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Kinetic theory of flocking: Derivation of hydrodynamic equations
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It is shown how to explicitly coarse-grain the microscopic dynamics of the rule-based Vicsek model for
self-propelled agents. The hydrodynamic equations are derived by means of an Enskog-type kinetic theory.
Expressions for all transport coefficients are given. The transition from a disordered to a flocking state, which at
large particle speeds appears to be a fluctuation-induced first-order phase transition, is studied numerically and
analytically.
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Pattern formation and collective motion in systems of
self-propelled objects are fascinating phenomena which have
attracted much attention. Systems of interest include animal
flocks [1], chemically powered nanorods [2], and actin
networks driven by molecular motors [3]. Theoretical studies
of these systems are usually based on phenomenological
transport equations. In most cases, the equations are postu-
lated by means of symmetry arguments, which define only
the general form of the terms but leave their coefficients
undetermined.

One goal of this Rapid Communication is to provide a
systematic derivation of all relevant coefficients for the two-
dimensional Vicsek model (VM) of self-propelled particles
[4]. In the VM, pointlike particles are driven with constant
speed. At each time step, a given particle assumes the average
direction of motion of its neighboring particles, with some
added noise. As the noise amplitude decreases, the system
undergoes a phase transition from a disordered state, in which
the particles have no preferred global direction, to an ordered
state, in which the particles move collectively in the same
direction. This long-range order motivated renormalization
group studies by Toner and Tu [5]. They found that the
stabilization of the ordered phase is due to the nonzero speed
of the particles, allowing two originally distant particles to
interact with each other at a later time. The phase transition was
originally thought to be continuous [4], but recent numerical
work [6] indicates that the transition is discontinuous with
strong finite-size effects. There are a few analytical studies
on this transition [7,8]; however, they do not treat the
original VM but simple models related to it. For example,
Bertin et al. [7], study a model with simplified interactions
and a continuous-time dynamics by means of a Boltzmann
equation.

Numerical simulations of the VM [4,6] show localized
high-density structures for which a Boltzmann description,
which is restricted to low densities, is not sufficient. Enskog’s
proposal to generalize the Boltzmann equation to dense
gases was a major milestone in kinetic theory. In this Rapid
Communication, it is shown how an Enskog-type equation
with genuine multibody collisions can be obtained for the VM
and how this can be used to rigorously derive hydrodynamic
equations. In addition to the terms postulated by Toner and
Tu [5], the derived equations contain several new relevant
terms which describe an intricate coupling between density

and order-parameter gradients. The coefficients of all terms
compatible with the symmetries of the system are calculated
explicitly in third order of a gradient expansion. The new
kinetic equation is used to determine the mean-field phase
diagram of the VM, which agrees well with direct numer-
ical simulations but disagrees with the results of a related
continuous-time model [7]. This shows the importance of
explicitly taking the discrete-time, rule-based nature of the VM
into account. The derived hydrodynamic equations are applied
to study the stability of a homogeneous flocking state against
spatio-temporal perturbations. I discuss how an instability at
the onset of collective motion can change the appearance of
the phase transition from second to first order. Predictions are
given for the system size where this change is expected to
happen.

In the VM, a system of N pointlike particles with con-
tinuous spatial coordinates ri(t) and velocities vi(t) evolves
via two steps: streaming and collision. During a time step τ ,
particles stream ballistically: xi(t + τ ) = xi(t) + τvi(t). The
magnitude of the particle velocities is fixed at v0. Only
the directions θi of the velocity vectors are updated in
the collision step: a circle of radius R is drawn around
a given particle and the average direction θ̄i of motion
of the particles within the circle is determined according
to θ̄i = arctan[

∑n
j sin(θj )/

∑n
j cos(θj )]. The new directions

follow as θi(t + τ ) = θ̄i(t) + ξi , where ξi is a random number
chosen with uniform probability from the interval [−η/2,η/2].
Since explicitly coarse-graining the dynamics of the VM
is difficult, in previous work [9] I first validated the for-
malism on a simpler equilibrium model [10] which shares
essential features with the VM. The kinetic formalism starts
with the Liouville equation for the N -particle probability
density

