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Thermal diffusion in a binary liquid due to rectified molecular fluctuations
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The Soret motion in binary liquids is shown to arise to a large extent from rectified velocity fluctuations. From
a hard-bead model with elastic collisions in a nonuniform temperature, we derive a net force on each molecule,
which is proportional to the temperature gradient and depends on the ratio of the molecular masses and moments
of inertia. Our findings agree with previous numerical simulations and provide an explanation for the thermal
diffusion isotope effect observed for several liquids.
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Nonequilibrium fluctuations may rectify the motion of a
Brownian particle and give rise to directed diffusion [1,2].
Noise-driven transport has been studied extensively in terms
of ratchet models, where the broken symmetry is realized by
a random force with zero mean and asymmetric spectrum,
a sawtooth-like potential with a periodic time-dependent
temperature profile, or nonuniform chemical reactions. Ap-
plications range from molecular motors to electron transport
in quantum devices [2].

The thermal diffusion or Soret effect describes motion due
to a temperature gradient [3]. From kinetic theory it is known
that in a gas mixture the lighter atoms move to the warm, the
heavier ones to the cold [4]. It has been realized early on that
this effect can be used for isotope separation [5]. In contrast
to gases, thermally driven motion in molecular liquids is less
well understood [6,7], despite a variety of available approaches
[8–11]. Part of the complexity is due to the presence of two
basically different driving mechanisms: The first one results
from solute-solvent interactions such as electric-double layer
and dispersion forces [12–15] and is particularly relevant for
charged colloidal suspensions [16–18]. The second one, which
we are interested in here, relies on the thermal fluctuations of
solute and solvent molecules.

Since velocity fluctuations are inversely proportional to the
mass, they are expected to be most relevant for light molecules
or atoms. This is confirmed by the isotope effects observed in
experiments on molecular liquids [19–22] and by numerical
simulations [23–26]. Thus Debuschewitz and Köhler reported
that protonated benzene in cyclohexane migrates to higher
temperatures, whereas deuterated benzene goes to the cold
side [20]. Even more strikingly, the benzene isotopes 12C6D6

and 13C6H6, which have equal mass but different moment of
inertia, vary significantly in their thermal diffusion behavior,
thus hinting at the role of rotational diffusion.

In the present paper we study how velocity fluctuations
and rotational diffusion affect the Soret effect of a binary
liquid. Thermal noise acts as a random force f and results
in molecular Brownian motion. In thermal equilibrium the
mean force is zero. In a nonequilibrium system, however, its
average F = 〈f 〉 does not necessarily vanish and may result
in a steady-state velocity

u = F

ξ
, (1)

where the Stokes friction coefficient ξ is given by the
correlation 〈f (t)f (0)〉. Our main purpose is to relate this

drift term to the nonuniform temperature that appears in the
molecular velocity distribution functions. The random force
is described by the momentum �p transferred from colliding
neighbor molecules, f = ∑

i �pδ(t − ti). Its average value
reads

F =
〈
�p

τ

〉
, (2)

where τ is the time separating two subsequent collisions. The
conservation laws are evaluated explicitly for a hard-bead
model with elastic collisions, giving F as a function of the
molecular masses and moments of inertia. The model is shown
in Fig. 1, which in particular illustrates the importance of
translation-rotation coupling for nonspherical molecules.

In the absence of an external potential, the weighted average
of the forces Fa and Fb exerted on each component vanishes.
For molecules of equal size this condition simplifies to

φaFa + φbFb = 0, (3)

where the volume fractions satisfy φa + φb = 1. The momen-
tum transfer �p depends on the linear and angular velocities of
both molecules. Elastic collisions of two rigid particles satisfy
the conservation laws

E′
1 + E′

2 = E1 + E2,

T∇

FIG. 1. (Color online) Schematic view of a binary liquid of
nonspherical molecules. The two species have equal volume but
different mass and different moment of inertia.
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FIG. 2. Schematic view of two-particle elastic collisions. (Left
panel) Frontal impact with the second particle coming from the left
(v2 > v1) or from the right (v2 < v1). Because of the nonuniform
temperature, the velocity distribution of each particle is with respect
to a particular value, TL < T0 < TR . In terms of the constant gradient
∇T , the differences read ±bT ∇T . (Right panel) Case of nonzero
impact parameter b. The upper example illustrates an initial state
with linear velocity and zero angular velocity (ωi = 0), and the lower
one the opposite case with finite ωi and zero vi . In both cases linear
momentum �p is transferred during the collision, according to (11).
Only collisions from the left side are shown.

p′
1 + p′

2 = p1 + p2, (4)

σ ′
1 + σ ′

2 = σ1 + σ2,

where pi = mivi denotes the linear momentum, σi the angular
momentum, and Ei = p2

i /2mi + σ 2
i /2Ii the kinetic energy

with the moment of inertia Ii . The primed quantities describe
the state after the collision. In three dimensions there are
seven independent equations for 12 unknown variables; an
unambiguous final state is determined by five additional
conditions for the collision.

