 − C2
N

]
, (11)

where, we recall, αT α−1ε(a1 − aN ) in the numerator above is
T α

1 − T α
N up to O(ε). Thus, the existence of thermal rectifica-

tion for anisotropic, e.g., graded, materials is transparent.

III. RECTIFICATION PROPERTIES

Now, let us examine the rectification in details and search
for conditions leading to suitable properties. First, we write
the expression for the rectification factor fr

fr ≡
∣∣K − K′∣∣

K′ ≈
∣∣T α

1 − T α
N

∣∣
T α

∣∣C2
1 − C2

N

∣∣
[C̃(N )]2

.

Hence, fixed the temperatures at the boundaries, the behavior
of fr with N is given by |C2

1 − C2
N |/[C̃(N )]2. We recall that

C̃(N ) = C1 + 2C2 + · · · + 2CN−1 + CN ≈ 2
∫ N

1
Cxdx.

And, for a small gradient of temperature in the system,

K = (N − 1)/{T αC̃(N ) + O(ε)}.
Thus, to get a normal conductivity (Fourier’s law) we must
have C̃(N ) ∼ N , i.e., CN ∼ constant. That is, for these
graded systems, at least at small temperature gradients, if the
conductivity is normal then the rectification factor decays to
zero as N → ∞. To avoid the decay of the rectification factor,
for example, to make it finite and nonzero as N → ∞, we need
to take CN ∼ c exp(γN ). And so, C̃(N ) ∼ c[exp(γN ) − 1]/γ .
For γ > 0, C̃(N ) has exponential growth and K(N ) → 0
as N → ∞. For γ < 0, C̃(N ) → constant and K ∼ N , i.e.,
we have an abnormal conductivity. That is, the regimes of
nondecaying rectification and of normal conductivity do not
overlap. The possibility of a nondecaying rectification is a
very important property: as recalled before, the decay of
rectification is a problem for the usual diodes given by the
sequential coupling of different parts.

Moreover, still from the previous expression (take T1 > TN

and CN > C1), we see that the thermal conductivity is smaller
when the heat flows from the sites with larger C to the sites
with smaller C.

In short, we have shown that in a lattice system where
it is possible to build a temperature gradient, i.e., with the
heat flow from site j to j + 1 given by Eq. (1), with graded
structure (i.e., graded Cj ) and with local thermal conductivity
dependent on temperature [see Eq. (1)], we will always have
thermal rectification. To be precise, we need to recall that in our
proof, for ease of computation, we have assumed a system with
small temperature gradient (however, we believe that it is not a
necessary condition—more comments ahead). It is interesting
to note that such conditions– temperature gradient in the bulk,
local conductivity dependent on temperature, and a graded
structure—appear in the quantum harmonic self-consistent
chain of oscillators [21], a system that presents rectification
in opposition to its classical version (with a conductivity that
does not depend on temperature).

To give a concrete example, we turn to the chain with
homogeneous anharmonic potential, homogeneous interpar-
ticle interactions, etc., but with graded masses. For the model
with inner self-consistent reservoirs, weak nearest-neighbor
interactions, quartic anharmonicity, in an approximate calcu-
lation [20], we have

Fj,j+1 = C(
mj+1T

1/2
j + mjT

1/2
j+1

) (Tj − Tj+1),

where C involves the coefficients for the anharmonicity,
interparticle interaction, etc. The denominator of the expres-
sion above may be written as [(T 1/2

j /ρj,j+1) + (T 1/2
j+1/ρj+1,j )],

where ρj,j+1 = mj/mj+1mj , ρj+1,j = mj+1/mj+1mj . To
follow, we define

ρ̄j ≡ ρj,j−1 + ρj,j+1

2
= 1

2

(mj+1 + mj−1)

(mj−1mj+1)
,

i.e., ρ̄j is proportional to the inverse of a reduced mass. Hence,
considering the entire system j = 1, . . . ,N , we approximately
have Fj,j+1 given by Eq. (1) with Cj = 1/ρ̄jC. And the
analysis follows as previously described: now with the bigger
flow in the direction from the larger to the smaller masses. It is
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worth to recall that such property, a bigger heat flow from the
larger to smaller densities, as described here, has been already
experimentally described [6].

Similar properties appear in a system with homogeneous
particle masses, but graded anharmonic on-site potentials or
graded interparticle interactions.

IV. FINAL REMARKS

We have some remarks. First, we stress that we have pre-
sented here sufficient, not necessary, conditions for manifest-
ing thermal rectification in anisotropic systems. In Ref. [22],
by computer simulations, the authors describe rectification
in a graded mass Fermi-Pasta-Ulam chain, a model with an
invariant translational potential and abnormal conductivity
(even for the case of homogenous masses). We also recall
that, for the (very different) case of a system of two-terminal
junctions, sufficient conditions for rectification have been
described in a recent work by Wu and Segal [23].

A further investigation of great interest is the behavior
of the graded system as submitted to a large gradient of
temperature: we believe that it shall lead to a significative
rectification. In Ref. [24], for some specific models given
by chaotic billiard systems, the authors claim that there is
a significative rectification “provided the temperatures (of the
two sides of the system) are strongly different... .”

To conclude, we emphasize that due to their simplicity, the
assumptions and arguments described here follow for many
of the usual systems modeling heat conduction in solids:
it shows the ubiquity of rectification in graded systems.
Moreover, the existence of simple conditions for the existence
of an efficient rectification, and the fact that graded systems
may be constructed in practice (and are even abundant in
nature) indicate that they are optimal material to be used in the
construction of a thermal diode (and also thermal transistors,
etc.), and so, their use shall certainly contribute to the advance
of phononics.
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