P (θ (N),X(N) + τV(N),t + τ )

= 1

ηN

∫ η/2

−η/2
dξ (N)

∫ 2π

0
dθ̃ (N)P (θ̃ (N),X(N),t)

×
N∏

i=1

δ̂(θi − ξi − θ̄i), (1)

where X(N) ≡ (x1,x2, . . . ,xN ), θ (N) ≡ (θ1,θ2, . . . ,θN ), and
δ̂(x) = ∑∞

m=−∞ δ(x + 2πm) is the periodically continued
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delta function. The velocities V(N) ≡ (v1,v2, . . . ,vN ), are
given in terms of angle variables, vi = v0(cos θi, sin θi). The
collision integral contains integrations over the precollisional
angles θ̃j . Assuming that the particles are uncorrelated prior to
the collisions, the probability distribution can be expressed
as a product of identical one-particle probability distribu-
tions: P (θ (N),X(N)) = ∏N

i=1 P1(θi,xi). This approximation of
molecular chaos is valid at moderate and large noise strength
η and when the mean-free path (mfp) is large compared to
the radius of interaction R. Here, the mfp is defined as the
distance a particle travels between collisions, τv0, and is
density-independent due to the discrete nature of the dynamics.
Multiplying Eq. (1) by

∑
i δ(v − vi)δ(x − xi) and integrating

over all particle positions xi and angles θi yields, in the large-N
limit [9], a kinetic equation for the one-particle distribution
function f (θ,x,t) = NP1(θ,x,t),

f (θ,x + τv,t + τ )

= 1

η

∫ η/2

−η/2
dξ

〈〈
N∑

n=1

e−MR

n!
nf (θ̃1,x,t)

× δ̂(θ − ξ − θ̄i)
n∏

i=2

f (θ̃i ,xi ,t)

〉
θ̃

〉
x

, (2)

where MR(x,t) = ∫
R

ρ(y,t) dy is the average number of
particles in a circle of radius R centered around x.
The local particle density ρ is given as a moment of
the distribution function, ρ(x,t) = ∫ 2π

0 f (θ,x,t)dθ ; 〈· · ·〉x =∫
R

· · · dx2dx3 · · · xn denotes the integration over all positions,
n − 1 particles can assume within the interaction circle;
〈· · ·〉θ̃ = ∫ 2π

0 · · · dθ̃1dθ̃2 · · · dθ̃n is the average over all pre-
collisional angles of n particles in the interaction circle.
Since particles in the VM have zero volume, there is a
nonzero probability that a large number of particles can be
found in the collision circle of a given particle. This leads
to the unusual structure of the collision integral in which
every term in the sum accounts for an n-particle collision.
For example, the n = 4 term involves the product of four
distribution functions and describes a four-body collision.
Interactions between particles which are not at the same
position but a distance �R apart are explicitly taken into
account by Eq. (2). This leads to collisional momentum
transfer, which is a key feature of the Enskog equation and not
included in Boltzmann-type equations. Hence, Eq. (2), can be
interpreted as an Enskog-like equation for pointlike particles
with discrete time evolution; it remains valid even at infinite
density.

Let us first consider a spatially homogeneous system and
study stationary solutions of Eq. (2). This amounts to solving
the fixed-point equation f0(θ ) = C(f0) for the stationary
distribution function f0, where C denotes the right-hand
side of Eq. (2). It can be easily checked that the constant
distribution f0 = ρ0/(2π ) is a fixed point at any noise and
average density, ρ0 = N/A, where A is the area of the
system. This solution corresponds to the disordered phase,
where all velocity directions occur with equal probability.
Below a critical noise ηC(ρ0) there exists another fixed-point
solution which breaks rotational symmetry. It has a maximum
at some arbitrary angle θ̂ and describes ordered motion into

this direction. The critical noise follows from the condition
λ = 1, with

λ = 4

η
sin

(
η

2

)
e−MR

N∑
n=1

n2Mn−1
R

n!
I (n).