Here we study a one-dimensional model where p and σ

are taken as scalars. In a first approach we neglect the angular
momentum and consider frontal collisions only, as illustrated
in the left panel of Fig. 2. From the conservation laws for E and
p, one readily obtains the momentum transfer �p = p′

1 − p1

in terms of the initial state,

�p = 2μ12(v2 − v1), (5)

with the reduced mass 1/μ12 = 1/m1 + 1/m2.
A net force arises from the fact that the thermal average

in (2) has to be done with a particular temperature for
each particle. The position of molecule 1 defines a reference
temperature T0, whereas that of particle 2 may be lower or
higher, depending on its relative position, as illustrated in the
left panel of Fig. 2. As an important quantity, the collision rate
1/τ is a function of temperature and velocity. In order to keep
the algebra as simple as possible, we adopt from the beginning
the form

1/τ = |v2 − v1|/	, (6)

which is proportional to the relative velocity. The momentum
transfer is positive for collisions from the left, that is, for
v2 > v1; inserting �p and the rate in (2), one finds〈

�p

τ

〉
L

= 2μ12

∫ ∞

−∞
dv1

∫ ∞

v1

dv2ϕ1ϕ2
(v2 − v1)2

	L

,

with the Maxwell velocity distribution function ϕ(v) =
(2π〈v2〉)− 1

2 e− 1
2 v2/〈v2〉. A similar expression of opposite sign

arises from neighbor molecules coming from the right, where
v2 < v1. Because of the spatial variation of temperature and of
the parameter 	, these contributions do not completely cancel
each other. Their difference gives the net force on particle 1,

F1 = μ12

(〈
v2

1

〉
0 + 〈

v2
2

〉
L

	L

−
〈
v2

1

〉
0 + 〈

v2
2

〉
R

	R

)
, (7)

where 0, L, R indicate the molecular position.
Now we determine the temperature dependence of the mean

spacing 	. We insert (7) with the mean velocity square 〈v2
i 〉X =

kBTX/mi in the constraint (3). Performing for both molecules
1 and 2 the average with respect to the species a and b, we
obtain the condition

(T0 + TL)/	L = (T0 + TR)/	R, (8)

which means that 	 is determined by the mean temperature
of the colliding molecules. This relation could be obtained
equally well by requiring that the net force vanishes in a pure
system, in other words, by putting F = 0 for an a molecule in
an a environment.

The physical origin of the thermal force is best discussed in
terms of the velocity fluctuations appearing in (7). Its positive
and negative contributions arise from collisions with molecules
at the left or at the right, with TL < TR . If particle 1 is much
lighter than 2 (m1 � m2), its mean square 〈v2

1〉0 = kBT0/m1

dominates the numerators and, because of 	L < 	R , leads to a
positive force to the hot side. In the opposite case m1 � m2,
the numerators are proportional to TL and TR; since 	(T )
varies more weakly with T , the second term in (7) exceeds
the first one, and the force takes a minus sign. Thus the
temperature gradient acts like a rectifier on the molecular
velocity fluctuations, which drives the heavier component to
lower T , and the lighter one to the hot side.

Equation (8) can be rewritten as 	 = 	0(T + T0)/2T0, with
constant 	0. Replugging this expression in the force on an
a molecule, averaging the collision partner 2 with respect to
composition, and expanding to linear order in the temperature
variation, we find

Fa = φb

bT

	0

mb − ma

mb + ma

kB∇T . (9)

Here we have used TR/L = T0 ± bT ∇T as defined in Fig. 2.
The force on a molecule of the second species is obtained
by exchanging the labels a and b; one readily verifies the
condition (3). It is noteworthy that Fa vanishes in a pure a

system (φb = 0) and is maximum in a b environment (φb = 1).
Our expression for Fa compares favorably with early work
for heavy Brownian particles, where F = −kB∇T [27]. This
corresponds to our (9) for ma � mb and bT = 	0. The latter
parameters are related to the molecular structure, which is
hardly addressed in Ref. [27].
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Now we take the angular momentum into account. Besides
the three conservation laws (4), there is one condition relating
the changes of momentum and angular momentum �σ =
σ ′

1 − σ1. In the one-dimensional model it takes the simple
form

�σ = b�p, (10)

where b is an impact parameter as illustrated in the right panel
of Fig. 2. The four equations (4) and (10) determine the final
state p′

i ,σ
′
i in terms of the incoming quantities pi,σi , with the

angular momentum σi = Iiωi . In view of (2) we are mainly
interested in the momentum transfer and thus give its explicit
expression

�p = 2

1/μ12 + b2/I12
[v2 − v1 + b(ω2 − ω1)], (11)

with the reduced moment I−1
12 = I−1

1 + I−1
2 . For nonzero b

both linear and angular velocities result in momentum transfer,
as illustrated in the right panel of Fig. 2. In analogy to (6), the
collision rate reads 1/τ = |v2 − v1 + b(ω2 − ω1)|/	,

We consider separately collisions with nonzero velocities
vi and angular velocities ωi . The first case is identical to the
analysis between (5) and (9), with the reduced mass replaced
by the denominator in (11). Proceeding in the same way for
the second case, where the center of mass of both molecules
is initially at rest (vi = 0), we merely have to replace the
linear velocities vi with bωi . Inserting the mean square 〈ω2

i 〉 =
kBT/Ii leads to a force similar to that of the first case, but with
the moments of inertia instead of the masses.