(3)

I (n) = 1

(2π )n

∫ 2π

0
dθ1 · · ·

∫ 2π

0
dθn cos θ̄ cos θ1.

Here, MR is equal to πR2ρ0 and θ̄ is the average angle
defined above Eq. (1). The fixed-point equation was solved
numerically for η � ηC . The solution approaches a cosine
with vanishing amplitude when η approaches the critical noise.
By means of a Fourier cosine series in θ − θ̂ the behavior
at the critical point was extracted analytically. The order
parameter, defined as the amplitude g1 of the first nontrivial
Fourier coefficient, is found to behave as g1 ∝ √

ηC − η.
Thus, the order-disorder transition appears to be continuous
with the mean-field critical exponent of 1/2. Figure 1(a) shows
the calculated phase diagram (solid line). Evaluating Eq. (3) in
the low-density limit gives ηC ∝ R

√
ρ. This scaling with the

square root of the density agrees with previous numerical [4]
and theoretical results [6,7]. However, there is no dependence
of the critical noise on the particle speed in the large-mfp limit,
which is consistent with numerical simulations of the VM
[4,11] but disagrees with the scaling ηC ∝ √

ρRv0 for ρ → 0
of the continuous model of Ref. [7]. The dashed line in Fig. 1(a)
shows that the phase diagram of this model [obtained from
Eq. (35) in [7] with v0τ/R = 5] does not describe the VM.
Evaluating Eq. (3) in the infinite-density limit yields ηC → 2π .
In order to see whether the homogeneous ordered state is stable
under time evolution, I derive the hydrodynamic equations
by means of a Chapman-Enskog expansion [9,12]. The basic
idea behind this expansion is to take the local stationary state
as a reference state and expand around it in powers of the
hydrodynamic gradients. To systematically account for these
gradients, a dimensionless ordering parameter ε is introduced,
which is set to unity at the end of the calculation. The procedure
starts with a Taylor expansion of the left-hand side of Eq. (2)
around (θ,x,t). The spatial gradients that occur are scaled
as ∂α → ε∂α , and multiple time scales ti are introduced in
the temporal gradients. These time scales describe different
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FIG. 1. (a) The critical noise ηC as a function of the average
number of collision partners, M = ρ0πR2, and the prediction of
Eq. (35) for large v0 from Ref. [7], (dashed line) compared with
results from Refs. [4,8,11]. (b) Real part of the growth rate ωR

of a small longitudinal perturbation of the ordered state versus
dimensionless wave number k|| at M = 5, very close to the threshold,
(ηC − η)/ηC = 0.000 57. The inset shows a lower and an upper bound
for the crossover length L∗ (in units of the mfp), beyond which the
phase transition is expected to become discontinuous:
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physical processes; for example, in regular fluids, the time
scale proportional to ε describes convection. For the VM, this
is expressed as ∂t = ∂t0 + ε∂t1 + ε2∂t2 + · · ·.

Expanding the distribution function and the collision
integral in powers of ε, f = f0 + εf1 + ε2f2 + · · ·, and C =
C0 + εC1 + ε2C2 + · · ·, inserting into Eq. (2), and collecting
terms of the same order in ε leads to a hierarchy of evolution
equations for the fi . Due to the absence of momentum
conservation and Galilean invariance, this set of equations
is dramatically different from the usual one. It is not a priori
evident whether the scaling ansatz for the time derivatives
is correct. However, it turns out that this choice avoids
any inconsistencies if, additionally, the expansion of the
distribution function f is identified as an angular Fourier
series with f0(x,t) = ρ(x,t)/(2π ) and, for n > 0, fn(x,θ,t) =
[an(x,t) cos (nθ ) + bn(x,t) sin (nθ )]/(πvn

0 ).
Many moments of the collision integral such as

〈vxvyC2〉 = ∫ 2π

0 vxvyC2dθ are required in the Chapman-
Enskog expansion. For simplicity, these moments are evalu-
ated in the limit of large mfp: τv0 
 R. This involves solving
the following four integrals:

Jm(n) = 1

(2π )n

∫ 2π

0
dθ1 · · ·

∫ 2π

0
dθn�m, (4)

where �m is given by �1 = cos2 θ̄ cos 2θ1, �2 =
cos θ̄ sin θ̄ cos θ1 sin θ2, �3 = cos θ̄ cos θ1 cos 2θ2, and �4 =
cos θ̄ cos θ1 cos θ2 cos θ3. The average angle θ̄ is a function
of the angles θ1,θ2, . . . ,θn.