Adding the contributions calculated independently for the
cases ωi = 0 and vi = 0, we have

Fa = −φb

bT

	0
�kB∇T , (12)

with the shorthand notation for the relative differences of mass
and inertia,

� = m−1
a − m−1

b + b2
(
I−1
a − I−1

b

)
m−1

a + m−1
b + b2

(
I−1
a + I−1

b

) . (13)

For b = 0 we recover (9). In principle, this expression should
be averaged over the parameters b, bT , 	0. Moreover, in a
general initial state both linear and angular velocities take
nonzero values and should be considered simultaneously in
(2). These modifications would encumber the algebra without
significantly modifying the net force.

Now we discuss the steady state resulting from the the drift
velocity (1) and diffusion with the Einstein coefficient D =
kBT/ξ . The current of the component a reads Ja = −D∇φa +
φaua and is opposite to that of b molecules. The steady-state
condition Ja = 0 may be rewritten as [3]

∇φa + φaφbST ∇T = 0,

where the Soret coefficient ST describes the stationary
nonuniform composition of the binary system. With this sign
convention, a molecules accumulate at lower temperature for
ST > 0 and at higher T for ST < 0. From (1) and (12) one
readily derives

ST = S0
T + bT

	0

�

T0
, (14)
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FIG. 3. Isotope effect on the Soret coefficient ST of benzene-
cyclohexane mixtures. Black points are Debuschewitz and Köhler’s
experimental data at equal mole fractions [20]. The list of isotopes
corresponds to the eight data points from the left to the right. The
solid line is calculated from (14) with the ratio bT /	0 = 3.4 and the
impact parameter b = 2.5 Å; the values of mi and Ii are taken from
Ref. [20]. The vertical offset S0

T = −1.1 × 10−3K−1 is indicated by
the dashed line. With benzene as a molecules, the first two data points
correspond to � > 0, and the remaining ones to negative �.

where we have added a term S0
T that accounts for molecular

dispersion forces. Equations (12) and (14) constitute the main
result of the present paper.

In Fig. 3 we plot data of Debuschewitz and Köhler’s
for mixtures of benzene and cyclohexanė [20]. Studying
various isotopes that range from deuterated benzene and
protonated cyclohexane (C6D6-C6H12) to the opposite case
C6H6-C6D12, these authors observed a strong mass effect
of the Soret coefficient ST . Since the isotopes have very
similar chemical properties and, in particular, the same van der
Waals interaction potential, these data show unambiguously
that thermal diffusion varies with both molecular mass and
moment of inertia. The dependence on the latter quantity is
best displayed by comparing deuterated benzene C6D6 and
the protonated heavy-carbon isotope 13C6H6: These molecules
have equal mass but different moment of inertia; their ST values
differ by about 50%.

The solid line in Fig. 3 is calculated from (14). With
Ii/mi ≈ 2.5 Å2 for benzene and cyclohexane [20], the value
for the impact parameter b = 2.5 Å implies that the angular
velocity fluctuations kBT b2/Ii are several times larger than
the linear ones kBT/mi . Thus the quantity � is determined
by the moments of inertia rather than by the masses. In
physical terms this means that the Soret effect is mainly due
to rotational diffusion with the mean square angular velocity
〈ω2

i 〉 = kBT/Ii .
The vertical offset S0

T describes thermally driven motion
due to dispersion forces and thus is insensitive to a change
of the molecular mass; its numerical value is taken from
Ref. [20]. Thus the Soret coefficient (14) consists of two
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terms, one of which depends on the composition and the other
one on the molecular mass and inertia only [20,21]. This is
confirmed by several experiments that show that the mass and
composition dependence of ST separates in additive contri-
butions [20,21]. For components of comparable size, a linear
variation of S0

T with the volume fraction φ has been observed
in accordance with simulations [28] and a simple mean-field
model [15].

The Soret coefficient (14) agrees with numerical simula-
tions of Lennard-Jones and hard-bead systems. Several authors
reported dependencies on mass and moment of inertia similar
to (13) [23–26]. The ratio of the molecular mean distance bT

and mean spacing 	0 is related to the filling factor; the linear
variation of (14) compares favorably with simulation results at
different densities [25]. The numerical value of bT /	0 used in

Fig. 3 agrees with the molecular size bT ∼ 4 Å and the spacing
between particles 	0 ∼ 1 Å.

The present one-dimensional hard-bead model consider-
ably simplifies the otherwise complex molecular collisions.
The rectification of thermal fluctuations, as expressed by the
mean-square velocities at different temperatures in (7), is
insensitive to the model details and results in a net force
proportional to ∇T with the coefficient �. The agreement
of (14) with the isotope data and with numerical simulations
[23–26] confirms that thermal diffusion in binary liquids is to a
large extent driven by rectified molecular fluctuations. Though
similar effects are expected to occur in macromolecular
solutions [29], one should keep in mind that a polymer cannot
be treated as a rigid body, thus requiring a refined picture for
its collisions with solvent molecules.
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