We seek a hydrodynamic description of the first two
moments of f , namely the particle density ρ = ∫ 2π

0 f dθ and
the macroscopic momentum density vector �w = (wx,wy),

�w = ∫ 2π

0 �vf dθ. Inserting the Fourier representation of
f into these moments shows that the first-order coefficients
are given by the momentum density, a1 = wx and b1 = wy .
Multiplying the hierarchy of evolution equations by powers of
the microscopic velocity vector �v = (vx,vy) and integrating
over θ gives a set of equations for the time development of the
density and the moments ai and bi . This analysis is performed
in the vicinity of the critical point, |λ − 1| � 1, in order to
significantly simplify the consistent closure of the hierarchy
of moment equations; see [11].

For simplicity, all equations are rescaled by expressing time
in units of τ and distances in units of the mfp, τv0, which
also makes ρ and �w dimensionless. After straightforward
but tedious calculations one obtains the continuity equation
∂tρ + ∂αwα = 0 and a rotationally invariant equation for the
momentum density:

∂t �w + ∇ · H = −b∇ρ + (λ − 1) �w + Q1 · �w + Q2 · ∇ρ,

(5)
with b = (3 − λ)/4. The momentum flux tensor H and the
tensors Q1, Q2

H =
5∑

i=1

hi�i , Q1 =
5∑

i=1

qi�i , Q2 =
5∑

i=1

ki�i , (6)

are given in terms of five symmetric traceless tensors �i :

�1,αβ = ∂αwβ + ∂βwα − δαβ∂γ wγ ,

�2,αβ = 2∂α∂βρ − δαβ∂2
γ ρ,

TABLE I. Transport coefficients hj , qj , and kj , defined in Eq. (6),
expressed as functions of �, S, p, q; see Eq. (8).

j hj qj kj

1
1 + p

8(p − 1)

S

2(p − 1)

S

8(p − 1)

2 −p2 + 10p + 1

96(p − 1)2
− S

4(p − 1)2
− S(p + 5)

96(p − 1)2

3 − q

2(p − 1)
� − Sq

p − 1

�

4
− Sq

4(p − 1)

4
q(1 + p)

4(p − 1)2

�

2
− Sq(p − 3)

2(p − 1)2

�

12
− Sq(p − 4)

12(p − 1)2

5 −q(p2 + 10p + 1)

48(p − 1)3

�

24
− Sq(p2 − 2p + 13)

24(p − 1)3
− Sq(p + 5)

48(p − 1)3

�3,αβ = 2wαwβ − δαβw2, (7)

�4,αβ = wα∂βρ + wβ∂αρ − δαβwγ ∂γ ρ,

�5,αβ = 2(∂αρ)(∂βρ) − δαβ(∂γ ρ)2.

The tensor �1 is the viscous stress tensor of a two-dimensional
fluid. The transport coefficients in Eq. (6) are given in Table I.
They depend on the following variables:

p = 4

η
sin (η)

N∑
n=1

e−MR

n!
n2Mn−1

R J1(n),

q = 4πγ 2

η
sin (η)

N∑
n=2

e−MR

n!
n2(n − 1)Mn−2

R J2(n),

(8)

S = 8πγ 2

η
sin

η

2

N∑
n=2

e−MR

n!
n2(n − 1)Mn−2

R J3(n),

� = 8π2γ 4

3η
sin

η

2

N∑
n=3

e−MR

n!
n2(n − 1)(n − 2)Mn−3

R J4(n),

where γ is the ratio of the interaction radius to the mfp, γ =
R/(τv0). Equation (5) is consistent with the one postulated
in Ref. [5] but contains additional gradient terms. It has a
homogeneous flocking solution: �w = w0n̂ and ρ = ρ0. The
amplitude of the flow is given by w0 = √

(1 − λ)/q3. In order
to study the spontaneous onset of collective motion, a perturba-
tion around this state is considered, ρ(x,t) = ρ0 + δρeik·x+ωt ,
�w(x,t) = w0n̂ + δ �weik·x+ωt , and Eq. (5) is linearized in δρ

and δ �w. The characteristic equation for the growth rate ω(�k)
describes three possible modes. I found that, in a small
window, ηS < η < ηC , directly below the onset of flocking,
one of the longitudinal modes is always unstable against
long-wavelength perturbations: the real part of ω is positive
for 0 < k < k0 as shown in Fig. 1(b). A similar instability was
reported in Refs. [7,13]. Chaté et al. [6] found numerically
that the order-disorder transition is discontinuous for system
sizes L larger than the crossover length L∗. Assuming that the
long-wave instability is the reason for this finite-size effect, I
calculated the largest value of k0 within the narrow instability
window at constant density k∗ in order to obtain a lower bound
for L∗. Plotting 2π/k∗ gives the lower curve in the insert of
Fig. 1(b). An upper bound was obtained by determining the
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wave number kmax where the growth rate has the largest value
inside the instability window. The upper curve in the insert
shows 2π/kmax as a function of density. The minimum around
M ≈ 2 and the divergences at small and large densities are
consistent with numerical results [6].

To see what happens to a growing perturbation beyond the
linear instability, the continuity equation and Eq. (5) were
integrated on an L × L lattice with periodic boundaries by
means of a predictor-corrector scheme [14]. These simulations
confirmed that the ordered phase is stable for small system
sizes L < 2π/k0. For slightly larger system sizes one observes
a stable, inhomogeneous steady state with a global order
parameter, 〈 �w〉 = ∫ �wdx/L2, larger than the amplitude of the
homogeneous state, w0. Finally, for much larger system sizes,
it turns out that the system is both linearly and nonlinearly
unstable for ηS < η < ηC . Longitudinal perturbations grow
without bound; they do not lead to stable solitons as suggested
in Ref. [7]. However, direct simulations of the VM at large
mfp do show solitary structures such as traveling high-density
bands in a window just below the transition [6,11]. At lower
noise these structures disappear. Identifying this “solitary”
window with the instability window, its size can be predicted
by the current theory which takes all the details of the VM
such as multibody interactions into account. However, inside
this window, the hydrodynamic equations are driven out of the
range of their validity and are not suited to describe solitons.
Nagy et al. [4] did not see high-density bands at smaller
velocities v0. To treat this limit of small mfp theoretically,
one has to abandon the molecular chaos approximation; that
is, go beyond the mean-field approximation, which is outside
the scope of this paper.

In summary, a first-principle derivation of the hydrody-
namic equations of the VM by means of a kinetic theory is
presented and a stability analysis of the resulting equations,
Eq. (5), is performed. The mean-field phase diagram for
arbitrary density is calculated. It agrees to within a few percent
with simulation results and is shown to be independent of the
particle speed in the large-mfp limit. It is also shown that
the continuous theory of Ref. [7] fails to reproduce the phase
diagram of the VM and that one has to explicitly incorporate
the discrete-time dynamics and genuine multibody interactions
in order to achieve agreement. The theory presented here
is consistent with numerical studies [4,6] and suggests the
following picture of the nature of the flocking transition in the
large-mfp limit considered here: At η = ηC a homogeneous
ordered state bifurcates continuously from the disordered
state. At the threshold, this state is unstable to longitudinal,
long-wavelength fluctuations. Perturbations from a large range
of wave numbers k < k0 become unstable, already in close
vicinity to the threshold. The transition appears to be contin-
uous in small systems but becomes a discontinuous transition
in large systems due to the emergence of density waves which
abruptly increase the global order parameter. An estimate is
given of the system size L∗, above which the fluctuation-driven
discontinuous nature of the transition is expected to emerge.
This length is found to diverge at small and large densities,
which is consistent with numerical results.
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